| 
 | 1 | +__author__ = "qiao"  | 
 | 2 | + | 
 | 3 | +"""  | 
 | 4 | +Rank the trials given the matching and aggregation results  | 
 | 5 | +"""  | 
 | 6 | + | 
 | 7 | +import json  | 
 | 8 | +import sys  | 
 | 9 | + | 
 | 10 | +eps = 1e-9  | 
 | 11 | + | 
 | 12 | +def get_matching_score(matching):  | 
 | 13 | +	# count only the valid ones  | 
 | 14 | +	included = 0  | 
 | 15 | +	not_inc = 0  | 
 | 16 | +	na_inc = 0  | 
 | 17 | +	no_info_inc = 0  | 
 | 18 | + | 
 | 19 | +	excluded = 0  | 
 | 20 | +	not_exc = 0  | 
 | 21 | +	na_exc = 0  | 
 | 22 | +	no_info_exc = 0  | 
 | 23 | +	  | 
 | 24 | +	# first count inclusions  | 
 | 25 | +	for criteria, info in matching["inclusion"].items():  | 
 | 26 | +		  | 
 | 27 | +		if len(info) != 3:  | 
 | 28 | +			continue  | 
 | 29 | + | 
 | 30 | +		if info[2] == "included":  | 
 | 31 | +			included += 1	  | 
 | 32 | +		elif info[2] == "not included":  | 
 | 33 | +			not_inc += 1  | 
 | 34 | +		elif info[2] == "not applicable":  | 
 | 35 | +			na_inc += 1  | 
 | 36 | +		elif info[2] == "not enough information":  | 
 | 37 | +			no_info_inc += 1  | 
 | 38 | +	  | 
 | 39 | +	# then count exclusions  | 
 | 40 | +	for criteria, info in matching["exclusion"].items():  | 
 | 41 | + | 
 | 42 | +		if len(info) != 3:  | 
 | 43 | +			continue  | 
 | 44 | + | 
 | 45 | +		if info[2] == "excluded":  | 
 | 46 | +			excluded += 1	  | 
 | 47 | +		elif info[2] == "not excluded":  | 
 | 48 | +			not_exc += 1  | 
 | 49 | +		elif info[2] == "not applicable":  | 
 | 50 | +			na_exc += 1  | 
 | 51 | +		elif info[2] == "not enough information":  | 
 | 52 | +			no_info_exc += 1  | 
 | 53 | + | 
 | 54 | +	# get the matching score  | 
 | 55 | +	score = 0  | 
 | 56 | +	  | 
 | 57 | +	score += included / (included + not_inc + no_info_inc + eps)  | 
 | 58 | +	  | 
 | 59 | +	if not_inc > 0:  | 
 | 60 | +		score -= 1  | 
 | 61 | +	  | 
 | 62 | +	if excluded > 0:  | 
 | 63 | +		score -= 1  | 
 | 64 | +	  | 
 | 65 | +	return score   | 
 | 66 | + | 
 | 67 | + | 
 | 68 | +def get_agg_score(assessment):  | 
 | 69 | +	try:  | 
 | 70 | +		rel_score = float(assessment["relevance_score_R"])  | 
 | 71 | +		eli_score = float(assessment["eligibility_score_E"])  | 
 | 72 | +	except:  | 
 | 73 | +		rel_score = 0  | 
 | 74 | +		eli_score = 0  | 
 | 75 | +	  | 
 | 76 | +	score = (rel_score + eli_score) / 100  | 
 | 77 | + | 
 | 78 | +	return score   | 
 | 79 | + | 
 | 80 | + | 
 | 81 | +if __name__ == "__main__":  | 
 | 82 | +	# args are the results paths  | 
 | 83 | +	matching_results_path = sys.argv[1]  | 
 | 84 | +	agg_results_path = sys.argv[2]  | 
 | 85 | + | 
 | 86 | +	# loading the results  | 
 | 87 | +	matching_results = json.load(open(matching_results_path))  | 
 | 88 | +	agg_results = json.load(open(agg_results_path))  | 
 | 89 | +	  | 
 | 90 | +	# loop over the patients  | 
 | 91 | +	for patient_id, label2trial2results in matching_results.items():  | 
 | 92 | + | 
 | 93 | +		trial2score = {}  | 
 | 94 | + | 
 | 95 | +		for _, trial2results in label2trial2results.items():  | 
 | 96 | +			for trial_id, results in trial2results.items():  | 
 | 97 | + | 
 | 98 | +				matching_score = get_matching_score(results)  | 
 | 99 | +				  | 
 | 100 | +				if patient_id not in agg_results or trial_id not in agg_results[patient_id]:  | 
 | 101 | +					print(f"Patient {patient_id} Trial {trial_id} not in the aggregation results.")  | 
 | 102 | +					agg_score = 0  | 
 | 103 | +				else:  | 
 | 104 | +					agg_score = get_agg_score(agg_results[patient_id][trial_id])  | 
 | 105 | + | 
 | 106 | +				trial_score = matching_score + agg_score  | 
 | 107 | +				  | 
 | 108 | +				trial2score[trial_id] = trial_score  | 
 | 109 | + | 
 | 110 | +		sorted_trial2score = sorted(trial2score.items(), key=lambda x: -x[1])  | 
 | 111 | +		  | 
 | 112 | +		print()  | 
 | 113 | +		print(f"Patient ID: {patient_id}")  | 
 | 114 | +		print("Clinical trial ranking:")  | 
 | 115 | +		  | 
 | 116 | +		for trial, score in sorted_trial2score:  | 
 | 117 | +			print(trial, score)  | 
 | 118 | + | 
 | 119 | +		print("===")  | 
 | 120 | +		print()  | 
0 commit comments