|
10 | 10 | from hypothesis import given |
11 | 11 |
|
12 | 12 | import narwhals.stable.v1 as nw |
| 13 | +from tests.utils import DUCKDB_VERSION |
13 | 14 | from tests.utils import PANDAS_VERSION |
| 15 | +from tests.utils import POLARS_VERSION |
| 16 | +from tests.utils import Constructor |
14 | 17 | from tests.utils import ConstructorEager |
15 | 18 | from tests.utils import assert_equal_data |
16 | 19 |
|
@@ -95,3 +98,110 @@ def test_rolling_mean_hypothesis(center: bool, values: list[float]) -> None: # |
95 | 98 | ) |
96 | 99 | expected_dict = nw.from_native(expected, eager_only=True).to_dict(as_series=False) |
97 | 100 | assert_equal_data(result, expected_dict) |
| 101 | + |
| 102 | + |
| 103 | +@pytest.mark.filterwarnings( |
| 104 | + "ignore:`Expr.rolling_mean` is being called from the stable API although considered an unstable feature." |
| 105 | +) |
| 106 | +@pytest.mark.parametrize( |
| 107 | + ("expected_a", "window_size", "min_samples", "center"), |
| 108 | + [ |
| 109 | + ([None, None, 1.5, None, None, 5, 8.5], 2, None, False), |
| 110 | + ([None, None, 1.5, None, None, 5, 8.5], 2, 2, False), |
| 111 | + ([None, None, 1.5, 1.5, None, 5, 7.0], 3, 2, False), |
| 112 | + ([1, None, 1.5, 1.5, 4, 5, 7], 3, 1, False), |
| 113 | + ([1.5, 1, 1.5, 2, 5, 7, 8.5], 3, 1, True), |
| 114 | + ([1.5, 1, 1.5, 1.5, 5, 7, 7], 4, 1, True), |
| 115 | + ([1.5, 1.5, 1.5, 1.5, 7, 7, 7], 5, 1, True), |
| 116 | + ], |
| 117 | +) |
| 118 | +def test_rolling_mean_expr_lazy_grouped( |
| 119 | + constructor: Constructor, |
| 120 | + expected_a: list[float], |
| 121 | + window_size: int, |
| 122 | + min_samples: int, |
| 123 | + request: pytest.FixtureRequest, |
| 124 | + *, |
| 125 | + center: bool, |
| 126 | +) -> None: |
| 127 | + if ("polars" in str(constructor) and POLARS_VERSION < (1, 10)) or ( |
| 128 | + "duckdb" in str(constructor) and DUCKDB_VERSION < (1, 3) |
| 129 | + ): |
| 130 | + pytest.skip() |
| 131 | + if "pandas" in str(constructor): |
| 132 | + pytest.skip() |
| 133 | + if any(x in str(constructor) for x in ("dask", "pyarrow_table")): |
| 134 | + request.applymarker(pytest.mark.xfail) |
| 135 | + if "cudf" in str(constructor) and center: |
| 136 | + # center is not implemented for offset-based windows |
| 137 | + request.applymarker(pytest.mark.xfail) |
| 138 | + if "modin" in str(constructor): |
| 139 | + # unreliable |
| 140 | + pytest.skip() |
| 141 | + data = { |
| 142 | + "a": [1, None, 2, None, 4, 6, 11], |
| 143 | + "g": [1, 1, 1, 1, 2, 2, 2], |
| 144 | + "b": [1, None, 2, 3, 4, 5, 6], |
| 145 | + "i": list(range(7)), |
| 146 | + } |
| 147 | + df = nw.from_native(constructor(data)) |
| 148 | + result = ( |
| 149 | + df.with_columns( |
| 150 | + nw.col("a") |
| 151 | + .rolling_mean(window_size, min_samples=min_samples, center=center) |
| 152 | + .over("g", order_by="b") |
| 153 | + ) |
| 154 | + .sort("i") |
| 155 | + .select("a") |
| 156 | + ) |
| 157 | + expected = {"a": expected_a} |
| 158 | + assert_equal_data(result, expected) |
| 159 | + |
| 160 | + |
| 161 | +@pytest.mark.filterwarnings( |
| 162 | + "ignore:`Expr.rolling_mean` is being called from the stable API although considered an unstable feature." |
| 163 | +) |
| 164 | +@pytest.mark.parametrize( |
| 165 | + ("expected_a", "window_size", "min_samples", "center"), |
| 166 | + [ |
| 167 | + ([None, None, 1.5, None, None, 5, 8.5], 2, None, False), |
| 168 | + ([None, None, 1.5, None, None, 5, 8.5], 2, 2, False), |
| 169 | + ([None, None, 1.5, 1.5, 3, 5, 7], 3, 2, False), |
| 170 | + ([1, None, 1.5, 1.5, 3, 5, 7], 3, 1, False), |
| 171 | + ([1.5, 1, 1.5, 3, 5, 7, 8.5], 3, 1, True), |
| 172 | + ([1.5, 1, 1.5, 2.3333333333333335, 4, 7, 7], 4, 1, True), |
| 173 | + ([1.5, 1.5, 2.3333333333333335, 3.25, 5.75, 7.0, 7.0], 5, 1, True), |
| 174 | + ], |
| 175 | +) |
| 176 | +def test_rolling_mean_expr_lazy_ungrouped( |
| 177 | + constructor: Constructor, |
| 178 | + expected_a: list[float], |
| 179 | + window_size: int, |
| 180 | + min_samples: int, |
| 181 | + *, |
| 182 | + center: bool, |
| 183 | +) -> None: |
| 184 | + if ("polars" in str(constructor) and POLARS_VERSION < (1, 10)) or ( |
| 185 | + "duckdb" in str(constructor) and DUCKDB_VERSION < (1, 3) |
| 186 | + ): |
| 187 | + pytest.skip() |
| 188 | + if "modin" in str(constructor): |
| 189 | + # unreliable |
| 190 | + pytest.skip() |
| 191 | + data = { |
| 192 | + "a": [1, None, 2, None, 4, 6, 11], |
| 193 | + "b": [1, None, 2, 3, 4, 5, 6], |
| 194 | + "i": list(range(7)), |
| 195 | + } |
| 196 | + df = nw.from_native(constructor(data)) |
| 197 | + result = ( |
| 198 | + df.with_columns( |
| 199 | + nw.col("a") |
| 200 | + .rolling_mean(window_size, min_samples=min_samples, center=center) |
| 201 | + .over(order_by="b") |
| 202 | + ) |
| 203 | + .select("a", "i") |
| 204 | + .sort("i") |
| 205 | + ) |
| 206 | + expected = {"a": expected_a, "i": list(range(7))} |
| 207 | + assert_equal_data(result, expected) |
0 commit comments