-
Notifications
You must be signed in to change notification settings - Fork 8
Open
Description
In the file notmiwae.py, consider the following function
´´´
def bernoulli_decoder_miss(self, z):
if self.missing_process == 'selfmasking':
self.W = tf.get_variable('W', shape=[1, 1, self.d])
self.b = tf.get_variable('b', shape=[1, 1, self.d])
logits = - self.W * (z - self.b)
elif self.missing_process == 'selfmasking_known':
self.W = tf.get_variable('W', shape=[1, 1, self.d])
self.W = tf.nn.softplus(self.W)
self.b = tf.get_variable('b', shape=[1, 1, self.d])
logits = - self.W * (z - self.b)
elif self.missing_process == 'linear':
logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)
elif self.missing_process == 'nonlinear':
z = keras.layers.Dense(units=self.n_hidden, activation=tf.nn.tanh, name='y')(z)
logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)
else:
print("use 'selfmasking', 'selfmasking_known', 'linear' or 'nonlinear' as 'missing_process'")
logits = None
# ---- return logits since it goes better with tfp bernoulli
return logits
´´´
- Do the
nonlinearandlinearoptions correspond to the agnostic process described in the paper? selfmasking_knownshould correspond to the third approach described in the paper, which reads where the sign of the weights in the logistic regression is known. I don't follow how doing atf.nn.softplusis linked to the knowledge of the sign of the weights. Can you please elaborate?
Cheers!
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
No labels