Skip to content

Commit 5c4d169

Browse files
committed
Overwrite files with Chaos.NaCl versions.
1 parent 037e0a4 commit 5c4d169

24 files changed

+1339
-1379
lines changed
Lines changed: 185 additions & 185 deletions
Original file line numberDiff line numberDiff line change
@@ -1,190 +1,190 @@
1-
using System;
1+
using System;
22
using System.Runtime.CompilerServices;
33

44
namespace Chaos.NaCl
55
{
6-
internal static class CryptoBytes
7-
{
8-
public static bool ConstantTimeEquals(byte[] x, byte[] y)
9-
{
10-
if (x == null)
11-
throw new ArgumentNullException("x");
12-
if (y == null)
13-
throw new ArgumentNullException("y");
14-
if (x.Length != y.Length)
15-
throw new ArgumentException("x.Length must equal y.Length");
16-
return InternalConstantTimeEquals(x, 0, y, 0, x.Length) != 0;
17-
}
18-
19-
public static bool ConstantTimeEquals(ArraySegment<byte> x, ArraySegment<byte> y)
20-
{
21-
if (x.Array == null)
22-
throw new ArgumentNullException("x.Array");
23-
if (y.Array == null)
24-
throw new ArgumentNullException("y.Array");
25-
if (x.Count != y.Count)
26-
throw new ArgumentException("x.Count must equal y.Count");
27-
28-
return InternalConstantTimeEquals(x.Array, x.Offset, y.Array, y.Offset, x.Count) != 0;
29-
}
30-
31-
public static bool ConstantTimeEquals(byte[] x, int xOffset, byte[] y, int yOffset, int length)
32-
{
33-
if (x == null)
34-
throw new ArgumentNullException("x");
35-
if (xOffset < 0)
36-
throw new ArgumentOutOfRangeException("xOffset", "xOffset < 0");
37-
if (y == null)
38-
throw new ArgumentNullException("y");
39-
if (yOffset < 0)
40-
throw new ArgumentOutOfRangeException("yOffset", "yOffset < 0");
41-
if (length < 0)
42-
throw new ArgumentOutOfRangeException("length", "length < 0");
43-
if (x.Length - xOffset < length)
44-
throw new ArgumentException("xOffset + length > x.Length");
45-
if (y.Length - yOffset < length)
46-
throw new ArgumentException("yOffset + length > y.Length");
47-
48-
return InternalConstantTimeEquals(x, xOffset, y, yOffset, length) != 0;
49-
}
50-
51-
private static uint InternalConstantTimeEquals(byte[] x, int xOffset, byte[] y, int yOffset, int length)
52-
{
53-
int differentbits = 0;
54-
for (int i = 0; i < length; i++)
55-
differentbits |= x[xOffset + i] ^ y[yOffset + i];
56-
return (1 & (unchecked((uint) differentbits - 1) >> 8));
57-
}
58-
59-
public static void Wipe(byte[] data)
60-
{
61-
if (data == null)
62-
throw new ArgumentNullException("data");
63-
InternalWipe(data, 0, data.Length);
64-
}
65-
66-
public static void Wipe(byte[] data, int offset, int count)
67-
{
68-
if (data == null)
69-
throw new ArgumentNullException("data");
70-
if (offset < 0)
71-
throw new ArgumentOutOfRangeException("offset");
72-
if (count < 0)
73-
throw new ArgumentOutOfRangeException("count", "Requires count >= 0");
74-
if ((uint) offset + (uint) count > (uint) data.Length)
75-
throw new ArgumentException("Requires offset + count <= data.Length");
76-
InternalWipe(data, offset, count);
77-
}
78-
79-
public static void Wipe(ArraySegment<byte> data)
80-
{
81-
if (data.Array == null)
82-
throw new ArgumentNullException("data.Array");
83-
InternalWipe(data.Array, data.Offset, data.Count);
84-
}
85-
86-
// Secure wiping is hard
87-
// * the GC can move around and copy memory
88-
// Perhaps this can be avoided by using unmanaged memory or by fixing the position of the array in memory
89-
// * Swap files and error dumps can contain secret information
90-
// It seems possible to lock memory in RAM, no idea about error dumps
91-
// * Compiler could optimize out the wiping if it knows that data won't be read back
92-
// I hope this is enough, suppressing inlining
93-
// but perhaps `RtlSecureZeroMemory` is needed
94-
[MethodImpl(MethodImplOptions.NoInlining)]
95-
internal static void InternalWipe(byte[] data, int offset, int count)
96-
{
97-
Array.Clear(data, offset, count);
98-
}
99-
100-
// shallow wipe of structs
101-
[MethodImpl(MethodImplOptions.NoInlining)]
102-
internal static void InternalWipe<T>(ref T data)
103-
where T : struct
104-
{
105-
data = default(T);
106-
}
107-
108-
// constant time hex conversion
109-
// see http://stackoverflow.com/a/14333437/445517
110-
//
111-
// An explanation of the weird bit fiddling:
112-
//
113-
// 1. `bytes[i] >> 4` extracts the high nibble of a byte
114-
// `bytes[i] & 0xF` extracts the low nibble of a byte
115-
// 2. `b - 10`
116-
// is `< 0` for values `b < 10`, which will become a decimal digit
117-
// is `>= 0` for values `b > 10`, which will become a letter from `A` to `F`.
118-
// 3. Using `i >> 31` on a signed 32 bit integer extracts the sign, thanks to sign extension.
119-
// It will be `-1` for `i < 0` and `0` for `i >= 0`.
120-
// 4. Combining 2) and 3), shows that `(b-10)>>31` will be `0` for letters and `-1` for digits.
121-
// 5. Looking at the case for letters, the last summand becomes `0`, and `b` is in the range 10 to 15. We want to map it to `A`(65) to `F`(70), which implies adding 55 (`'A'-10`).
122-
// 6. Looking at the case for digits, we want to adapt the last summand so it maps `b` from the range 0 to 9 to the range `0`(48) to `9`(57). This means it needs to become -7 (`'0' - 55`).
123-
// Now we could just multiply with 7. But since -1 is represented by all bits being 1, we can instead use `& -7` since `(0 & -7) == 0` and `(-1 & -7) == -7`.
124-
//
125-
// Some further considerations:
126-
//
127-
// * I didn't use a second loop variable to index into `c`, since measurement shows that calculating it from `i` is cheaper.
128-
// * Using exactly `i < bytes.Length` as upper bound of the loop allows the JITter to eliminate bounds checks on `bytes[i]`, so I chose that variant.
129-
// * Making `b` an int avoids unnecessary conversions from and to byte.
130-
public static string ToHexStringUpper(byte[] data)
131-
{
132-
if (data == null)
133-
return null;
134-
char[] c = new char[data.Length * 2];
135-
int b;
136-
for (int i = 0; i < data.Length; i++)
137-
{
138-
b = data[i] >> 4;
139-
c[i * 2] = (char) (55 + b + (((b - 10) >> 31) & -7));
140-
b = data[i] & 0xF;
141-
c[i * 2 + 1] = (char) (55 + b + (((b - 10) >> 31) & -7));
142-
}
143-
return new string(c);
144-
}
145-
146-
// Explanation is similar to ToHexStringUpper
147-
// constant 55 -> 87 and -7 -> -39 to compensate for the offset 32 between lowercase and uppercase letters
148-
public static string ToHexStringLower(byte[] data)
149-
{
150-
if (data == null)
151-
return null;
152-
char[] c = new char[data.Length * 2];
153-
int b;
154-
for (int i = 0; i < data.Length; i++)
155-
{
156-
b = data[i] >> 4;
157-
c[i * 2] = (char) (87 + b + (((b - 10) >> 31) & -39));
158-
b = data[i] & 0xF;
159-
c[i * 2 + 1] = (char) (87 + b + (((b - 10) >> 31) & -39));
160-
}
161-
return new string(c);
162-
}
163-
164-
public static byte[] FromHexString(string hexString)
165-
{
166-
if (hexString == null)
167-
return null;
168-
if (hexString.Length % 2 != 0)
169-
throw new FormatException("The hex string is invalid because it has an odd length");
170-
var result = new byte[hexString.Length / 2];
171-
for (int i = 0; i < result.Length; i++)
172-
result[i] = Convert.ToByte(hexString.Substring(i * 2, 2), 16);
173-
return result;
174-
}
175-
176-
public static string ToBase64String(byte[] data)
177-
{
178-
if (data == null)
179-
return null;
180-
return Convert.ToBase64String(data);
181-
}
182-
183-
public static byte[] FromBase64String(string s)
184-
{
185-
if (s == null)
186-
return null;
187-
return Convert.FromBase64String(s);
188-
}
189-
}
6+
internal static class CryptoBytes
7+
{
8+
public static bool ConstantTimeEquals(byte[] x, byte[] y)
9+
{
10+
if (x == null)
11+
throw new ArgumentNullException("x");
12+
if (y == null)
13+
throw new ArgumentNullException("y");
14+
if (x.Length != y.Length)
15+
throw new ArgumentException("x.Length must equal y.Length");
16+
return InternalConstantTimeEquals(x, 0, y, 0, x.Length) != 0;
17+
}
18+
19+
public static bool ConstantTimeEquals(ArraySegment<byte> x, ArraySegment<byte> y)
20+
{
21+
if (x.Array == null)
22+
throw new ArgumentNullException("x.Array");
23+
if (y.Array == null)
24+
throw new ArgumentNullException("y.Array");
25+
if (x.Count != y.Count)
26+
throw new ArgumentException("x.Count must equal y.Count");
27+
28+
return InternalConstantTimeEquals(x.Array, x.Offset, y.Array, y.Offset, x.Count) != 0;
29+
}
30+
31+
public static bool ConstantTimeEquals(byte[] x, int xOffset, byte[] y, int yOffset, int length)
32+
{
33+
if (x == null)
34+
throw new ArgumentNullException("x");
35+
if (xOffset < 0)
36+
throw new ArgumentOutOfRangeException("xOffset", "xOffset < 0");
37+
if (y == null)
38+
throw new ArgumentNullException("y");
39+
if (yOffset < 0)
40+
throw new ArgumentOutOfRangeException("yOffset", "yOffset < 0");
41+
if (length < 0)
42+
throw new ArgumentOutOfRangeException("length", "length < 0");
43+
if (x.Length - xOffset < length)
44+
throw new ArgumentException("xOffset + length > x.Length");
45+
if (y.Length - yOffset < length)
46+
throw new ArgumentException("yOffset + length > y.Length");
47+
48+
return InternalConstantTimeEquals(x, xOffset, y, yOffset, length) != 0;
49+
}
50+
51+
private static uint InternalConstantTimeEquals(byte[] x, int xOffset, byte[] y, int yOffset, int length)
52+
{
53+
int differentbits = 0;
54+
for (int i = 0; i < length; i++)
55+
differentbits |= x[xOffset + i] ^ y[yOffset + i];
56+
return (1 & (unchecked((uint)differentbits - 1) >> 8));
57+
}
58+
59+
public static void Wipe(byte[] data)
60+
{
61+
if (data == null)
62+
throw new ArgumentNullException("data");
63+
InternalWipe(data, 0, data.Length);
64+
}
65+
66+
public static void Wipe(byte[] data, int offset, int count)
67+
{
68+
if (data == null)
69+
throw new ArgumentNullException("data");
70+
if (offset < 0)
71+
throw new ArgumentOutOfRangeException("offset");
72+
if (count < 0)
73+
throw new ArgumentOutOfRangeException("count", "Requires count >= 0");
74+
if ((uint)offset + (uint)count > (uint)data.Length)
75+
throw new ArgumentException("Requires offset + count <= data.Length");
76+
InternalWipe(data, offset, count);
77+
}
78+
79+
public static void Wipe(ArraySegment<byte> data)
80+
{
81+
if (data.Array == null)
82+
throw new ArgumentNullException("data.Array");
83+
InternalWipe(data.Array, data.Offset, data.Count);
84+
}
85+
86+
// Secure wiping is hard
87+
// * the GC can move around and copy memory
88+
// Perhaps this can be avoided by using unmanaged memory or by fixing the position of the array in memory
89+
// * Swap files and error dumps can contain secret information
90+
// It seems possible to lock memory in RAM, no idea about error dumps
91+
// * Compiler could optimize out the wiping if it knows that data won't be read back
92+
// I hope this is enough, suppressing inlining
93+
// but perhaps `RtlSecureZeroMemory` is needed
94+
[MethodImpl(MethodImplOptions.NoInlining)]
95+
internal static void InternalWipe(byte[] data, int offset, int count)
96+
{
97+
Array.Clear(data, offset, count);
98+
}
99+
100+
// shallow wipe of structs
101+
[MethodImpl(MethodImplOptions.NoInlining)]
102+
internal static void InternalWipe<T>(ref T data)
103+
where T : struct
104+
{
105+
data = default(T);
106+
}
107+
108+
// constant time hex conversion
109+
// see http://stackoverflow.com/a/14333437/445517
110+
//
111+
// An explanation of the weird bit fiddling:
112+
//
113+
// 1. `bytes[i] >> 4` extracts the high nibble of a byte
114+
// `bytes[i] & 0xF` extracts the low nibble of a byte
115+
// 2. `b - 10`
116+
// is `< 0` for values `b < 10`, which will become a decimal digit
117+
// is `>= 0` for values `b > 10`, which will become a letter from `A` to `F`.
118+
// 3. Using `i >> 31` on a signed 32 bit integer extracts the sign, thanks to sign extension.
119+
// It will be `-1` for `i < 0` and `0` for `i >= 0`.
120+
// 4. Combining 2) and 3), shows that `(b-10)>>31` will be `0` for letters and `-1` for digits.
121+
// 5. Looking at the case for letters, the last summand becomes `0`, and `b` is in the range 10 to 15. We want to map it to `A`(65) to `F`(70), which implies adding 55 (`'A'-10`).
122+
// 6. Looking at the case for digits, we want to adapt the last summand so it maps `b` from the range 0 to 9 to the range `0`(48) to `9`(57). This means it needs to become -7 (`'0' - 55`).
123+
// Now we could just multiply with 7. But since -1 is represented by all bits being 1, we can instead use `& -7` since `(0 & -7) == 0` and `(-1 & -7) == -7`.
124+
//
125+
// Some further considerations:
126+
//
127+
// * I didn't use a second loop variable to index into `c`, since measurement shows that calculating it from `i` is cheaper.
128+
// * Using exactly `i < bytes.Length` as upper bound of the loop allows the JITter to eliminate bounds checks on `bytes[i]`, so I chose that variant.
129+
// * Making `b` an int avoids unnecessary conversions from and to byte.
130+
public static string ToHexStringUpper(byte[] data)
131+
{
132+
if (data == null)
133+
return null;
134+
char[] c = new char[data.Length * 2];
135+
int b;
136+
for (int i = 0; i < data.Length; i++)
137+
{
138+
b = data[i] >> 4;
139+
c[i * 2] = (char)(55 + b + (((b - 10) >> 31) & -7));
140+
b = data[i] & 0xF;
141+
c[i * 2 + 1] = (char)(55 + b + (((b - 10) >> 31) & -7));
142+
}
143+
return new string(c);
144+
}
145+
146+
// Explanation is similar to ToHexStringUpper
147+
// constant 55 -> 87 and -7 -> -39 to compensate for the offset 32 between lowercase and uppercase letters
148+
public static string ToHexStringLower(byte[] data)
149+
{
150+
if (data == null)
151+
return null;
152+
char[] c = new char[data.Length * 2];
153+
int b;
154+
for (int i = 0; i < data.Length; i++)
155+
{
156+
b = data[i] >> 4;
157+
c[i * 2] = (char)(87 + b + (((b - 10) >> 31) & -39));
158+
b = data[i] & 0xF;
159+
c[i * 2 + 1] = (char)(87 + b + (((b - 10) >> 31) & -39));
160+
}
161+
return new string(c);
162+
}
163+
164+
public static byte[] FromHexString(string hexString)
165+
{
166+
if (hexString == null)
167+
return null;
168+
if (hexString.Length % 2 != 0)
169+
throw new FormatException("The hex string is invalid because it has an odd length");
170+
var result = new byte[hexString.Length / 2];
171+
for (int i = 0; i < result.Length; i++)
172+
result[i] = Convert.ToByte(hexString.Substring(i * 2, 2), 16);
173+
return result;
174+
}
175+
176+
public static string ToBase64String(byte[] data)
177+
{
178+
if (data == null)
179+
return null;
180+
return Convert.ToBase64String(data);
181+
}
182+
183+
public static byte[] FromBase64String(string s)
184+
{
185+
if (s == null)
186+
return null;
187+
return Convert.FromBase64String(s);
188+
}
189+
}
190190
}

0 commit comments

Comments
 (0)