Skip to content

Commit f610374

Browse files
Add two missing imports to the documentation
1 parent 564495c commit f610374

File tree

2 files changed

+3
-1
lines changed

2 files changed

+3
-1
lines changed

docs/src/tutorials/dae.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ Currently, we recommend using the semi-implicit `EK1` algorithm.
1212

1313
First, define the DAE (here the ROBER problem) as an ODE problem with singular mass matrix:
1414
```@example dae
15-
using ProbNumDiffEq, Plots, LinearAlgebra, OrdinaryDiffEq, ModelingToolkit
15+
using ProbNumDiffEq, Plots, LinearAlgebra, OrdinaryDiffEq, ModelingToolkit, LinearAlgebra
1616
1717
function rober(du, u, p, t)
1818
y₁, y₂, y₃ = u

docs/src/tutorials/dynamical_odes.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -89,6 +89,8 @@ The probabilistic numerical solvers from ProbNumDiffEq.jl have the same internal
8989
As a result, we can use the `EK1` both for first and second order ODEs, but it automatically specializes on the latter to provide a __2x performance boost__:
9090

9191
```
92+
julia> using BenchmarkTools
93+
9294
julia> @btime solve(prob, EK1(order=3), adaptive=false, dt=1e-2);
9395
766.312 ms (400362 allocations: 173.38 MiB)
9496

0 commit comments

Comments
 (0)