|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from typing import TYPE_CHECKING, Final |
| 4 | + |
| 5 | +import pytest |
| 6 | + |
| 7 | +import narwhals as nw |
| 8 | +from narwhals import _plan as nwp |
| 9 | +from narwhals._plan import selectors as ncs |
| 10 | +from tests.plan.utils import assert_equal_data, dataframe |
| 11 | +from tests.utils import PYARROW_VERSION |
| 12 | + |
| 13 | +if TYPE_CHECKING: |
| 14 | + from narwhals._plan.typing import ColumnNameOrSelector, OneOrIterable |
| 15 | + from tests.conftest import Data |
| 16 | + |
| 17 | + |
| 18 | +@pytest.fixture(scope="module") |
| 19 | +def data() -> Data: |
| 20 | + return {"a": [7, 8, 9], "b": [1, 3, 5], "c": [2, 4, 6]} |
| 21 | + |
| 22 | + |
| 23 | +A: Final = [7, 8, 9] |
| 24 | +B: Final = [1, 3, 5] |
| 25 | +C: Final = [2, 4, 6] |
| 26 | + |
| 27 | +VAR = "variable" |
| 28 | +VALUE = "value" |
| 29 | + |
| 30 | +a = ncs.first() |
| 31 | +b = ncs.by_name("b") |
| 32 | +c = ncs.last() |
| 33 | + |
| 34 | + |
| 35 | +@pytest.mark.parametrize( |
| 36 | + ("on", "index", "expected"), |
| 37 | + [ |
| 38 | + ("b", [a], {"a": A, VAR: ["b", "b", "b"], VALUE: B}), |
| 39 | + ( |
| 40 | + ["b", c], |
| 41 | + a, |
| 42 | + {"a": [*A, *A], VAR: ["b", "b", "b", "c", "c", "c"], VALUE: [*B, *C]}, |
| 43 | + ), |
| 44 | + ( |
| 45 | + None, |
| 46 | + ["a"], |
| 47 | + {"a": [*A, *A], VAR: ["b", "b", "b", "c", "c", "c"], VALUE: [*B, *C]}, |
| 48 | + ), |
| 49 | + ([b | c], None, {VAR: ["b", "b", "b", "c", "c", "c"], VALUE: [*B, *C]}), |
| 50 | + ( |
| 51 | + None, |
| 52 | + None, |
| 53 | + {VAR: ["a", "a", "a", "b", "b", "b", "c", "c", "c"], VALUE: [*A, *B, *C]}, |
| 54 | + ), |
| 55 | + ], |
| 56 | +) |
| 57 | +def test_unpivot( |
| 58 | + data: Data, |
| 59 | + on: OneOrIterable[ColumnNameOrSelector] | None, |
| 60 | + index: OneOrIterable[ColumnNameOrSelector] | None, |
| 61 | + expected: Data, |
| 62 | +) -> None: |
| 63 | + sort_columns = [VAR] if index is None else [VAR, "a"] |
| 64 | + result = dataframe(data).unpivot(on, index=index).sort(sort_columns) |
| 65 | + assert_equal_data(result, expected) |
| 66 | + |
| 67 | + |
| 68 | +@pytest.mark.parametrize( |
| 69 | + ("variable_name", "value_name"), |
| 70 | + [ |
| 71 | + ("", "custom_value_name"), |
| 72 | + ("custom_variable_name", ""), |
| 73 | + ("custom_variable_name", "custom_value_name"), |
| 74 | + ], |
| 75 | +) |
| 76 | +def test_unpivot_var_value_names(data: Data, variable_name: str, value_name: str) -> None: |
| 77 | + result = dataframe(data).unpivot( |
| 78 | + ~ncs.first(), index=["a"], variable_name=variable_name, value_name=value_name |
| 79 | + ) |
| 80 | + assert result.collect_schema().names()[-2:] == [variable_name, value_name] |
| 81 | + |
| 82 | + |
| 83 | +def test_unpivot_default_var_value_names(data: Data) -> None: |
| 84 | + result = dataframe(data).unpivot(nwp.nth(1, 2).meta.as_selector(), index=ncs.first()) |
| 85 | + assert result.collect_schema().names()[-2:] == [VAR, VALUE] |
| 86 | + |
| 87 | + |
| 88 | +@pytest.mark.xfail(PYARROW_VERSION < (14, 0, 0), reason="pyarrow<14") |
| 89 | +def test_unpivot_mixed_types() -> None: |
| 90 | + df = dataframe({"idx": [0, 1], "a": [1, 2], "b": [1.5, 2.5]}) |
| 91 | + result = df.unpivot(["a", "b"], index="idx") |
| 92 | + assert result.collect_schema().dtypes() == [nw.Int64(), nw.String(), nw.Float64()] |
0 commit comments