Skip to content

Commit 8694fe6

Browse files
authored
Update README.md
1 parent 321e406 commit 8694fe6

File tree

1 file changed

+67
-2
lines changed

1 file changed

+67
-2
lines changed

README.md

Lines changed: 67 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ The first step of TrialGPT is to generate the criterion-level predictions, which
3737

3838
Run the following code to get the GPT-4-based TrialGPT results for the three cohorts:
3939
```bash
40-
# format python run_matching.py {split} {model}
40+
# format: python run_matching.py {split} {model}
4141
python run_matching.py sigir gpt-4
4242
python run_matching.py 2021 gpt-4
4343
python run_matching.py 2022 gpt-4
@@ -49,12 +49,77 @@ The second step of TrialGPT is to aggregate the criterion-level predictions to g
4949

5050
Please make sure that the step 1 results are ready before running the step 2 code:
5151
```bash
52-
# format python run_aggregation.py {split} {model}
52+
# format: python run_aggregation.py {split} {model}
5353
python run_aggregation.py sigir gpt-4
5454
python run_aggregation.py 2021 gpt-4
5555
python run_aggregation.py 2022 gpt-4
5656
```
5757

58+
# Step 3: Computing Performance
59+
60+
The third step is to compute the performance of different linear features, LLM features, and the combined features.
61+
62+
Please make sure that the step 1 and step 2 results are ready before running the step 3 code:
63+
```bash
64+
# first convert the results of each split into a csv file
65+
# format: python convert_results_to_csv.py {split} {model}
66+
python convert_results_to_csv.py sigir gpt-4
67+
python convert_results_to_csv.py 2021 gpt-4
68+
python convert_results_to_csv.py 2022 gpt-4
69+
70+
# then compute the results
71+
# format: python get_ranking_results.py {model}
72+
python get_ranking_results.py gpt-4
73+
```
74+
75+
An example output is:
76+
```bash
77+
Ranking NDCG@10
78+
comb 0.8164884118874282
79+
% inc 0.6332474730345071
80+
% not inc 0.5329210870830088
81+
% exc 0.43696962433262426
82+
% not exc 0.45405418648143114
83+
bool not inc 0.5329768607974994
84+
bool exc 0.43696962433262426
85+
random 0.37846131596973925
86+
eligibility 0.7065496001369167
87+
relevance 0.7338932013178386
88+
Ranking Prec@10
89+
comb 0.7327619047619052
90+
% inc 0.5749776817540412
91+
% not inc 0.4977844888166035
92+
% exc 0.4148365417832818
93+
% not exc 0.4310829292061639
94+
bool not inc 0.4977844888166035
95+
bool exc 0.4148365417832818
96+
random 0.36647619047619046
97+
eligibility 0.5659880952380945
98+
relevance 0.552433886908542
99+
Ranking MRR
100+
comb 0.9098095238095236
101+
% inc 0.3827687074829934
102+
% not inc 0.019997732426303858
103+
% exc 0.0009523809523809524
104+
% not exc 0.020113378684807254
105+
bool not inc 0.019997732426303858
106+
bool exc 0.0009523809523809524
107+
random 0.5900770975056686
108+
eligibility 0.8301904761904761
109+
relevance 0.7437573696145123
110+
Auc
111+
comb 0.774898491501416
112+
% inc 0.6524326107402266
113+
% not inc 0.6561815920536348
114+
% exc 0.6512699942037056
115+
% not exc 0.6279445988475326
116+
bool not inc 0.6559597180944899
117+
bool exc 0.6521852962178314
118+
random 0.49775549502869065
119+
eligibility 0.6377132521512072
120+
relevance 0.6495563326979852
121+
```
122+
58123
## Acknowledgments
59124

60125
This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine.

0 commit comments

Comments
 (0)