Skip to content

Questions on masking process for UCI dataset #1

@raghuramdr

Description

@raghuramdr

In the file notmiwae.py, consider the following function

´´´
def bernoulli_decoder_miss(self, z):

    if self.missing_process == 'selfmasking':

        self.W = tf.get_variable('W', shape=[1, 1, self.d])
        self.b = tf.get_variable('b', shape=[1, 1, self.d])

        logits = - self.W * (z - self.b)

    elif self.missing_process == 'selfmasking_known':

        self.W = tf.get_variable('W', shape=[1, 1, self.d])
        self.W = tf.nn.softplus(self.W)
        self.b = tf.get_variable('b', shape=[1, 1, self.d])

        logits = - self.W * (z - self.b)

    elif self.missing_process == 'linear':

        logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)

    elif self.missing_process == 'nonlinear':

        z = keras.layers.Dense(units=self.n_hidden, activation=tf.nn.tanh, name='y')(z)
        logits = keras.layers.Dense(units=self.d, activation=None, name='y')(z)

    else:
        print("use 'selfmasking', 'selfmasking_known', 'linear' or 'nonlinear' as 'missing_process'")
        logits = None

    # ---- return logits since it goes better with tfp bernoulli
    return logits

´´´

  1. Do the nonlinear and linear options correspond to the agnostic process described in the paper?
  2. selfmasking_known should correspond to the third approach described in the paper, which reads where the sign of the weights in the logistic regression is known. I don't follow how doing a tf.nn.softplus is linked to the knowledge of the sign of the weights. Can you please elaborate?

Cheers!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions