diff --git a/Entrance_Length_Airtunnel_example.ipynb b/Entrance_Length_Airtunnel_example.ipynb new file mode 100644 index 00000000..d190bfb3 --- /dev/null +++ b/Entrance_Length_Airtunnel_example.ipynb @@ -0,0 +1,1203 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "ZB7hIRdzvTep" + }, + "source": [ + "# Entrance Length Estimation for Channel Flow\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0_WncgpRkWH5" + }, + "source": [ + "**Prepared by**: Stephen Cini (scini@nd.edu) and David Gazzo (dgazzo@nd.edu)\n", + "\n", + ">\n", + "\n", + "**Editted by** Farbod Shirinichi (fshirini@nd.edu)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Reference**:\n", + "\n", + "[1]Truskey, G. A., Yuan, F., & Katz, D. F. (2004). Transport phenomena in biological systems.\n", + "\n", + "[2]Chaudhry, M. H. (2008). Open-channel flow (Vol. 523). New York: Springer.\n", + "\n" + ], + "metadata": { + "id": "qO2qu5ttfkgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "# 1-Introduction:\n", + "\n", + "Estimating the entrance length of channel flow is a fundamental concept in fluid dynamics, with wide-ranging applications in various engineering and scientific disciplines. The entrance length, often referred to as the hydrodynamic entrance region, represents the distance over which a fluid undergoes a transition from a disturbed, uneven flow pattern to a more uniform, steady-state flow within a conduit or channel. Accurate estimation of this entrance length is crucial for optimizing the design and performance of fluid transport systems, spanning pipelines, heat exchangers, and microfluidic devices. Understanding and characterizing the entrance length is essential for predicting pressure drops, flow profiles, and heat transfer rates, thereby ensuring efficient and cost-effective operation in a multitude of engineering applications. [1][2]\n", + "\n", + "The study of entrance length has been a topic of great interest to fluid dynamicists and engineers for many decades, as it provides critical insights into the behavior of fluid near the entry of a channel. The phenomena associated with entrance length have significant implications for industrial processes, energy systems, and the transportation of fluids. By comprehending the factors that influence entrance length, researchers and engineers can make informed decisions about channel design, fluid transport efficiency, and the mitigation of undesired effects like turbulence and heat loss. [1][2]\n" + ], + "metadata": { + "id": "2IkaSRHHnOdD" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i9wwxaH-vTeq" + }, + "source": [ + "\n", + "\n", + "\n", + "**Intended Audience**: his problem is tailored for junior and senior students majoring in Chemical and Biomolecular Engineering at the University of Notre Dame, especially those currently enrolled in or having completed the Transport course and possessing a keen interest in fluid dynamics. However, any student intrigued by fluid dynamics is encouraged to explore this problem.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yLqvejeuvTet" + }, + "source": [ + "## 1-1-Learning Objectives:\n", + "\n", + "\n", + "Upon completing this notebook and actively engaging in class discussions and activities, you will achieve the following learning objectives:\n", + "\n", + "* Utilize Python-based integration methods proficiently to solve ordinary differential equations.\n", + "* Demonstrate competence in generating and visualizing data through matplotlib, ensuring effective data representation.\n", + "* Apply integration techniques to practical scenarios, particularly analyzing entrance length flow in diverse channel flow systems.\n", + "* Successfully solve real-world problems related to entrance length calculations.\n", + "* Adapt acquired skills to analogous problems by making minor formula adjustments, showcasing your adaptable problem-solving capabilities." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sDQW_Y8IvstJ" + }, + "source": [ + "## 1-2-Coding Resources:\n", + "\n", + "Relevant Modules in Class Website:\n", + "\n", + "\n", + "\n", + "* [Functions and Scope](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-and-Scope.html)\n", + "* [Visualization with matplotlib](https://ndcbe.github.io/data-and-computing/notebooks/01/Matplotlib.html)\n", + "* [Lambda Functions](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions)\n", + "* [Preparing Publication Quality Figures in Python](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html)\n", + "* [Scipy](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DuQsLLTnvTer", + "tags": [] + }, + "outputs": [], + "source": [ + "# load libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy import integrate" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZLUihthfR0Yz" + }, + "source": [ + "## 1-3-Problem Statement:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n2b8uykvR0Y0" + }, + "source": [ + "
\n", + "

Homework Problem

\n", + " Complete the following problem outside of class to practice the concepts discussed.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "37pz7pp1R0Y1" + }, + "source": [ + "In this notebook, we delve into the concept of estimating the entrance length for flow in a rectangular channel, particularly when the channel's width \"w\" significantly exceeds its height \"H,\" as shown in the figure below.\n", + "\n", + "![image.png]()\n", + "\n", + "\n", + "The velocity field within the channel's entrance depends on both the x and y directions, creating a boundary layer as the fluid enters. The lecture focuses on the crucial point when the boundary layer grows to half the channel's height, H/2, marking the transition to fully developed flow.\n", + "\n", + "It's important to note that we assume the \"no slip condition\" throughout, where the fluid's velocity at the channel walls is zero, a fundamental concept in fluid mechanics.\n", + "\n", + "Additionally, the formulae provided here are only valid for laminar flow.\n", + "\n", + "The goal of this notebook is to offer a foundational understanding of entrance length in channel flow, its relevance in different systems, and the limitations of applying experimental formulae to broader fluid dynamics scenarios." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kw1O2l0kR0Y2" + }, + "source": [ + "## 1-4- Estimating Entrance Length:\n", + "\n", + "As a first approximation, assume that the boundary layer is described by the results for flow over a flat plate. That is, the development of the boundary layer $δ$ is given by\n", + "\\begin{equation}\n", + "δ(x)=5.00xRe_x^{-1/2}\n", + "\\end{equation}\n", + "\n", + "where,\n", + "\\begin{equation}\n", + " Re_x=ρUx/μ\n", + "\\end{equation}\n", + "\n", + "Develop an expression for the entrance length in terms of the channels Reynolds number, $Re_x=2ρUH/μ = 2ρQ/wμ$, where $〈v〉$ is the average velocity in the channel.\n", + "\n", + "Show that the entrance length $Le$ is equal to $0.005ReH$.\n", + "\\begin{equation}\n", + "Le=0.005ReH\n", + "\\end{equation}\n", + "where\n", + "\\begin{equation}\n", + " Re_x<2000\n", + "\\end{equation}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mLe463wyR0Y4" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "source": [ + "It is worth mentioning that\n", + "\\begin{equation}\n", + "Le=4.4Re^{1/6}H\n", + "\\end{equation}\n", + "or\n", + "\\begin{equation}\n", + "Le=10ReH\n", + "\\end{equation}\n", + "where\n", + "\\begin{equation}\n", + " Re_x> 3500\n", + "\\end{equation}\n", + "\n" + ], + "metadata": { + "id": "wr3Cd0DIXHFm" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2- Some Real-life Simple Applications:\n", + "#### 2-1-Air Tunnel:\n", + "Wind tunnels are devices used to test and study the aerodynamic properties of objects, such as aircraft, cars, buildings, and more. They work by creating a controlled flow of air over a model or prototype, simulating the conditions that the object would experience in the real world." + ], + "metadata": { + "id": "Z3a1i5XMNwsT" + } + }, + { + "cell_type": "markdown", + "source": [ + "![ACD16-0013-015~medium.jpg]()\n", + "\n", + "\n", + "(Truss-braced wind model installed in the Ames 11x11 Foot Wind Tunnel for testing as part of the Subsonic Ultra Green Aircraft Research Project (SUGAR) Shown here with test engineer Greg Gatlin, Langley Research Center.) NASA ID: ACD16-0013-015" + ], + "metadata": { + "id": "Pm5s-drJVYmd" + } + }, + { + "cell_type": "markdown", + "source": [ + "Calculating the entrance length is a critical aspect of wind tunnel testing, particularly in the context of aerodynamic research. Understanding and accurately determining the entrance length, which is the distance required for the flow to transition from an initially turbulent or non-uniform state to a fully developed, stable flow, is vital for ensuring the reliability and validity of aerodynamic measurements. It helps researchers establish a controlled and consistent testing environment by allowing them to place the object of interest in the fully developed flow region. This not only enhances the accuracy of aerodynamic data but also ensures that the testing conditions closely resemble those experienced by real-world objects, such as aircraft or vehicles, enabling engineers and scientists to make informed design decisions and improvements.\n" + ], + "metadata": { + "id": "-UW_1JD-PN-r" + } + }, + { + "cell_type": "markdown", + "source": [ + "####2-2-Finding The Etrance Lenght of a Formula One Wind Tunnel:\n", + "First Let's explore a scenario with a wind tunnel that has a length of 141 meters and a Square side of 9.4 meters. If the wind is flowing in this tunnel at a velocity of 100 m/s and the air kinematic viscosity is given as 1.5×10−5 m²/s, the objective is to calculate the entrance length of this wind tunnel\n", + "\n", + "\n", + "1. Find the Rynolds Number\n", + "\\begin{equation}\n", + " Re_x=ρUx/μ\n", + "\\end{equation}\n", + "\\begin{equation}\n", + " Re_x=Ux/ƴ\n", + "\\end{equation}\n", + "where here ƴ is kinematic viscosity\n", + "\n", + "\\begin{equation}\n", + "Re=100*9.4/1.5*{10^-5}\n", + "\\end{equation}\n", + "2. check if it is laminar or turbulent\n", + "\\begin{equation}\n", + "Re>3500; terbulant\n", + "\\end{equation}\n", + "\\begin{equation}\n", + "Re<2000; laminar\n", + "\\end{equation}\n", + "\\begin{equation}\n", + "3500>Re>2000; transition\n", + "\\end{equation}\n", + "3. use the coresponding equation if transition average it\n", + "2. report the data\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "G5HiD_rPPVmj" + } + }, + { + "cell_type": "code", + "source": [ + "# Given values\n", + "wind_speed = 100 # m/s\n", + "tube_diameter = 9.4 # meters\n", + "air_viscosity = 1.5e-5 # m^2/s\n", + "\n", + "# Calculate Reynolds number\n", + "Re = (wind_speed * tube_diameter) / air_viscosity\n", + "\n", + "# Determine the flow regime\n", + "if Re < 2000:\n", + " flow_regime = \"Laminar\"\n", + " Le = 0.005 * Re * tube_diameter\n", + " equation_used = \"Le = 0.005 * Re * D\"\n", + "elif Re > 3500:\n", + " flow_regime = \"Turbulent\"\n", + " Le = 4.4 * (Re ** (1/6)) * tube_diameter\n", + " equation_used = \"Le = 4.4 * (Re^1/6) * D\"\n", + "else:\n", + " flow_regime = \"Transition\"\n", + " # For transition, use the average of laminar and turbulent equations\n", + " Le_laminar = 0.005 * Re * tube_diameter\n", + " Le_turbulent = 4.4 * (Re ** (1/6)) * tube_diameter\n", + " Le = (Le_laminar + Le_turbulent) / 2\n", + " equation_used = \"Average of laminar and turbulent equations\"\n", + "\n", + "# Output the results\n", + "print(f\"Reynolds number (Re) is {Re:.0f}, the flow is in the {flow_regime} regime.\")\n", + "print(f\"Entrance Length (Le) is {Le:.2f} meters, calculated using the equation: {equation_used}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cL0KtuvfQ2xn", + "outputId": "a428e0d1-1a12-4de2-ba01-f59b8f36530e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Reynolds number (Re) is 62666667, the flow is in the Turbulent regime.\n", + "Entrance Length (Le) is 824.30 meters, calculated using the equation: Le = 4.4 * (Re^1/6) * D\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Activity** Why should the Reynolds number be high?\n", + "Based on the obtained results, where should the object be located relative to the entrance length?\n", + "Submit your answer and written work via **Gradescope**." + ], + "metadata": { + "id": "RmZKcUTqSJoQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "###2-3-Water Flow Example:\n", + "You have a water tank connected to a pipe with a diameter of 0.5 meters. Water flows out of the tank and into the pipe. The kinematic viscosity of water is 1.004×10−6 m²/s. Plot the relationship between entrance length (Le) and water velocity." + ], + "metadata": { + "id": "Qm97UnetRIrZ" + } + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Given values\n", + "pipe_diameter = 0.5 # meters\n", + "water_kinematic_viscosity = 1.004e-6 # m²/s\n", + "\n", + "# Initialize lists to store data\n", + "speeds = np.arange(0, 100.01, 0.01) # Water speeds from 0 to 100 m/s with a step of 0.01 m/s\n", + "entrance_lengths = []\n", + "\n", + "# Calculate entrance lengths for different speeds\n", + "for speed in speeds:\n", + " Re = (speed * pipe_diameter) / water_kinematic_viscosity\n", + " if Re < 2000:\n", + " Le = 0.05 * Re * pipe_diameter\n", + " elif Re > 3500:\n", + " Le = 4.4 * pipe_diameter * (Re ** (1/6))\n", + " else:\n", + " Le_laminar = 0.05 * Re * pipe_diameter\n", + " Le_turbulent = 4.4 * pipe_diameter * (Re ** (1/6))\n", + " Le = (Le_laminar + Le_turbulent) / 2\n", + " entrance_lengths.append(Le)\n", + "\n", + "# Create the plot for Entrance Length vs. Water Speed\n", + "plt.figure(figsize=(8, 6))\n", + "plt.plot(speeds, entrance_lengths, label='Entrance Length', color='b', linewidth=2)\n", + "plt.xlabel('Water Speed (m/s)', fontsize=12, fontweight='bold')\n", + "plt.ylabel('Entrance Length (m)', fontsize=12, fontweight='bold')\n", + "plt.xticks(fontsize=10)\n", + "plt.yticks(fontsize=10)\n", + "plt.title('Entrance Length vs. Water Speed', fontsize=14, fontweight='bold')\n", + "plt.legend(fontsize=10)\n", + "\n", + "# Remove grid lines\n", + "plt.grid(False)\n", + "\n", + "# Customize plot layout\n", + "plt.tight_layout()\n", + "\n", + "# Save the plot as a high-quality image (e.g., PNG)\n", + "plt.savefig('entrance_length_vs_water_speed.png', dpi=300)\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 607 + }, + "id": "p0m77gJIRcFP", + "outputId": "03700698-b37a-411d-9914-6b35ac2eb247" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3L0lEQVR4nO3dd3gU5d7G8XvTC6QBCR0SQDooRapgoajoUYoCgiBYjgpKsXfQI6h47F0E1COgqGBBbHSQXqQjIE16S0INJHneP+bNJJtGsptkk833c117ZXZmdva3yaJ779McxhgjAAAAAHCDj6cLAAAAAFDyESwAAAAAuI1gAQAAAMBtBAsAAAAAbiNYAAAAAHAbwQIAAACA2wgWAAAAANxGsAAAAADgNoIFAAAAALcRLAAABeaOO+6Qw+GQw+HQlVde6elyAI+48sor7X8Hd9xxh6fLAYoMwQIoYebNm2f/Dyu3W0H9z6xmzZr2NUeNGlUg1/R2kyZNcvpbzJs3z9MlFQhCQ7qHHnrI/l2EhYUpJSXF6fgnn3zi9B6YMGGC0/HU1FRFRETYxx977DGXa8n8fituzp49q1deeUWtW7dWRESE/P39Vb58edWtW1fdunXTU089pY0bN3q6TAAFgGABAEA+dejQwd4+efKk1qxZ43R84cKFud5fu3atEhISsr2eN4mPj1erVq302GOPadmyZUpISFBycrKOHTumv/76Sz/99JPGjBmj3377zdOlAigAfp4uAIB7evfurRYtWmTZ36hRIw9Uk9Xp06cVHBwsHx++x4D3uOKKK+RwOGSMkSQtWLDA6d/hggULnM7P7b6Pj4/atWtXiNUWjsTERIWFheV6zksvvaT169fb92+66SZdeuml8vf31549e7R06VKtW7eusEsFUFQMgBJl7ty5RpJ9mzhx4kUfs3PnTqfHzJ0710yZMsVcfvnlJjg42ERERJhevXqZPXv22I8ZOHCg02Oyu6WpUaOGve+5554zCxcuNNdcc40JCwszksyJEyfMhQsXzNNPP22uu+46ExcXZ8LDw42fn5+Jiooy7du3N2+99ZY5f/6823VntHnzZnP//feb+vXrm9DQUBMcHGxiY2NN7969zYoVK5zOTUlJMZ999pnp3LmzqVChgvH39zfly5c3119/vZk5c2Y+/kLGTJw4MUvdebFjxw7zwAMPmHr16pmQkBATFBRk6tevbx577DFz5MiRLOd37NjRfo6BAweav/76y/Tp08eUK1fOBAYGmssuu8zMmDEj2+dasGCB6dixowkJCTGRkZHmlltuMX///bfT371jx47Zvp7sbmmvMfPjjxw5Yu677z5TqVIlExAQYOrVq2c++uijPP0+tm3bdtHf4+WXX24fv+uuu+z93333nenatauJjo42fn5+pmzZsiYuLs7cdNNNZsyYMSYlJSVPNeSmUaNG9nPffPPN9v5//vnH3l+pUiV7e9++ffY53bt3t/c3bdrU3v/tt9+a/v37m8aNG5vo6Gjj7+9vQkNDTf369c2QIUPMzp077XMz//vI7vbcc8851bxgwQLTu3dvU61aNRMQEGDKli1rWrdubd55550s//6MMVn+WzNjxgzTpk0bExoaasLDwy/6O7rsssvsx99xxx3ZnrNr1y6zYcMGp32Z30f79u0zAwcONNHR0fZ7e8qUKdle79y5c+btt982V1xxhYmMjDT+/v6mYsWKplevXuaPP/7Isdb8/m6Msf5eLVu2NEFBQSY6OtoMHjzYHDp0KMu/TaC0IFgAJUxBBIv27dtn+yGkTp065uzZs8YY14NFmzZtjK+vr9N5J06cMCdPnrzo9Tp16mSSk5PdqjvN+PHjTUBAQI7P9frrr9vnnjlzxnTq1CnX2kaOHJnnv5ErwWLGjBkmJCQkx+evUqWK2bRpk9NjMn54adKkiSlbtmyWxzkcDvP77787Pe6HH34wfn5+Wc4tV66cadu2bYEFi7p165qaNWtme/4nn3ySp9/lFVdcYT/mnnvucTq2fft2p2umfWjMS72Z3y+uuP/+++3rlS9f3qSmphpjjJkyZYq9/9VXX7W3p06daj+2QoUK9v6hQ4fa+3v27Jlr3WFhYWbdunXGmPwHiyeffDLXc6+44gpz6tQpp9eY+XjG+3kJFo0bN3Z6PyUkJOTpd5vxfXTJJZeYKlWqZFvzf//7X6fHHT582Fx66aU5vkYfHx/zxhtvZHk+V34377//frbnxsbGmgYNGtj3CRYoTegKBZRwP//8s44ePZplf+/evVWtWrVsH7No0SK1bNlSXbt21dy5c7V48WJJ0rZt2zRjxgz16dNHffr0UaNGjTRmzBidOHFCktS5c2d16dIl13qWLFmikJAQ9e/fX1WqVNGaNWvk6+srh8OhuLg4tW7dWlWqVFFkZKQuXLigLVu2aNq0aUpOTtbvv/+ub775RrfeeqvLdUvS0qVLdc899yg1NVWS5Ofnp1tuuUX16tXTP//8o59//tnpuiNGjNDvv/8uSQoICFCfPn1Up04drV+/XtOmTZMxRq+99pqaN2+u2267LdfX74qdO3eqb9++Onv2rCSpYcOG6t69u1JTU/XFF19o9+7d2rdvn3r27Kn169fL19c3yzXWrVunyMhIjRgxQmfPntXHH3+slJQUGWM0btw4XXPNNZKkM2fO6M4771RycrL9uxk0aJCioqL02Wef6Y8//shy7ZYtW2rcuHH68ssvtXLlSklSXFyc7rvvPvucWrVqZXnc1q1bFRQUpPvuu0/BwcF6//337df4yiuvaPDgwRf93QwaNMgen/D111/rnXfekb+/vyRpypQp9nn16tVTmzZtJEnvv/++U+033HCDkpOTtXfvXi1btkybN2++6PPmRYcOHfTee+9Jko4ePapNmzapYcOGdjen0NBQ3XvvvXr66ad17tw5LViwQL1799amTZt05MgRp+ukiYiIUJcuXVS/fn1FRkYqICBAhw4d0vTp07Vnzx4lJibqscce008//aSoqCiNGzdOK1eu1JdffmlfY9y4cfZ227ZtJUlTp07VmDFj7P1du3ZVu3btdOjQIX366ac6deqUFi5cqBEjRuijjz7K9vUuXLhQ5cuXV58+fVSuXLk8Dbhu1qyZ3RVq/vz5qlixolq1aqXmzZvr8ssv19VXX63y5cvneo2//vpL4eHhGjFihD0QPj4+XpL0+OOP61//+pdq164tSbr99tu1du1aSVLZsmV12223qWrVqlq8eLF+/vlnpaamasSIEWrRooXd/cyV380///yjESNG2I8pW7as7rzzTvn4+GjChAnauXPnRX83gFfydLIBkD+ZWyxyumX8ljzzN5uXX3653bR//vx5Ex0dbR/L/M185m5O2cl4jq+vr1m1alWO9R86dMh899135r333jOvvvqqGTdunFOXksGDB7tdd48ePZy+oVywYIFTDUlJSWbv3r3GGGOOHTvm9O39hAkTnM7N+K30ZZddluPryii/LRYjRoxw+nY247fp+/fvd2oB+u677+xjGVssHA6HWb16tX1s+PDh9rGoqCh7f8Zv0yWZ999/3z62bds2p99FWotFmuy6SWWWuaUrY1esN954w+lYYmJirr8XY4w5deqUKVOmjP2YH374wT6W8Vvhl19+2d7fpEkTe/+SJUuyXHPnzp0F0hVq//79Tq/nvffeM8akd5Hq1KmTMSb979S4cWNjTNZvug8cOOB03fPnz5sFCxaYTz75xLz++utm3LhxZtCgQfb5gYGBTl1zMr/fspOxS9KAAQOcjn311Vf2MT8/P3Ps2DH7WMbrhoWFmd27d+frd7Rr1y4TERGR43+n/Pz8TP/+/c3Ro0edHpf5fbR48WL72OLFi52OPfXUU8YYY/7880+n/XPmzHG65vXXX28f6969u1u/m7Fjxzo9V8ZWwcz10WKB0oRgAZQwBREsMvdxb9WqlX1s0KBBTsfyGyxuuOGGbM85c+aMueOOO4yPj0+udXfp0sXtujMGjuuuuy7X3+dPP/2Up99n2of306dP53o9Y/IfLDKOE7jY7bHHHrMflzFYtG3b1umaGT+8OhwOe/9DDz3kdL3M3TuuvPLKAgsWlStXdjo2a9Ysp+fO64fUjB+qb7vtNmOM84dIX19fs3//fvv8IUOG2MfKlCljOnfubO6//37zzjvv2N2ICkrt2rXt5+rbt685duyYcTgcRpJ5/vnnjTHGPPPMM/bf4fjx46Zv3772Y2rXru10vf/973+mfPnyF30fZHy9FwsWp0+ftmvKy23WrFn2YzPuz9hlKz927Nhh+vfvn2tXv6uuusruSmaM8/soLi4uyzVjY2Pt49dee60xxpj33nsvz68xJibGrd9Nxi5radfKqT6CBUoTpmkBSriJEyfKWF8SON1yW2egZs2aTvcDAwPt7bTuQ66qV69etvufeOIJTZo06aLXT0pKyvFYXus+fvy4vR0bG5vr82U892KMMTp27Fiez8+r/NSQsQtNRrn9bsz/z1wkye5CIlndN0JDQ50eV7FixTzXcjG51STl/b2WscvUd999pzNnzmjy5Mn2vuuuu06VKlWy748ZM0bXXXedJOnUqVP67bff9N5772no0KFq0qSJrrzySp0+fTq/LydbGbsxLVy4UIsWLbJ/31dccYXTOcYYLVq0yGlGqIyPX716tQYMGJBt18bMcvt3ktmJEyec3gMXk9N7LKd/2xcTFxenzz//XCdOnNAff/yh119/Xd26dXOaKW7u3LlZpuxNEx0dnWVfTEyMvZ32nnbl35Grv5uM/44uVh9QmjDGAiiF0vqopynIRbUyf1BNk7EPeOPGjTVlyhTVrVtXfn5+uvXWWzVt2rSLXjuvdUdFRenw4cOSdNG+zlFRUU73R4wYocqVK+d4fnh4+EXrzK+MNTRs2DDXxQ1zmkY4r7+biIgIe/vkyZM6e/asgoOD7X0HDx7MQ8V5U1Dvs/bt26tOnTratm2bTp8+re+++05Tp061jw8aNMjp/LCwMP3000/6559/tHTpUv3111/atGmTpk+frjNnzmj+/Pl65ZVXNHr0aJfqyahDhw724nf//POPPv30U0nWa2/VqpUka5yDv7+/Lly4oEmTJmnfvn3249PChyRNmzbNDlsOh0OTJ0/WjTfeqNDQUP3000/q1q2bSzVm/JtL0r/+9S+n582sWbNm2e7P6d92XgUEBKhNmzZq06aNhg8frs8//1wDBgywj2/bti3b5077t5zRoUOH7O2015f53/Lzzz/v9N7Ojqu/m4yPu1h9QGlCsACQq4wfDs+cOePydTJ+03/VVVepYcOGkqxvAAt6Zer27dvr22+/lST9+uuvWrx4sdM6AcnJyTp06JCqVKmiVq1aydfX11452d/fXw8//HCWa+7atUtbt2696Lz9rmjbtq2WL18uSTpw4ID69u2rKlWqOJ2TnJysH374wf6w6qrMa55MnTrV/mC+fft2LVq0KMfHFtR7wRWDBg3Sk08+KUl66qmntHv3bklS+fLldeONNzqdu2HDBtWtW1dVq1ZVr1697P3Dhg3TW2+9JclqHUgzadIkp3CSn2+wMy9sN336dEnW7zntQ21ISIiaN2+upUuX2seze3zGfyPh4eG69dZb7W/1v/rqqxxryBzgzpw5o5CQEPt+aGioLr30UntQ87FjxzRs2LAsj0tISNCsWbPsf5sF4emnn1br1q117bXXys/P+SNHmTJlnO5n/pCf5u+//9Yff/xhD0T/448/nL4waN68uaT0geppypcv7zTBQJqNGzfaE1K4+rtp0aKFvvnmG0lWiJg9e7Y9QULm+oDShGABlHA5zQoVHh6uu+++2+3rV6lSRdu3b5dkfQALDg5W2bJlVatWLXXv3j3P16lbt642bNggSfr444/l4+OjkJAQff755zl2vXDVI488ohkzZig1NVUpKSm66qqrdOutt6pu3bo6ePCgfvnlFw0dOlTDhw9XVFSUBg8erI8//liSNVvRypUr1bZtWwUFBWnfvn1aunSp1qxZo4EDB6pr1675ruff//63ypYtm2V/8+bN9eGHH+qBBx7QBx98oHPnzun48eO69NJLdcstt6hatWo6deqUNm3apHnz5ik+Pl47d+5UZGSky7+bm266SdHR0fa3rPfee6+WL1+u8PBwffbZZ/ZsUdnJGHZWrVqlYcOGqVq1agoICNCDDz7ock15MWDAAD3zzDNKSUlx+tDWv3//LB8CH374YS1fvlzXXHONqlWrpgoVKmj//v2aOHGifU5OH2LzKzY2VlWrVtU///wjKT2UZA4cHTt21NKlS51CS5UqVRQXF2ffr1u3rr0dHx+vbt26qW3btlq0aJF+/fXXHGvIHEJvu+02tW3bVj4+Prr99tsVExOjRx55RP369ZMkLV68WE2aNNGNN96oyMhIHTt2TGvWrNGiRYtUqVIle3a1grBo0SK9+OKLKleunDp27Kj69esrNDRUO3fudGp1CgsLyxIMMrr++us1ePBge1aoNH5+fnYLX9OmTdW5c2d7Fe+hQ4dq1qxZat68uXx8fLR792798ccf2rx5s5577jm1b99eklz63fTr10+jRo2yu6R1795dd911V5b6gFLHEwM7ALgur4O3a9SoYT8mu4XmMsptMac333wz2+t369bNPicvA7wzz0aUdqtUqZLp3LlztoOC3ak7P+tYnD59+qLrWGT3HDnJyzoKmV/r9OnTTWho6EUfk3GBtNxef24DenNaxyIyMtK0bt3aaUBtRmvWrMl28H1oaKh9Tm4DvDO/dzO+lry47rrrsjx3doOxu3btmuvvMCgoyCxfvjxPv6u8uO2227I8x48//uh0zsyZM7Oc06dPH6dzjh07ZipXrpzjey+n3925c+ecFuLLeMu4EOQTTzyRr/9uGJN1gbz8yvgezenm4+NjPv/8c6fHZXy9DRo0yHE9lIyzgRljzTqX2zoWabfM/51y5XfzzjvvZHte5cqVTZ06dfL93w3AGzB4G0CuhgwZolGjRikuLi5LV4b86NOnj7766is1bdpU/v7+KleunHr37q2lS5fmOqbBVXfeeafWrl2r++67T/Xq1VNISIgCAwNVrVo19erVy/62UrK6qvzyyy+aPHmyrr/+esXExMjPz0/BwcGqVauWevXqpY8++kivvfZagdeZ5uabb9aGDRs0cuRINW7cWGXKlJGvr6/KlSunNm3a6JFHHtHixYuzDIh2xQ033KDZs2erY8eOCg4OVkREhG666SYtXbrUaQxJ5m/1L730Uk2ZMkXNmjVTUFCQ23XkV+axFM2bN1fjxo2znPfII49o2LBh9popAQEBCgwMVFxcnAYOHKjly5erZcuWBVZX5tYJHx8fp653ktU9L/P6I5n78kdFRWnRokXq0aOHwsLCFBwcrJYtW+rbb7/NddxNYGCgfvrpJ3Xp0iXXrnpjxozR4sWL1b9/f8XGxiowMFD+/v6qUqWKunTpojFjxmj27Nl5fNV589lnn2n8+PG67bbb1LRpU1WqVEn+/v4KDg5WnTp1dMcdd2jFihXq379/jteoUKGCli5dqsGDBys6OlqBgYG69NJL9cUXX+jRRx91Ojc6OlrLli3T+++/b6+R4evrq9DQUNWrV0/9+/fXF198oUceecTt382QIUP09ddfq3nz5goMDFT58uV1++23a9myZYXy3zSgJHAYk4/OpACAEu/cuXPZBoN9+/apQYMGSkxMlCS9+OKL9rgGoCjdcccd9kD4jh07Fvg4LACFgzEWAFDK/Pzzz3r88cfVt29fXXLJJQoNDdVff/2lt99+2w4VZcqUydPK2AAApCFYAEAptHXrVo0aNSrbY2XLltWXX35ZoGtaAAC8H8ECAEqZpk2b6r777tOCBQu0f/9+JSYmKjQ0VHXq1FHnzp01ZMgQVa1a1dNlAgBKGMZYAAAAAHAbs0IBAAAAcBvBAgAAAIDbSt0Yi9TUVO3fv19ly5aVw+HwdDkAAABAsWWM0cmTJ1W5cmX5+OTeJlHqgsX+/ftVrVo1T5cBAAAAlBh79+696MQepS5YlC1bVpL1y8lthVIAAACgtEtMTFS1atXsz9C5KXXBIq37U1hYGMECAAAAyIO8DCFg8DYAAAAAtxEsAAAAALiNYAEAAADAbaVujEVepaSk6MKFC54uA6VYQEDARad1AwAAKC4IFpkYY3Tw4EHFx8d7uhSUcj4+PoqNjVVAQICnSwEAALgogkUmaaEiOjpaISEhLKIHj0hbyPHAgQOqXr0670MAAFDsESwySElJsUNFuXLlPF0OSrkKFSpo//79Sk5Olr+/v6fLAQAAyBUduDNIG1MREhLi4UoA2V2gUlJSPFwJAADAxREsskG3ExQHvA8BAEBJQrAAAAAA4DaCBVBEHA6HZsyY4ekyAAAACgXBwgvccccdcjgcWW7XXnttnq8xb948ORyOEj/NbnH48D5q1ChdeumlHq0BAACgqDErlJe49tprNXHiRKd9gYGBBf4858+fZ10FAAAAZEGLhZcIDAxUxYoVnW6RkZH2cYfDofHjx6t79+4KCQlRnTp19P3330uSdu3apauuukqSFBkZKYfDoTvuuEOSdOWVV2ro0KEaPny4ypcvr65du0qSXnvtNTVu3FihoaGqVq2a7r//fp06dcp+vkmTJikiIkK//PKL6tevrzJlyujaa6/VgQMHnOqeMGGCGjZsqMDAQFWqVElDhw61j8XHx+uuu+5ShQoVFBYWpquvvlp//vmnW7+n8ePHq379+goKClK9evX03nvv2cd27dolh8Ohb7/9VldddZVCQkLUtGlTLVmyxOkaH3/8sapVq6aQkBB1795dr732miIiIuzXPXr0aP355592y9GkSZPsxx49ejTbvwEAAEBJR7AoRUaPHq1bb71V69at0/XXX69+/frp+PHjqlatmr755htJ0tatW3XgwAG9+eab9uM+/fRTBQQEaPHixfrggw8kWatCv/XWW9q4caM+/fRTzZkzR48++qjT8505c0avvvqqPv/8cy1YsEB79uzRww8/bB9///33NWTIEN1zzz1av369vv/+e9WuXds+fsstt+jw4cOaNWuWVq1apWbNmumaa67R8ePHXXr9X3zxhZ599lm9+OKL2rx5s8aMGaNnnnlGn376qdN5Tz31lB5++GGtXbtWl1xyifr27avk5GRJ0uLFi3Xvvfdq2LBhWrt2rTp37qwXX3zRfmzv3r310EMPqWHDhjpw4IAOHDig3r17X/RvAAAAUOKZUiYhIcFIMgkJCVmOnT171mzatMmcPXvW3te8uTFVqhT9rXnzvL+mgQMHGl9fXxMaGup0e/HFF+1zJJmnn37avn/q1CkjycyaNcsYY8zcuXONJHPixAmna3fs2NFcdtllF61h2rRpply5cvb9iRMnGklm+/bt9r53333XxMTE2PcrV65snnrqqWyvt3DhQhMWFmbOnTvntL9WrVrmww8/zLEOSWb69OnZHqtVq5aZPHmy074XXnjBtGnTxhhjzM6dO40kM378ePv4xo0bjSSzefNmY4wxvXv3Nt26dXO6Rr9+/Ux4eLh9/7nnnjNNmzbNtrbc/gaZZfd+BAAAKEq5fXbOjDEWF3HwoLRvn6eruLirrrpK77//vtO+qKgop/tNmjSxt0NDQxUWFqbDhw9f9NrNmzfPsu/333/X2LFjtWXLFiUmJio5OVnnzp3TmTNn7AUGQ0JCVKtWLfsxlSpVsp/v8OHD2r9/v6655ppsn/PPP//UqVOnsqyAfvbsWe3YseOiNWd2+vRp7dixQ3feeafuvvtue39ycrLCw8Odzs34e6pUqZJdb7169bR161Z1797d6fzLL79cP/74Y57qcPVvAAAAUNwRLC6iYsWS8byhoaFO3Yiy4+/v73Tf4XAoNTU1T9fOaNeuXbrhhht033336cUXX1RUVJQWLVqkO++8U+fPn7eDRXbPZ4yRJAUHB+f6nKdOnVKlSpU0b968LMfSxjPkR9r4j48//litWrVyOubr6+t0P2PdaYvU5eX3lBeu/g0AAACKO4LFRaxc6ekKikbaTE8pKSkXPXfVqlVKTU3Vf//7X/n4WMN0vvrqq3w9X9myZVWzZk3Nnj3bHjieUbNmzXTw4EH5+fmpZs2a+bp2dmJiYlS5cmX9/fff6tevn8vXqVu3rlasWOG0L/P9gICAPP0eAQAAsnPmjLR3r7Rnj3WrXl3q3NnTVV0cwcJLJCUl6eDBg077/Pz8VL58+Tw9vkaNGnI4HPrxxx91/fXXKzg4WGXKlMn23Nq1a+vChQt6++23deONNzoN6s6PUaNG6d5771V0dLSuu+46nTx5UosXL9YDDzygTp06qU2bNrr55pv1yiuv6JJLLtH+/fs1c+ZMde/eXS1atMjxujt37tTatWud9tWpU0ejR4/Wgw8+qPDwcF177bVKSkrSypUrdeLECY0cOTJPNT/wwAPq0KGDXnvtNd14442aM2eOZs2aZbdsSFLNmjXtGqpWraqyZcsWytS/AACg5DFGOnLECgy7dzv/TNs+etT5MX37EixQhH7++Wd7PECaunXrasuWLXl6fJUqVTR69Gg9/vjjGjRokAYMGOA0TWpGTZs21WuvvaaXX35ZTzzxhDp06KCxY8dqwIAB+ap54MCBOnfunF5//XU9/PDDKl++vHr16iXJ6iL0008/6amnntKgQYN05MgRVaxYUR06dFBMTEyu180uJCxcuFB33XWXQkJCNG7cOD3yyCMKDQ1V48aNNXz48DzX3K5dO33wwQcaPXq0nn76aXXt2lUjRozQO++8Y5/Ts2dPe8ra+Ph4TZw40Z6+FwAAeLekJOmff3IODnv2SOfO5e+ae/YUTq0FzWHSOr2XEomJiQoPD1dCQoLCwsKcjp07d047d+5UbGysgoKCPFQhSpq7775bW7Zs0cKFCwv0urwfAQAoXoyRTpxwbl3IvH3woHWeK3x8pCpVpBo1rO5Pabd69aRseo4Xidw+O2dGiwWQT6+++qo6d+6s0NBQzZo1S59++qnTQnsAAKBkSk62ZgPNHBYyBogM6wHnW2ioFRoyBoe07Ro1pMqVJb8S/Om8BJcOeMby5cv1yiuv6OTJk4qLi9Nbb72lu+66y9NlAQCAizh/3hoUvWtX1tvu3VaocGeyxkqVnMNC5uAQESFlGJbpdQgWQD7ldwYsAABQNM6ft1oV0oJC5vCwb5/r3ZSCgrKGhYzbVatKpX2uFoIFAAAASoSkpJxbHHbtkvbvdz04lC+fc0tD9epShQre3dpQEAgWAAAAKBaSknJvcXAnOFSoINWsmf2tRg1r/APcQ7DIBishozgoZRO2AQBKgQsXrBaHv/+Wdu7MGhwOHHA9OERHZx8YCA5Fh2CRQUBAgHx8fLR//35VqFBBAQEBTgufAUXFGKMjR47I4XDI39/f0+UAAJAnaYu/7dyZHh7+/jt9e+9eKSXFtWtnFxzSbtWrExyKA4JFBj4+PoqNjdWBAwe0f/9+T5eDUs7hcKhq1ary9fX1dCkAANjOnLFCQubQkPbz9GnXrptbcKhRQwoJKahXgMJCsMgkICBA1atXV3JyslJcjdRAAfD39ydUAACKXEqKtXJ05laHtJ+HDrl23YgIKS5Oio1N/xkbm97iQHAo+QgW2UjrfkIXFAAA4G3SVo/OLjTs3GkNmr5wIf/X9fe3QkLm8JD2MzKywF8KihmCBQAAgJdJTbXWbNixw7pt356+vWOHlJDg2nUrVcoaGtK2K1eWaGgv3QgWAAAAJdD589ZMStmFh7//tqZuza8yZZzDQsafNWtKwcEF/SrgTQgWAAAAxdSpU84tDRkDxJ49VstEfvj4WAOhcwoP5cqxCBxcR7AAAADwEGOkY8ecWxsybrsyUDowUKpVK/1Wu3b6do0aUkBAwb8OQCJYAAAAFCpjrICwbVv6LWOASEzM/zXDw50DQ8btypWtlgmgqBEsAAAA3JTW8pAxPGS8nTyZ/2tWqpRzy0NUFF2WUPwQLAAAAPIoPj5raPjrL+tnfHz+ruXra3VNyi44xMWxkjRKnmIbLF566SU98cQTGjZsmN544w1J0rlz5/TQQw9p6tSpSkpKUteuXfXee+8pJibGs8UCAACvcfKk1U0pLTBkvB09mr9r+fhYsynVqZN+u+QSK0TUqGGt/QB4i2IZLFasWKEPP/xQTZo0cdo/YsQIzZw5U9OmTVN4eLiGDh2qHj16aPHixR6qFAAAlERnz+YcHg4ezN+1HA6pWrX00JAxRMTGMlgapUexCxanTp1Sv3799PHHH+s///mPvT8hIUGffPKJJk+erKuvvlqSNHHiRNWvX19Lly5V69atPVUyAAAohoyxFonbujX9tmWL9XPPHut4flSunH14qFVLCgoqnNcAlCTFLlgMGTJE3bp1U6dOnZyCxapVq3ThwgV16tTJ3levXj1Vr15dS5YsIVgAAFBKnTpltTxkDBBbt1r7Tp/O37Wio7MGhzp1rK5LjHkAclesgsXUqVO1evVqrVixIsuxgwcPKiAgQBEREU77Y2JidDCXNsukpCQlZVh6MtGVOd0AAIBHpaRYrQyZw8PWrVarRH6EhUl161q3zCEiLKxw6gdKg2ITLPbu3athw4bpt99+U1ABtieOHTtWo0ePLrDrAQCAwpOQkH3XpW3bpAzfE16Uj481s1JagMh4i4lhqlagMBSbYLFq1SodPnxYzZo1s/elpKRowYIFeuedd/TLL7/o/Pnzio+Pd2q1OHTokCpWrJjjdZ944gmNHDnSvp+YmKhq1aoVymsAAAAXlzb2YfNm59uWLflfabpcuezDQ61aDJoGilqxCRbXXHON1q9f77Rv0KBBqlevnh577DFVq1ZN/v7+mj17tnr27ClJ2rp1q/bs2aM2bdrkeN3AwEAFBgYWau0AACCr5GTp77+zDxD5WTDO398a45BdgChXrvDqB5A/xSZYlC1bVo0aNXLaFxoaqnLlytn777zzTo0cOVJRUVEKCwvTAw88oDZt2jBwGwAADzp71uqulDlAbNsmnT+f9+vExEj16mUNDzVrSn7F5hMLgJyUqH+mr7/+unx8fNSzZ0+nBfIAAEDhO3Eia3jYvFnatSvvU7c6HNbaDvXrO9/q1ZMiIwu1fACFzGFMfmdxLtkSExMVHh6uhIQEhTH1AwAAWRw5Im3caN02bbJumzfnb/yDv78141LmAFG3rhQcXHi1AyhY+fnsXKJaLAAAQME5fjw9QGzcKG3YYP08ciTv1yhTJmt4qF/fmpGJ7ktA6cI/eQAAvFxCgtXqkBYc0m4HDuT9GhUqZB8gqlZl6lYAFoIFAABe4tQpK0BkboH455+8XyMmRmrY0PlWvz6zLwG4OIIFAAAlzNmz1piHjOFh40ZrEHVelSsnNWqUNUSUL19oZQPwcgQLAACKqdRUKyysXy+tW5f+c9s261heRERYgSFziIiOpgsTgIJFsAAAoBg4cSJrgNiwwerelBdly6aHhowholIlAgSAokGwAACgCJ0/by0mlzFArF+f93EQgYFWYGjcOD1ANGrEIGoAnkewAACgEBgj7duXNUBs2SJduJC3a8TGSk2aWCEi7Wft2kzjCqB44j9NAAC46fx5azamtWulP/9M/3niRN4eHxHhHB6aNLFaIcqWLcSiAaCAESwAAMiHEyfSw0PabdOmvLVC+PlZU7dmDBGNG9ONCYB3IFgAAJANY6wZmTKHiN278/b4KlWs8JCxFaJuXSkgoPBqBgBPIlgAAEq9pKT0rkxptz//tFasvhhfX6sV4tJL029Nm7IeBIDSh2ABAChVTp60gsOqVdKaNeldmZKTL/7YsmWt0JAxRDRsKAUFFWrJAFAiECwAAF4rPt4KD6tWSatXWz+3bbO6OV1MtWrprQ9pISI2VvLxKdyaAaCkIlgAALzCsWNWeEgLEKtXSzt2XPxxvr5SgwZZuzKVK1fIBQOAlyFYAABKnMOHnVshVq/O26DqwEBrEHWzZlLz5tZPujIBQMEgWAAAirWDB6WVK52DxL59F39ccLDV+pAxRDRoIPn7F3rJAFAqESwAAMVGQoIVIlasSL/t3Xvxx5UpI112mRUe0oJE3bqsUA0ARYn/5AIAPOLsWWtGpowhYuvWiz8uLMy5FaJ5c6lOHQZVA4CnESwAAIUuOVnauNE5RKxff/EpXsuUsYJDy5ZSixbWdlwcIQIAiiOCBQCgQBljzca0fHl6iFi92mqhyE1AgDUbU8uW0uWXWz/r1rVmbQIAFH8ECwCAWxISrBCxdGn67fjx3B/jcFgDqVu2TA8SjRtbszYBAEomggUAIM9SUqxVqjOGiM2bL77gXGysc4ho1szq5gQA8B4ECwBAjo4ckZYtSw8Ry5dLJ0/m/pjy5aVWrdK7M7Vsae0DAHg3ggUAQJJ0/ry0bp1za8TFVq7287PGRbRubd3atLEGVzscRVMzAKD4IFgAQCl17Jj0xx/S4sXWbeVK6dy53B9TubIVHtKCRLNmUkhI0dQLACjeCBYAUAoYI23fLi1alB4ktmzJ/TFBQdb0rmkhonVrqWrVoqkXAFDyECwAwAslJVlTvKaFiMWLrfESuYmLc26NaNLEmgIWAIC8IFgAgBfI3K1pxQorXOTEz8/qxtSuXfqtYsWiqxcA4H0IFgBQAu3ZIy1YYN0WLbKmfM1NRITUtm16iGjZkrERAICCRbAAgGIubSXr+fOtIDF/vrR7d+6PiYtzbo1o0EDy8SmaegEApRPBAgCKGWOsRejSWiTmz5cOHMj5/Mzdmtq2lSpVKrp6AQCQCBYA4HEpKdb6EWktEgsXSkeP5nx+UJA1yLpDB+vWujXdmgAAnkewAIAilpIirVkjzZmTPkYiISHn88uUsVoiOna0gkSLFlJgYNHVCwBAXhAsAKCQpaZKGzdaQWLOHKtlIrcgERkpXXFFeovEZZdZ3Z0AACjO+F8VABQwY6Rt29KDxNy5uXdtio62AkRai0SjRgy0BgCUPAQLACgAu3c7B4l9+3I+t3x56eqrpauukq68UqpbV3I4iqxUAAAKBcECAFxw6FB6kJgzR/r775zPDQuzAsTVV1u3hg1pkQAAeB+CBQDkwdmz1iDrX3+VfvtN+vPPnM8NCbHGSKS1SjBGAgBQGvC/OgDIRmqqtH59epBYuFA6dy77cwMCrOlf01okLr/c2gcAQGlCsACA/7d/vxUi0m6HD2d/nsNhLUjXubPUqZMVKlhHAgBQ2hEsAJRaZ85YU7/+9pvVMrFxY87nVqsmdelihYlrrrEGYAMAgHQECwClRto0sD/9JM2aZYWKpKTszy1Txhof0bmzFSguuYSZmwAAyA3BAoBXO3NGmjcvPUzkNHuTj4/UsmV6kGjVinESAADkB8ECgNfZts0KET/9ZIWKnFolqlWTrr1W6trVGnQdGVmkZQIA4FUIFgBKvLNnrQCRFiZ27Mj+PD8/axrY66+XrrtOatCA7k0AABQUggWAEmn/funHH6UffpB+/z3nqWCrVrVCxHXXWYOuw8KKtk4AAEoLggWAEsEYad066fvvrTCxYkX25/n5Se3bp4eJRo1olQAAoCgQLAAUW0lJVhenH36wAsXevdmfV6mS1b3p+uutdSVolQAAoOgRLAAUK0ePWuMkvv9e+uUX6dSp7M+79FLpxhulf/3LWqzOx6dIywQAAJkQLAB43K5d0vTp1m3xYik1Nes5AQHWuhL/+pd0ww1S9epFXiYAAMgFwQKAR2zeLH37rXVbvTr7c8qVk7p1s8JEly5S2bJFWyMAAMg7ggWAImGMFSDSwsSWLdmfV7eudNNNVjenNm0kX9+irRMAALiGYAGg0KSkSH/8kR4m9uzJ/rzmzaUePaTu3aX69Yu2RgAAUDAIFgAKVEqKNH++9NVX1piJw4eznuNwWAvVde9u3WrUKPo6AQBAwSJYAHBbaqq0aJH05ZfS119nHyb8/a0F6nr0sMZMxMQUfZ0AAKDwECwAuCQ1VVq61AoT06ZJBw5kPSc42FqkrkcPaxB2RESRlwkAAIoIwQJAnhljrXidFiayW7AuKMhaqK53bytMhIYWfZ0AAKDoESwAXNT69dIXX1iBYteurMcDAqRrr7XCxI03Mi0sAAClEcECQLb27pWmTJH+9z8rWGTm52etLdG7tzU9bHh40dcIAACKD4IFAFt8vPTNN1aYmD/f6vqUka+vNQC7d2/p5pulqChPVAkAAIojggVQyiUlSbNmWWHixx+t+5m1aSP16yfdeqtUoULR1wgAAIo/ggVQChljLVz32WfWehPx8VnPueQSK0z06yfVqlXkJQIAgBKGYAGUIvv2WWFi0iTpr7+yHo+Olvr0kfr3l1q0sBayAwAAyAuCBeDlkpKk77+XJk6UfvnFWn8io5AQa/Xr/v2lTp2sQdkAAAD5xUcIwAsZI61ZY4WJyZOl48eznnPlldKgQdbidWXKFHmJAADAyxAsAC9y7Jg1CHvCBGnduqzHq1eX7rhDGjhQiosr8vIAAIAXI1gAJZwx0qJF0ocfSl9/nXVWp6AgqWdPq3XiqqskHx/P1AkAALwbwQIooY4ftwZif/SRtHlz1uOtW1thondvFq8DAACFj2ABlCDGSIsXW60T06ZlbZ2IirK6Ot11l1S/vkdKBAAApRTBAigB4uOt1okPP5Q2bcp6vEMH6Z57rC5PQUFFXh4AAADBAijONmyQ3nlH+vxz6cwZ52ORkdYg7HvuoXUCAAB4HsECKGaSk6UffpDefluaOzfr8fbtpX//W+rVi9YJAABQfBAsgGLi2DFp/HjpvfekPXucj5UpY7VO3Hef1LChZ+oDAADIDcEC8LC1a63WicmTpXPnnI/VqSMNHWoNyA4L80R1AAAAeUOwADwgNVX6+Wfpv/+V5sxxPuZwSNddJz3wgNSlC+tOAACAkoFgARShc+ekL76QXnst6+xOYWHS4MHSkCFS7dqeqQ8AAMBVBAugCBw7Jr3/vtXl6fBh52N16kjDh0sDBlhjKQAAAEoiggVQiLZvl15/XZo4UTp71vlY+/bSww9LN95IdycAAFDyESyAQvDnn9LYsdbq2Kmp6ft9fKxF7B56SGrVynP1AQAAFDSCBVCAliyRxoyRfvzReX9oqHTnnVaXp9hYj5QGAABQqAgWgJuMkWbPtgJF5gXtKlSQRoyQ7r3XWikbAADAWxEsABelplorZI8ZIy1f7nysWjXpkUesVoqQEM/UBwAAUJQIFkA+GSN995303HPSunXOx+rUkR5/XOrfXwoI8Ex9AAAAnkCwAPLIGOmnn6Rnn5VWr3Y+1qSJ9OSTUq9ekq+vZ+oDAADwJIIFcBHGSL/+agWKzF2eWra09nfrZq2YDQAAUFoRLIAcGCPNmWMFhz/+cD522WXS888TKAAAANIQLIBsLF8uPfaYNG+e8/4mTaTRo6WbbiJQAAAAZESwADLYts0aK/H11877GzSwAkWPHqySDQAAkB2CBSDp4EGra9NHH0kpKen7a9e29t96K4OyAQAAckOwQKmWmCi9+qr03/9KZ86k74+JsaaTvesuyd/fc/UBAACUFAQLlEopKdLHH1sDs48cSd9fpoz06KPWatllyniuPgAAgJKGYIFSZ84cafhwaf369H3+/tK990pPPy1FR3usNAAAgBKLYIFSY8cO6eGHpRkznPf37i29+KJUq5ZHygIAAPAKBAt4vcREKzi88YZ0/nz6/ubNpTfflNq181hpAAAAXoNgAa9ljPT559aYiUOH0vdXrCiNHSsNGMDUsQAAAAWFYAGvtHGjdP/90oIF6fsCA6WRI6UnnpDKlvVcbQAAAN6oWH1f+/7776tJkyYKCwtTWFiY2rRpo1mzZtnHz507pyFDhqhcuXIqU6aMevbsqUMZv4pGqXf6tPT449KllzqHih49pM2bpTFjCBUAAACFoVgFi6pVq+qll17SqlWrtHLlSl199dW66aabtHHjRknSiBEj9MMPP2jatGmaP3++9u/frx49eni4ahQHxliDshs0kF5+WUpOtvbHxUmzZknffCPFxnq0RAAAAK/mMMYYTxeRm6ioKI0bN069evVShQoVNHnyZPXq1UuStGXLFtWvX19LlixR69at83S9xMREhYeHKyEhQWFhYYVZOorI3r3SkCHSDz+k7wsIsFouHn9cCg72XG0AAAAlWX4+OxerFouMUlJSNHXqVJ0+fVpt2rTRqlWrdOHCBXXq1Mk+p169eqpevbqWLFmS43WSkpKUmJjodIN3SE2VPvhAatjQOVR07ixt2CCNHk2oAAAAKCrFLlisX79eZcqUUWBgoO69915Nnz5dDRo00MGDBxUQEKCIiAin82NiYnTw4MEcrzd27FiFh4fbt2rVqhXyK0BR2L5duvpq6b77pJMnrX0VK0pTp0q//CLVqePZ+gAAAEobl2eFOnz4sDZt2qSjR49KksqXL68GDRoo2s1li+vWrau1a9cqISFBX3/9tQYOHKj58+e7fL0nnnhCI0eOtO8nJiYSLkqwlBTp9delZ56Rzp1L3z94sPTqq1JkpOdqAwAAKM3yFSw2bdqkSZMmafr06fr777+zPScuLk49e/bUwIEDVb9+/XwXFBAQoNq1a0uSmjdvrhUrVujNN99U7969df78ecXHxzu1Whw6dEgVK1bM8XqBgYEKDAzMdx0ofjZvlgYOlFasSN9Xs6b08cdShh5yAAAA8IA8dYVatWqVunXrpsaNG+u///2vduzYIWNMtrcdO3Zo3LhxatSokW688UatXr3arQJTU1OVlJSk5s2by9/fX7Nnz7aPbd26VXv27FGbNm3ceg4Ub6mp1grZl12WHiocDmnYMGn9ekIFAABAcZCnFouWLVvK4XDIGCMfHx81bdpUzZo1U+3atRUZGSljjE6cOKHt27drzZo1WrdunVJTUzVz5kzNmjVLyWlzf17EE088oeuuu07Vq1fXyZMnNXnyZM2bN0+//PKLwsPDdeedd2rkyJGKiopSWFiYHnjgAbVp0ybPM0Kh5Nm7Vxo0SMqQJ1WvnvTJJ1Lbtp6rCwAAAM7y3BWqRYsWuuuuu3TzzTerQoUKuZ575MgRzZgxQx9//LFWrlyZ52IOHz6sAQMG6MCBAwoPD1eTJk30yy+/qHPnzpKk119/XT4+PurZs6eSkpLUtWtXvffee3m+PkoOY6QpU6zVsxMS0vcPGyaNHctsTwAAAMVNntax+OOPP9TWxa+H3XlsYWAdi+LvxAlrtqcvv0zfV7WqNHEi3Z4AAACKUn4+O+epxcKdYFCcQgWKv6VLpT59pN270/fddpv0zjvM+AQAAFCcFbt1LFA6paZK48ZJV1yRHioiI611Kb74glABAABQ3Lm8jsWcOXP04Ycfavv27YqPj1fmHlUOh0M7duxwu0B4v6NHrWlkf/opfV+7dtYYC5YcAQAAKBlcChZvv/22hg8fnuNxY4wcDoerNaEUWbBA6ttX2r/fuu9wSE88IY0eLfm5HHsBAABQ1Fz66Pbqq69maaEA8sMY6Y03pEcesVbTlqToaOnzz6UuXTxaGgAAAFzg0hiLI0eOyOFw6P7779eRI0eUmpqa5ZaS9mkRyOT0aalfP2nkyPRQcfXV0p9/EioAAABKKpeCRatWrSRJXbp0Ubly5Qq0IHi3HTukNm2s8RNpnnpK+vVXqWJFz9UFAAAA97gULN58802Fh4friSee0Pz583Xq1KmCrgteaNYsqUULaf16637ZstL06dJ//iP5+nq2NgAAALjHpWDRpEkT3X777dq8ebOuvvpqhYeHy9fX1+nmx8hb/D9jpP/+V+rWTYqPt/bVqyctXy7dfLMnKwMAAEBBcenT/+jRo/XOO+/I4XAwiBu5unBBGjJE+vjj9H3du0uTJkksfA4AAOA9XAoWH3zwgR0oypQpo8jISPn4sNYenJ04Id1yizR7dvq+556zbsxGDAAA4F1cChanT5+Ww+HQmDFj9NhjjxV0TfACO3ZIN9wgbdli3Q8IkCZOlG67zbN1AQAAoHC41Mzwr3/9S5IUFxdXoMXAOyxbJrVunR4qKlSQ5s4lVAAAAHgzl1osRo4cqWXLlunBBx/UyZMn1bJlS4WHh2c5r3r16m4XiJLl55+lnj2lM2es+w0aSD/+KMXGerYuAAAAFC6HcWH0te//zw1qjJEjh87yDodDycnJ7lVXCBITExUeHq6EhASFMXq4QH3xhXTHHVLan/2qq6Rvv5UiIjxZFQAAAFyVn8/OLnWFyphFjDE53lB6vP661L9/eqjo1Uv66SdCBQAAQGnhUleoDh065NhSgdLFGOnJJ6WXXkrfd9990ttvs+gdAABAaeJSsJg3b14Bl4GSyBhp5EjpjTfS940aJT37LNPJAgAAlDYsjw2XpKZKDzwgvfde+r5335Xuv99zNQEAAMBz8jTGYsqUKUpJScn3xVNSUjRlypR8Pw7FW2qq9O9/p4cKh0OaMIFQAQAAUJrlKVj069dPsbGxevrpp7V69eqLnr9mzRo988wzio2N1e233+52kSg+UlKkO++Uxo+37vv4SJ99Jg0a5Nm6AAAA4Fl5mm42KChI58+ftwdsR0VF6bLLLlPt2rUVGRkpY4xOnDih7du3a82aNTpx4oQka8aooKAgnUlb1KAYYLpZ1xkj3XNPeqjw9bWmmO3d27N1AQAAoHDk57NznoLFvn379MILL2jSpEk6f/689cAcRuemXS4wMFCDBg3SU089pSpVquT3NRQagoVrjJFGjJDefNO67+cnTZ1qLYYHAAAA71TgwSLN8ePHNXnyZE2fPl3Lly/X6dOnnY6Hhobq8ssvV48ePXTbbbcpMjLStVdQiAgWrnnmGek//7G2fXykyZNpqQAAAPB2hRYsMkpJSdGePXt09OhRSVL58uVVvXp1e1Xu4opgkX8vvSQ98UT6/QkTGFMBAABQGuTns7PL0836+voqNjZWsbGxrl4CJcDHHzuHirffJlQAAAAgqzzNCoXS6ccfpXvvTb//0kvS0KGeqwcAAADFF8EC2VqxwhpDkZpq3X/oIemxxzxbEwAAAIovggWy2LFD6tZNSpsluHdv6ZVXPFsTAAAAijeCBZwcOyZde6105Ih1v2NH6dNPrZmgAAAAgJzwcRG2CxekW2+Vtm+37jdoIE2fLgUGerYuAAAAFH8EC9geekiaM8fajo6WfvpJKoZLkQAAAKAYcnm6WUnavHmztm/frvj4eGW3HMaAAQPcuTyK0Pjx1lSykuTvb7VU1Kjh2ZoAAABQcrgULPbs2aP+/ftr8eLFOZ7jcDgIFiXEokXS/fen3//gA6ltW8/VAwAAgJLHpWBx7733atGiRQVdCzzg4EGpVy9rfIUkDRsmDR7s2ZoAAABQ8rgULObNmyeHw6Hw8HD16dNH5cqVk5+fW72q4AEpKdJtt0mHDln3r7lGevVVz9YEAACAksmlNBAWFqYjR47o3XffVd++fQu6JhSR0aOluXOt7SpVpClTJPIhAAAAXOHSrFB9+/aVMUanT58u6HpQRH79VfrPf6xtX19p6lSpQgXP1gQAAICSK0/fT+/Zs8fp/t13361ff/1VDz/8sM6ePasOHTooMpt5SatXr14wVaJA7d8v9esnpU3k9eKLUvv2nq0JAAAAJZvDZDdPbCY+Pj5yOBxZ9htjst0vWbNCJScnu19hAUtMTFR4eLgSEhIUFhbm6XKKnDHSdddJv/xi3b/+eumHH1hZGwAAAFnl57NznnvU55Q/8pBLUIy8/356qKhUSfrsM0IFAAAA3JenYNGhQ4ccWyZQcmzdKj38cPr9iROlcuU8Vw8AAAC8R56Cxbx58wq5DBS2Cxek22+Xzp617g8dKnXt6tmaAAAA4D1cmlz0+eefl8Ph0KBBg1S1alWnYydPntSaNWskWS0dKB5eeklascLarltXevllz9YDAAAA75KnwduZpQ3mXrhwodq2bet0bPHixbriiivk4+PD4O1iYvNm6dJLpfPnrallly6VWrTwdFUAAAAo7vLz2bnAh+2eO3dOEoO6i4vUVOnuu61QIUmPPEKoAAAAQMHLc1eo+fPna/78+U77JkyYoN9//92+n5qaqp9//lmSFBwcXEAlwh0ffSQtXmxt164tPfusZ+sBAACAd8pzsJg3b56ef/55+74xRhMnTsz2XIfDoXr16rlfHdyyb5/06KPp9z/6SCLvAQAAoDDka/B2WvemtKlnc+ruFBgYqDFjxrhZGtw1cqR08qS1PXiwdNVVnq0HAAAA3ivPweLmm29WzZo1JUmDBg2Sw+HQk08+qTp16tjn+Pj4KDIyUm3atFE5FkjwqHnzpK++srbLl5fGjfNoOQAAAPByLs0KVbNmTTkcDn3zzTdq1qxZYdRVaErDrFDJyVLz5tK6ddb9jz+W7rrLszUBAACg5MnPZ2eX1rHYtWuXKw9DEfnoo/RQ0ayZNGiQZ+sBAACA93N5gbyLCQkJUZ06ddSpUyeFhoa68jRwwfHj0jPPpN9/6y1r7QoAAACgMLkULEaNGmUP4L6YqKgoTZgwQTfeeKMrT4V8evFFK1xIUr9+Urt2nq0HAAAApYPLK2/nR2BgoFasWKFGjRrl96kKnDePsdizR7rkEikpSQoKkrZtk6pW9XRVAAAAKKkKfeXtiRMnqmnTpvLx8VGfPn305ptv6s0331SfPn3k4+Ojpk2b6o033lDv3r3lcDh0/vx5vfbaay69GOTd6NFWqJCkBx8kVAAAAKDouNQV6tSpU1q3bp1Gjx6tp59+2t7/wAMPqH79+ho1apR8fHw0ZcoU1atXT6NHj9a8efMKqmZkY/NmadIkazs8XHrsMY+WAwAAgFLGpRaL119/XZKynWq2efPmMsbojTfekCTdeuutkqQDBw64WCLy4umnpdRUa/uxx6SoKM/WAwAAgNLFpWCxb98+SVbAOHHihL0/ISFBb731ltM5QUFBkqSAgAC3CkXO1q6Vvv3W2q5USRo2zKPlAAAAoBRyqStUo0aNtHr1as2ZM0dVqlRRrVq15HA4tGPHDp07d04Oh0NNmjSRJK1fv16SVJUO/4VmzJj07ccfl0JCPFcLAAAASieXWixeffVVuwXi3Llz2rRpkzZu3Khz587JGCN/f3+NGzdOkvTBBx9Iktq3b19AJSOjLVukr7+2tqOjpbvv9mw9AAAAKJ1cChYdO3bU3Llz1apVK0mSMca+tW3bVvPnz1eHDh0kSe+//7527typV199teCqhm3sWCltwuCHHpKCgz1bDwAAAEonl9axyOjIkSP6+++/JUm1atVS+fLlC6SwwuJN61js3CnVqSOlpEiRkdLu3VLZsp6uCgAAAN4iP5+dXRpjkVGFChVUoUIFdy8DF7z2mhUqJGvANqECAAAAnuJysNi2bZvGjx+v7du3Kz4+XpkbPhwOh2bPnu12gchefLw0caK1HRwsPfCAR8sBAABAKedSsJg2bZpuu+02paYtnJCJMUYOh8OtwpC7CROk06et7YEDWbcCAAAAnuVSsHj66aeVktYHB0UuJUV6++30+w8+6LlaAAAAAMnFYLF79245HA5dc801+s9//qNy5crJz8/t4RrIo++/l3btsra7dpXq1/doOQAAAIBrwaJ27dravHmzRowYocsvv7yga8JFZGytYJVtAAAAFAcurWPxxBNPyBijGTNmFHA5uJjt26W5c63tOnWsFgsAAADA01xqsdi+fbvi4uI0fvx4rVixQh07dlRkZGSW85599lm3C4SzCRPSt++6S/JxKRoCAAAABculBfJ8fHzyNOtTcRzgXZIXyEtOlqpVkw4elPz8pL17pYoVPV0VAAAAvFWRLJB3sTzCdLMF76efrFAhSTfeSKgAAABA8eFSsJiYtjIbitT48enbd93luToAAACAzFzqClWSldSuUEeOSJUqWWtYVKki7d4t+fp6uioAAAB4syLpCpVmzZo12rx5s06fPq27777b3cshB19/bYUKSerfn1ABAACA4sXlOYVWrlypxo0bq0WLFrr99tt133336dy5c4qKipKfn5/mzZtXgGViypT07b59PVcHAAAAkB2XgsWWLVt09dVXa9OmTTLG2LegoCDdfPPNSk1N1bRp0wq61lJr715p4UJru359qUkTz9YDAAAAZOZSsBg1apROnTolHx8ftWnTxulYq1atJEmLFi1yvzpIkr78Mn27Tx+JCbcAAABQ3LgULObOnSuHw6GxY8fqlVdecTpWs2ZNSdI///zjdnGwTJ2avk03KAAAABRHLgWLhIQESdJll12W5diFCxckSWfOnHGjLKTZs0datcrabtZMqlPHs/UAAAAA2XEpWFT8/5XZfv311yzH0sZWVK1a1Y2ykOb779O3b77ZY2UAAAAAuXIpWHTu3FnGGL366qt68MEH7f1XX321Pv/8czkcDnXp0qXAiizNvvsuffummzxXBwAAAJAblxbI27Vrl5o1a6b4+Hg5Mo0kNsYoMjJSa9euVbVq1Qqs0IJSkhbIi4+XKlSQkpOlmjWlv/9m4DYAAACKTn4+O7vUYlGzZk39/vvvatiwodN0s8YYNWrUSL///nuxDBUlzaxZVqiQrNYKQgUAAACKK5dX3m7WrJnWr1+vP//8U3/99Zck6ZJLLlHTpk0LrLjSLuP4in/9y3N1AAAAABfjUleo3KxZs0br16+XJA0YMKAgL10gSkpXqNRUKTpaOnZMCguTjh6V/P09XRUAAABKk0LvCpWbr776SnfccYcGDx5c0JcuVdassUKFJF19NaECAAAAxVuBB4s0BdwQUur89lv6dufOnqsDAAAAyItCCxZwz++/p28TLAAAAFDcESyKobNnpUWLrO0aNaTatT1bDwAAAHAxBItiaOFCKSnJ2u7cmWlmAQAAUPzlebrZuLi4PJ134sQJl4uBZd689O1OnTxWBgAAAJBneQ4Wu3btyrLKNgpHWjcoSerQwXN1AAAAAHmVrwXymOmp8CUlSStWWNtxcVKlSp6tBwAAAMiLPAeLuXPnFmYd+H+rV0vnzlnb7dp5thYAAAAgr/IcLDp27FiYdUiSxo4dq2+//VZbtmxRcHCw2rZtq5dffll169a1zzl37pweeughTZ06VUlJSeratavee+89xcTEFHp9RWHx4vTt9u09VwcAAACQH8VqVqj58+dryJAhWrp0qX777TdduHBBXbp00enTp+1zRowYoR9++EHTpk3T/PnztX//fvXo0cODVResjOMraLEAAABASeEwxXjgxJEjRxQdHa358+erQ4cOSkhIUIUKFTR58mT16tVLkrRlyxbVr19fS5YsUevWrS96zcTERIWHhyshIUFhYWGF/RLyxRgpOlo6elSKjLR++hSr6AcAAIDSJD+fnYv1x9aEhARJUlRUlCRp1apVunDhgjplmIO1Xr16ql69upYsWeKRGgvSrl1WmJCk1q0JFQAAACg58jUrVFFKTU3V8OHD1a5dOzVq1EiSdPDgQQUEBCgiIsLp3JiYGB08eDDb6yQlJSkpbbU5WamruFq1Kn27RQvP1QEAAADkV7H9TnzIkCHasGGDpk6d6tZ1xo4dq/DwcPtWrVq1Aqqw4GUMFs2be64OAAAAIL+KZbAYOnSofvzxR82dO1dVq1a191esWFHnz59XfHy80/mHDh1SxYoVs73WE088oYSEBPu2d+/ewizdLQQLAAAAlFRudYXat2+fvvrqK23evFlnzpzRhAkTtHTpUklS69atFRAQkK/rGWP0wAMPaPr06Zo3b55iY2Odjjdv3lz+/v6aPXu2evbsKUnaunWr9uzZozZt2mR7zcDAQAUGBrrw6oqWMenBIjpaqlLFs/UAAAAA+eFysPjggw80YsQInT9/XsYYORwO/e9//9OgQYO0a9cuTZ06Vbfccku+rjlkyBBNnjxZ3333ncqWLWuPmwgPD1dwcLDCw8N15513auTIkYqKilJYWJgeeOABtWnTJk8zQhVnu3dLx49b282bSw6HZ+sBAAAA8sOlrlA///yz7r//fiUlJSnzbLXdu3eXMUZff/11vq/7/vvvKyEhQVdeeaUqVapk37788kv7nNdff1033HCDevbsqQ4dOqhixYr69ttvXXkZxcrq1enbdIMCAABASeNSi8XLL78sSapUqZK6d++u9957zz7WuHFjSdKff/6Z7+vmZUmNoKAgvfvuu3r33Xfzff3ibN269O1LL/VYGQAAAIBLXGqxWL16tRwOh1555RX17dvX6VjaYOt9+/a5X10psnFj+nbDhp6rAwAAAHCFS8HiwoULkqRy5cplOXb0/1d4K8YLehdLacEiIECqXduztQAAAAD55VKwqFWrliTpvffe0/nz5+39Z86c0VtvvSVJuuSSSwqgvNLh/Hlp2zZru25dya/YLlsIAAAAZM+lj7A9e/bUxo0bNXPmTP3222/2/kqVKunUqVNyOBzq1atXgRXp7f76S0pOtrbpBgUAAICSyKUWi0ceeUSNGjWSMUZJSUly/P/cqCdPnpQxRo0bN9aIESMKtFBvxvgKAAAAlHQuBYvQ0FAtWrRI999/vyIjI2WMkTFGkZGRuv/++zV//nwFBwcXdK1ei2ABAACAks5h3BxlbYyxB2yXL1/ebr0orhITExUeHq6EhASFhYV5uhxJ0q23StOmWdtbt0oMTwEAAEBxkJ/Pzm4PE3Y4HKpQoYK7lynVtm+3fvr6SrGxnq0FAAAAcIVLXaHuvfde+fr6qnXr1lmOtW3bVr6+vrrvvvvcLq40MEbascParlFD8vf3bD0AAACAK1wKFnPmzJEk3XPPPVmO3X333TLG2Ocgd8eOSYmJ1vb/z+ILAAAAlDguBYt//vlHklStWrUsx9JW3k47B7lL6wYlsTAeAAAASi6XgkVAQIAkaeXKlVmOrVixQpLkxypveZLWDUqixQIAAAAll0uf/hs0aKClS5dqzJgxio6OVrdu3SRJM2fO1NixY+VwONSgQYMCLdRbESwAAADgDVwKFv3799fSpUt15syZLOMsjDFyOBzq379/gRTo7egKBQAAAG/g8qxQXbp0sRfGy3iTpE6dOjErVB7t3Jm+HRfnuToAAAAAd7gULHx8fPTjjz9q3Lhxatq0qYKDgxUcHKymTZtq3Lhxmjlzpnx8XLp0qbN3r/WzfHkpJMSztQAAAACucnvl7ZKmOK28nZIiBQVJycnSpZdKa9Z4tBwAAADASX4+O9Os4EGHD1uhQpKymbkXAAAAKDFcDhYTJkxQq1atVK5cOfn6+ma5Md3sxaV1g5Kk/1/+AwAAACiRXPr0/8wzz2jMmDGSpFLWk6pAZVxDkBYLAAAAlGQuBYvx48fbgSIkJESRkZG0ULggY4sFwQIAAAAlmUtpIDExUQ6HQw8++KBee+01ORyOgq6rVKArFAAAALyFS2MsLr/8cknSNddcQ6hwA12hAAAA4C1cChbjxo1TUFCQxo0bp6NHjxZ0TaXG/v3p25Ure64OAAAAwF0udYV69NFHFRERoUWLFqlatWqqV6+eIiMjnc5xOByaPXt2gRTprQ4ftn6GhUnBwZ6tBQAAAHCHS8Fi3rx5dheopKQkrVu3zum4MYYuUnlw6JD1Mzras3UAAAAA7nJ5KqeM08wy5Wz+nT8vxcdb2zExHi0FAAAAcJtLwWLnzp0FXUepk9YNSqLFAgAAACWfS8GiRo0aBV1HqUOwAAAAgDdxa1W75ORkbdmyRfHx8UpNTc1yvEOHDu5c3qsRLAAAAOBNXA4W//nPfzRu3DidOnUq2+MOh0PJyckuF+bt0gZuS4yxAAAAQMnnUrCYMGGCnn322YKupVShxQIAAADexKUF8saPHy+Hw6E6depIslonOnfurAYNGkiSWrRooQEDBhRclV6IYAEAAABv4lKw2LRpkyTphRdesPc999xzWr9+vW677TZt3LhRgwcPLpgKvdSxY+nb5ct7rg4AAACgILgULM6ePStJqlixonx9fe19DodDAwYM0NmzZ/Xoo48WXJVe6MSJ9O1Mi5YDAAAAJY5LwSLy/z8JX7hwwd6eMmWKzpw5o19++UWSsqzGDWdpi+NJUkSEp6oAAAAACoZLwaJatWqSpPj4eF122WUyxmjixIkqW7as3njjDTkcDvscZC+txSIgQAoO9mwtAAAAgLtcChYtWrSQMUZbtmzRgw8+KEkyxjjdHn744QIt1NuktVhEREgOhycrAQAAANznMMaY/D7ozJkzOnnypEJCQlS2bFl9++23evfdd7Vv3z7VqFFD99xzj3r27FkY9botMTFR4eHhSkhIUFhYmMfqCA+XEhOlunWlLVs8VgYAAACQo/x8ds73OhZJSUlauXKlJKlKlSoqW7asevTooR49erhWbSmUkmKFConxFQAAAPAO+e4KFRAQoKuvvlpXXXWVli5dWhg1eb2EhPRtZoQCAACAN8h3sHA4HKpSpYokqVy5cgVeUGnAjFAAAADwNi4N3r777rtljNGUKVMKup5SgTUsAAAA4G3yPcZCssZWxMXF6X//+5927typG264QTExMXJkmt5owIABBVKkt6HFAgAAAN7GpWBx55132iFi8eLFWrx4cZZz0lbhRlZpA7cla3YoAAAAoKRzKVhI1roVcM2pU+nbZcp4rg4AAACgoLgULJ599tks3Z6Qd6dPp2+HhnquDgAAAKCguBQsRo0aVcBllC60WAAAAMDbuDQr1NVXX61rrrlGGzduzHJs7969ev755/XCCy+4XZy3osUCAAAA3salFot58+bJ4XAoIeNKb/9vz549GjVqlBwOh5555hm3C/RGtFgAAADA27jUYpGbo0ePFvQlvU7GFguCBQAAALxBnlssPv30U3366adO+x544AGFZ5gvNTU1VevXr5ckRbLyW44ytljQFQoAAADeIM/BYteuXXYXKMmabnbt2rXZnutwONSqVasCKdAb0WIBAAAAb5PvMRbGGKdwkZ3mzZvrrbfecq8yL0aLBQAAALxNnoPF8OHDdccdd8gYo7i4ODkcDn399ddq3ry5fY6Pj48iIyNVhq/hc0WwAAAAgLfJc7AIDw+3x1MMGDBADodDTZs2VY0aNQqtOG+V1hUqMFDyc3ntcwAAAKD4cOlj7aRJkwq4jNIlrcWChh0AAAB4C5e/L58zZ44+/PBDbd++XfHx8VnGWzgcDu3YscPtAr3R2bPWz5AQz9YBAAAAFBSXgsXbb7+t4cOH53g84wBvZHXunPUzMNCzdQAAAAAFxaVg8eqrr+Y4IxQuLinJ+kmwAAAAgLdwaeXtw4cPy+FwqG/fvjp48KAuXLig1NRUp1tKSkpB1+o1CBYAAADwNi4Fi0aNGkmS+vXrp+joaPn6+hZoUd4sNVVKTra2CRYAAADwFi4FixdffFEOh0OffPKJLly4UNA1ebW01gqJYAEAAADv4dIYi6lTp6patWqaMWOGqlevrtatWysyMtLpnLTgAWcECwAAAHgjh3FhFLaPj48961NuM0AVx3EWiYmJCg8PV0JCgsLCwor8+Q8dkipWtLb/9S/pu++KvAQAAAAgT/Lz2dnldSwy5pHssgnTzWYvY4tFUJDn6gAAAAAKkkvBYu7cuQVdR6mRtoaFRFcoAAAAeA+XgkXHjh0Luo5SgzEWAAAA8EYud4XKyYULF3TgwAFJUvXq1Qv68iUewQIAAADeKM/TzUZGRqpcuXJavny5vW/w4MEaPHiwduzYYe9bvny5atasqbi4uIKt1EsQLAAAAOCN8hwsEhISFB8fr+S01d0kTZo0SZ9++qkOHTqU5XwXJpsqFQgWAAAA8EYuLZAH1xEsAAAA4I0IFkWMYAEAAABvRLAoYgQLAAAAeKN8zwo1ZswYRUdH57jv8OHDBVOZl8owREV+BT4nFwAAAOAZ+f5oO2vWLHs7bXXtjPuQO4IFAAAAvFG+Ptoy05P7UlLSt319PVcHAAAAUJDyHCyee+65wqyj1CBYAAAAwBsRLIpYxmBBVygAAAB4C2aFKmIZx1jQYgEAAABvQbAoYnSFAgAAgDciWBQxggUAAAC8EcGiiDHGAgAAAN6IYFHEGGMBAAAAb0SwKGJ0hQIAAIA3IlgUMYIFAAAAvBHBoogxxgIAAADeiGBRxBhjAQAAAG9EsChidIUCAACANyJYFDGCBQAAALwRwaKIMcYCAAAA3ohgUcQYYwEAAABvRLAoYnSFAgAAgDciWBQxggUAAAC8EcGiiDHGAgAAAN6IYFHEGGMBAAAAb0SwKGJ0hQIAAIA3KlbBYsGCBbrxxhtVuXJlORwOzZgxw+m4MUbPPvusKlWqpODgYHXq1Enbtm3zTLEuIlgAAADAGxWrYHH69Gk1bdpU7777brbHX3nlFb311lv64IMPtGzZMoWGhqpr1646d+5cEVfquoxdoRhjAQAAAG9RrD7aXnfddbruuuuyPWaM0RtvvKGnn35aN910kyTps88+U0xMjGbMmKE+ffoUZakuS01N3/YpVrEOAAAAcF2J+Wi7c+dOHTx4UJ06dbL3hYeHq1WrVlqyZEmOj0tKSlJiYqLTrbhwODxdAQAAAFAwSkywOHjwoCQpJibGaX9MTIx9LDtjx45VeHi4fatWrVqh1gkAAACURiUmWLjqiSeeUEJCgn3bu3evR+sxxqNPDwAAABSKEhMsKlasKEk6dOiQ0/5Dhw7Zx7ITGBiosLAwp1txQVcoAAAAeIsSEyxiY2NVsWJFzZ49296XmJioZcuWqU2bNh6sDAAAAECxmhXq1KlT2r59u31/586dWrt2raKiolS9enUNHz5c//nPf1SnTh3FxsbqmWeeUeXKlXXzzTd7ruh8oisUAAAAvFGxChYrV67UVVddZd8fOXKkJGngwIGaNGmSHn30UZ0+fVr33HOP4uPj1b59e/38888KCgryVMluoSsUAAAAvIXDmNL1HXpiYqLCw8OVkJDgkfEWPXpI06db2/v3S5UqFXkJAAAAQJ7k57NziRljAQAAAKD4IlgUsdLVPgQAAIDSgmDhQYyxAAAAgLcgWAAAAABwG8GiiNEVCgAAAN6IYOFBdIUCAACAtyBYAAAAAHAbwaKI0RUKAAAA3ohg4UF0hQIAAIC3IFgAAAAAcBvBoojRFQoAAADeiGDhQXSFAgAAgLcgWAAAAABwG8ECAAAAgNsIFkWMMRYAAADwRgQLD2KMBQAAALwFwQIAAACA2wgWRYyuUAAAAPBGBAsPoisUAAAAvAXBAgAAAIDbCBZFjK5QAAAA8EYECw+iKxQAAAC8BcECAAAAgNsIFkWMrlAAAADwRgQLD6IrFAAAALwFwQIAAACA2wgWAAAAANxGsChijLEAAACANyJYeBBjLAAAAOAtCBYAAAAA3EawKGJ0hQIAAIA3Ilh4EF2hAAAA4C0IFgAAAADcRrAoYnSFAgAAgDciWHgQXaEAAADgLQgWAAAAANxGsAAAAADgNoJFEWOMBQAAALwRwcKDGGMBAAAAb0GwAAAAAOA2gkURoysUAAAAvBHBwoPoCgUAAABvQbAAAAAA4DaCRRGjKxQAAAC8EcHCg+gKBQAAAG9BsAAAAADgNoJFEaMrFAAAALwRwcKD6AoFAAAAb0GwAAAAAOA2ggUAAAAAtxEsihhjLAAAAOCNCBYexBgLAAAAeAuCBQAAAAC3ESyKGF2hAAAA4I0IFh5EVygAAAB4C4IFAAAAALcRLIoYXaEAAADgjQgWHkRXKAAAAHgLggUAAAAAtxEsihhdoQAAAOCNCBYeRFcoAAAAeAuCBQAAAAC3ESwAAAAAuI1gUcQYYwEAAABvRLDwIMZYAAAAwFsQLAAAAAC4jWBRxOgKBQAAAG9EsPAgukIBAADAWxAsAAAAALiNYFHE6AoFAAAAb0Sw8CC6QgEAAMBbECwAAAAAuI1gUcToCgUAAABvRLDwILpCAQAAwFsQLAAAAAC4jWABAAAAwG0EiyLGGAsAAAB4I4KFBzHGAgAAAN6CYAEAAADAbQSLIkZXKAAAAHgjgoUH0RUKAAAA3oJgAQAAAMBtBIsiRlcoAAAAeCOCBQAAAAC3ESwAAAAAuI1gAQAAAMBtBIsixhgLAAAAeCOChYcw1SwAAAC8CcECAAAAgNsIFkWMrlAAAADwRgQLD6ErFAAAALwJwQIAAACA2wgWRYyuUAAAAPBGBAsPoSsUAAAAvAnBAgAAAIDbCBZFjK5QAAAA8EYECw+hKxQAAAC8SYkMFu+++65q1qypoKAgtWrVSsuXL/d0SQAAAECpVuKCxZdffqmRI0fqueee0+rVq9W0aVN17dpVhw8f9nRpAAAAQKlV4oLFa6+9prvvvluDBg1SgwYN9MEHHygkJEQTJkzwdGl5whgLAAAAeKMSFSzOnz+vVatWqVOnTvY+Hx8fderUSUuWLMn2MUlJSUpMTHS6FQeMsQAAAIA3KVHB4ujRo0pJSVFMTIzT/piYGB08eDDbx4wdO1bh4eH2rVq1akVRKgAAAFCq+Hm6gML2xBNPaOTIkfb9xMREj4aLxx+Xjh6lxQIAAADepUQFi/Lly8vX11eHDh1y2n/o0CFVrFgx28cEBgYqMDCwKMrLk1tu8XQFAAAAQMErUV2hAgIC1Lx5c82ePdvel5qaqtmzZ6tNmzYerAwAAAAo3UpUi4UkjRw5UgMHDlSLFi10+eWX64033tDp06c1aNAgT5cGAAAAlFolLlj07t1bR44c0bPPPquDBw/q0ksv1c8//5xlQDcAAACAouMwpnStrJCYmKjw8HAlJCQoLCzM0+UAAAAAxVZ+PjuXqDEWAAAAAIonggUAAAAAtxEsAAAAALiNYAEAAADAbQQLAAAAAG4jWAAAAABwG8ECAAAAgNsIFgAAAADcRrAAAAAA4DaCBQAAAAC3ESwAAAAAuI1gAQAAAMBtBAsAAAAAbiNYAAAAAHAbwQIAAACA2/w8XUBRM8ZIkhITEz1cCQAAAFC8pX1mTvsMnZtSFyxOnjwpSapWrZqHKwEAAABKhpMnTyo8PDzXcxwmL/HDi6Smpmr//v0qW7asHA6HR2pITExUtWrVtHfvXoWFhXmkBnge7wOk4b2ANLwXkIb3AqTi8T4wxujkyZOqXLmyfHxyH0VR6losfHx8VLVqVU+XIUkKCwvjPxbgfQAb7wWk4b2ANLwXIHn+fXCxloo0DN4GAAAA4DaCBQAAAAC3ESw8IDAwUM8995wCAwM9XQo8iPcB0vBeQBreC0jDewFSyXsflLrB2wAAAAAKHi0WAAAAANxGsAAAAADgNoIFAAAAALcRLIrYu+++q5o1ayooKEitWrXS8uXLPV0SCtnYsWPVsmVLlS1bVtHR0br55pu1detWp3POnTunIUOGqFy5cipTpox69uypQ4cOeahiFIWXXnpJDodDw4cPt/fxPig99u3bp/79+6tcuXIKDg5W48aNtXLlSvu4MUbPPvusKlWqpODgYHXq1Enbtm3zYMUoDCkpKXrmmWcUGxur4OBg1apVSy+88IIyDn/lveCdFixYoBtvvFGVK1eWw+HQjBkznI7n5e9+/Phx9evXT2FhYYqIiNCdd96pU6dOFeGryIpgUYS+/PJLjRw5Us8995xWr16tpk2bqmvXrjp8+LCnS0Mhmj9/voYMGaKlS5fqt99+04ULF9SlSxedPn3aPmfEiBH64YcfNG3aNM2fP1/79+9Xjx49PFg1CtOKFSv04YcfqkmTJk77eR+UDidOnFC7du3k7++vWbNmadOmTfrvf/+ryMhI+5xXXnlFb731lj744AMtW7ZMoaGh6tq1q86dO+fBylHQXn75Zb3//vt65513tHnzZr388st65ZVX9Pbbb9vn8F7wTqdPn1bTpk317rvvZns8L3/3fv36aePGjfrtt9/0448/asGCBbrnnnuK6iVkz6DIXH755WbIkCH2/ZSUFFO5cmUzduxYD1aFonb48GEjycyfP98YY0x8fLzx9/c306ZNs8/ZvHmzkWSWLFniqTJRSE6ePGnq1KljfvvtN9OxY0czbNgwYwzvg9LkscceM+3bt8/xeGpqqqlYsaIZN26cvS8+Pt4EBgaaKVOmFEWJKCLdunUzgwcPdtrXo0cP069fP2MM74XSQpKZPn26fT8vf/dNmzYZSWbFihX2ObNmzTIOh8Ps27evyGrPjBaLInL+/HmtWrVKnTp1svf5+PioU6dOWrJkiQcrQ1FLSEiQJEVFRUmSVq1apQsXLji9N+rVq6fq1avz3vBCQ4YMUbdu3Zz+3hLvg9Lk+++/V4sWLXTLLbcoOjpal112mT7++GP7+M6dO3Xw4EGn90J4eLhatWrFe8HLtG3bVrNnz9Zff/0lSfrzzz+1aNEiXXfddZJ4L5RWefm7L1myRBEREWrRooV9TqdOneTj46Nly5YVec1p/Dz2zKXM0aNHlZKSopiYGKf9MTEx2rJli4eqQlFLTU3V8OHD1a5dOzVq1EiSdPDgQQUEBCgiIsLp3JiYGB08eNADVaKwTJ06VatXr9aKFSuyHON9UHr8/fffev/99zVy5Eg9+eSTWrFihR588EEFBARo4MCB9t87u/9f8F7wLo8//rgSExNVr149+fr6KiUlRS+++KL69esnSbwXSqm8/N0PHjyo6Ohop+N+fn6Kiory6HuDYAEUoSFDhmjDhg1atGiRp0tBEdu7d6+GDRum3377TUFBQZ4uBx6UmpqqFi1aaMyYMZKkyy67TBs2bNAHH3yggQMHerg6FKWvvvpKX3zxhSZPnqyGDRtq7dq1Gj58uCpXrsx7ASUSXaGKSPny5eXr65tlhpdDhw6pYsWKHqoKRWno0KH68ccfNXfuXFWtWtXeX7FiRZ0/f17x8fFO5/Pe8C6rVq3S4cOH1axZM/n5+cnPz0/z58/XW2+9JT8/P8XExPA+KCUqVaqkBg0aOO2rX7++9uzZI0n235v/X3i/Rx55RI8//rj69Omjxo0b6/bbb9eIESM0duxYSbwXSqu8/N0rVqyYZfKf5ORkHT9+3KPvDYJFEQkICFDz5s01e/Zse19qaqpmz56tNm3aeLAyFDZjjIYOHarp06drzpw5io2NdTrevHlz+fv7O703tm7dqj179vDe8CLXXHON1q9fr7Vr19q3Fi1aqF+/fvY274PSoV27dlmmnP7rr79Uo0YNSVJsbKwqVqzo9F5ITEzUsmXLeC94mTNnzsjHx/mjmK+vr1JTUyXxXiit8vJ3b9OmjeLj47Vq1Sr7nDlz5ig1NVWtWrUq8pptHhs2XgpNnTrVBAYGmkmTJplNmzaZe+65x0RERJiDBw96ujQUovvuu8+Eh4ebefPmmQMHDti3M2fO2Ofce++9pnr16mbOnDlm5cqVpk2bNqZNmzYerBpFIeOsUMbwPigtli9fbvz8/MyLL75otm3bZr744gsTEhJi/ve//9nnvPTSSyYiIsJ89913Zt26deamm24ysbGx5uzZsx6sHAVt4MCBpkqVKubHH380O3fuNN9++60pX768efTRR+1zeC94p5MnT5o1a9aYNWvWGEnmtddeM2vWrDG7d+82xuTt737ttdeayy67zCxbtswsWrTI1KlTx/Tt29dTL8kYYwzBooi9/fbbpnr16iYgIMBcfvnlZunSpZ4uCYVMUra3iRMn2uecPXvW3H///SYyMtKEhISY7t27mwMHDniuaBSJzMGC90Hp8cMPP5hGjRqZwMBAU69ePfPRRx85HU9NTTXPPPOMiYmJMYGBgeaaa64xW7du9VC1KCyJiYlm2LBhpnr16iYoKMjExcWZp556yiQlJdnn8F7wTnPnzs32s8HAgQONMXn7ux87dsz07dvXlClTxoSFhZlBgwaZkydPeuDVpHMYk2F5RwAAAABwAWMsAAAAALiNYAEAAADAbQQLAAAAAG4jWAAAAABwG8ECAAAAgNsIFgAAAADcRrAAAAAA4DaCBQAAAAC3ESwAAKXWqFGj5HA45HA4NGnSpDw95vTp04qJiZHD4dCLL75YuAXm0+7du+Xn5yeHw6Fp06Z5uhwApQzBAgDyYfz48fYH0Xvvvdfp2BtvvGEfa926tdOx33//3T52ww035Pt5165dq1GjRmnUqFGaN2+eOy/BLWfPntXzzz+vhg0bKjg4WCEhIapevbquvPJKPfTQQzpw4IDHaisqb7/9tg4fPqygoCD9+9//LrTnefbZZ+VwOPT999/n+TE1atRQjx49JEmjR49WampqYZUHAFn4eboAAChJ2rRpY28vWbLE6VjG+2vWrFFSUpICAwOzHMscOvJi7dq1Gj16tH3/yiuvzPc13GWM0Q033KA5c+Y47d+7d6/27t2r+fPnq3v37qpUqVKR11ZUkpOT9cYbb0iSbr75ZpUvX77QnmvmzJkKCgpSp06d8vW4u+66S9OmTdPGjRv1008/uRRkAcAVtFgAQD7Ur19fYWFhkqQNGzbo5MmT9rGlS5fa2+fPn9eaNWvs++4Gi6Jy5syZHI/9/vvvdqiIi4vTpEmTNHv2bH322Wd69NFHFRcXV1RlesysWbN06NAhSVLPnj0L7XkOHDigNWvW6KqrrlJISEi+HnvVVVcpMjJSkvLcvQsACgLBAgDywcfHR61atZIkpaamavny5ZKsD4J79uyRJDVo0EBSetAwxmjZsmX24y+//HJJ0ieffKKuXbuqevXqCg0NVVBQkOrUqaMHHnhAR48etZ+zZs2aGjRokH1/9OjRdreqUaNG2ft37typu+++WzVq1FBgYKCio6PVu3dvbd682ek1TJo0yenxH3zwgerWrSt/f3999dVXOb721atX29vDhw/XwIEDdfXVV+v222/Xyy+/rG3btqlFixY5Ps///vc/NWzYUEFBQWrQoIEmT56c5TlOnTqlUaNGqVGjRgoODlZYWJiuvPJKzZo1K9uavvvuO3Xq1EmRkZEKDAxU3bp1NXr0aJ09ezbLuV999ZX9/I0aNcr1teZk+vTpkiSHw6HOnTs7Hbvjjjvs1ztr1iw9+OCDKleunKKiojR06FAlJSVpz549+te//qUyZcqoYsWKevrpp7PtrjRz5kwZY9StWzd73zfffKP27dsrPDxcAQEBqlixotq3b6/HHntMxhj7PH9/f3Xs2NG+zvnz5/P9OgHAJQYAkC/PPvuskWQkmRdeeMEYY8w333xjJJk6deqYRx55xEgyt956qzHGmC1bttjnN2zY0L5O165d7f2Zb/Xr1zdnz541xhhTo0aNHM977rnnjDHGrFq1ykRERGR7TpkyZcyyZcvs5504caJ9LC4uzunciRMn5vi63333Xfu8Bg0amBkzZpj4+Pgcz8/4PHXr1s22tsmTJ9vnx8fHm8aNG+f4Wt99912n6z/zzDM5nnvFFVeYpKQk+9yvvvrKOByOLOc1adIkT689zSWXXGIkmVq1amU5NnDgQPtatWrVyvJct99+u4mNjc2y/+OPP85yrZtvvtlIMrt27TLGGDNv3jzj4+OT4+u9cOGC0+Off/55+9iSJUsu+roAoCDQYgEA+ZSxK1NaF6e01onWrVurbdu2Tvty6gbVu3dvTZgwQTNnztS8efM0c+ZMDRgwQJK0efNmffvtt5Kkr7/+Wk8++aT9uEGDBmnhwoVauHChBg8eLGOMBg4cqPj4eEnSQw89pF9//VUvv/yyfH19derUKQ0aNMjpW+00f//9t7p27aoZM2bY3+jn5Morr5Svr68kadOmTbr55psVGRmpRo0a6dFHH9Xu3btzfOzWrVs1bNgwzZw5U/3797f3jxw5UhcuXJAkPfXUU1q/fr0k6frrr9fMmTP12WefqWLFipKkESNGaO/evZKkFStW6IUXXpAkVapUSZ988ol+/vln+xv+hQsX6vXXX5ckpaSkaMSIEfbr79Onj2bOnKkRI0Zo3bp1OdacWXJysrZt2yZJql27dq7nHjx4UB999JHGjx8vHx/rf7Wff/65zp49q6lTpzq1NH344YdOjz1//rx+//13NWzYUDVq1JAk/fDDD3bLxpgxYzR79mxNnTpVTz/9tBo0aCCHw+F0jYz1bdq0Kc+vEQDc4uFgAwAlzvHjx+1vv6Oiokxqaqq54oorjCTz3nvvmYMHD9rfFu/fv9/cc8892X47vWfPHnP33Xeb2NhYExgYmOVb6BEjRtjnZvz2P62VIs2aNWvsY5deeqlZuHChfWvTpo19bOXKlVmuVaNGjSzfdufmrbfeMv7+/tl+ax4aGmr++OOPbGtu166dvT85OdlUr17dPrZgwQKTkpJiIiMjjSQTEBBgfv/9d/s13H///fa5r776qjHGmGHDhtn7nnzySfvcH374wd7fqFEjY4wxy5Yts/dVrlzZ6fW2a9cuzy0Whw4dss/t06dPluMZWyyefPJJe3/Dhg3t/Z988okxxpjU1FRTtmxZI8lEREQ4XeeXX34xksxjjz1m73v88cfta0ybNs0cPXo011pnzZpln//yyy/nei4AFBRmhQKAfIqMjNQll1yirVu36vjx49q4caNWrVolyWqRiImJUWxsrHbu3KmlS5c6DepOa7E4efKk2rZtq3/++SfH50lrgbiYv/76y95eu3atrrjiimzP27x5s5o3b+6079prr5WfX97/V/DAAw/ohhtu0Jdffqmff/5Zy5Yt07lz5yRZ6zs89NBD+uOPP7I8Lm1ciiT5+vqqefPm9piUv//+W3Xr1tWJEyckWd/Y5zQTUtp4kYyvecyYMRozZkyWc7ds2WJfP82ll17q9Hovv/xyLV68OG8vPgOTTetPRmnjaCQpKirK3k4bg+JwOBQVFaWTJ09m+TvPnDlTkpxmc+rXr59ef/11JSUl6ZZbbpEkRUdHq127drr//vuz/L4uVh8AFAa6QgGACzJOO/vBBx/ozJkzCgkJUZMmTZyO//rrr9qwYYMkKSwszB7YPX36dDtU1KtXT19++aVT9x1JBb4GwenTp7Psi4mJyfd1YmNj9fjjj2vevHk6fvy40yJxa9asydOH2sxdd/Iqu9eQk+TkZCUlJRVYHVFRUfb5aSEoJ+Hh4fZ2WlcoSfaMYrmZOXOmoqKinN5jjRo10qpVq/Tggw+qVatWCg8P1+HDhzV9+nR17do1S5jLWF9hTokLABkRLADABRk/9KVN6dmyZUt7DELa8c8//9wOCC1btrQ/ZO7bt89+/JAhQ3Trrbeqffv29rf/mWX8cJo5cFxyySX2dseOHWWMyXI7ffp0tou55eeD9YYNG+xWhjTBwcEaOnSofT8lJSXba6bNnpV2zsqVK+37cXFxKl++vD1FapkyZXTy5MksryElJUUTJ07M8ponTpyY42sODAx0mgZ37dq1SklJse+nzdaVF35+fqpTp44kafv27Xl+XH5s2bJFO3bs0LXXXmu/lySrBaJhw4Z68803tXTpUsXHx+vrr7+WZL0fZsyY4XSdjPWlhVkAKGx0hQIAF2QchJ32LXrGfWnBIuM37BmPpw3KlaQJEyYoLi5O27dv13/+859sny/tQ7ck/fzzz+rQoYOCgoLUuHFjNW3aVI0aNdKGDRs0f/58DRgwQLfccov8/f21a9cuLV++XNOnT7/ot+wXs3TpUt1///26/vrrdd1116lWrVpKSkrS+PHj7XMyTjeb0aJFizRy5Eh17txZU6dOtQNKTEyMWrduLR8fH/Xt21fvvfeeTp06pS5duujBBx9U+fLl9c8//2jDhg369ttvNWHCBF155ZW67bbb9Oabb0qyBnUfP35cTZo0UXx8vHbs2KFff/1VNWrU0IQJE9S8eXNVqVJF+/bt0/79+zVgwAD1799fs2fPznc3qHbt2umvv/7Szp07lZCQ4NQyURDSukFlnGZWkl555RXNmzdP3bp1s6cn/uWXX+zjmVtm0tZQCQoKUrNmzQq0RgDIUVEP6gAAb5CSkmIPvk27TZ8+3T5+4cIFExIS4nT8hx9+sI8nJiaaSpUqZRkAnXEw8cCBA+3zjxw5ku0A77lz5xpjcp9uNu2WJreB4Ln5+OOPc72+n5+f+f3337N9npymkf3888/t80+cOJHrdLMZX68xuU83m/n3N2XKlGzPqV27dp4HbxtjnAaHf/31107HMg7ezlhnx44d7f07d+6092ecRjjNVVddZXx9fc3x48edrv3CCy/k+Dp9fHzMokWL7HPPnz9vD4Tv1avXRV8TABQUukIBgAsyLnSXJmOLhJ+fX5Zv7zMeL1u2rH777TddffXVKlOmjKpUqaLnn39ezz//fLbPV758ec2YMUOXXXaZgoODsxxv1qyZ1q5dq3vvvVdxcXEKCAhQRESEGjVqpHvvvVezZ8925+VKkrp3767x48frlltuUf369RURESE/Pz9VrFhRPXr00KJFi3TNNddk+9gePXroyy+/VMOGDRUQEKC6devq888/d5p6NiIiQkuWLNELL7ygpk2bKjg4WCEhIapTp4569eqlKVOmOP0On3/+ef3444+69tprVa5cOfn7+6tKlSpq3769XnrpJY0ePdo+t0+fPpoyZYrq169vP/+ECRPUr1+/fP0Orr32Wnv627TpgAtKQkKCFi1apLZt2zq1UEnW9Lv//ve/1ahRI0VGRsrX11dRUVHq0qWLfvnlF7Vr184+d+7cuXbr1B133FGgNQJAbhzGMHUEAKDgTZo0yV4x/LnnnnNau6Eke/nll/X4448rODhYe/fuVbly5QrkutOmTdOtt96ql156SY899pjL17n11ls1bdo0NWzYUOvWrXManwMAhYn/2gAAkA9Dhw5VdHS0zp49qw8++KDArhseHq7nnntOffr0cfkau3fvtltSRo0aRagAUKQYvA0AQD6Ehobq0KFDBX7dLl26qEuXLm5do0aNGkpOTi6gigAgf/gqAwAAAIDbGGMBAAAAwG20WAAAAABwG8ECAAAAgNsIFgAAAADcRrAAAAAA4DaCBQAAAAC3ESwAAAAAuI1gAQAAAMBtBAsAAAAAbiNYAAAAAHDb/wE3Mh0HKKqFbgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#### Find the entrance length when the velocity is $0.01 m^2/s$" + ], + "metadata": { + "id": "czOJt9o9caOy" + } + }, + { + "cell_type": "code", + "source": [ + "# Find and print the entrance length and Reynolds number at water speed equal to 0.01 m/s\n", + "water_speed = .01 # m/s\n", + "index_2m_s = int(water_speed * 100) # Index corresponding to 0.01 m/s in the speeds array\n", + "Re_2m_s = (water_speed * pipe_diameter) / water_kinematic_viscosity\n", + "entrance_length_2m_s = entrance_lengths[index_2m_s]\n", + "print(f\"At water speed of {water_speed} m/s:\")\n", + "print(f\"Reynolds number: {Re_2m_s:.2f}\")\n", + "print(f\"Entrance Length: {entrance_length_2m_s:.2f} meters\")" + ], + "metadata": { + "id": "JeD0ensSJ0Gb", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "04429bee-3272-46a8-874d-38af3a4eaaec" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "At water speed of 0.01 m/s:\n", + "Reynolds number: 4980.08\n", + "Entrance Length: 9.09 meters\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As the speed of the water flow increases, the entrance length also exhibits a proportional increase, highlighting the direct relationship between flow velocity and the extent of the entrance region in the pipe. This observation underscores the significance of controlling the entrance length in understanding and optimizing fluid dynamics within the system." + ], + "metadata": { + "id": "LT-kZxoERozY" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3-More Accurate/Rigorous Method" + ], + "metadata": { + "id": "DpBGU7XFV2v8" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 3-1-Normalize the expression on paper\n", + "\n", + "The analysis in Question 1 assumes that $U(x) = U_o = 〈v〉$. But in fact, the free-stream velocity changes as the boundary layer grows in the channel. Therefore, assuming a linear velocity profile, $v_x=\\frac{U_xy}{δ}$, in the boundary layer, and utilizing the von Karman momentum integral equation,\n", + "\n", + "\\begin{equation}\n", + "τ_w=ρ \\frac{∂}{∂x} ∫_0^∞v_x (U-v_x )dy+ρ\\frac{∂U}{∂x} ∫_0^∞(U-v_x )dy\n", + "\\end{equation}\n", + "\n", + "and the fact that the flow rate $Q$ is constant, the following expression for the growth of the boundary layer can be derived:\n", + "\n", + "\\begin{equation}\n", + "\\frac{dδ_{(x)}}{dx}=\\frac{6μW}{ρδ_{(x)}Q}\\frac{[H-δ_{(x)}]^2}{H+4δ_{(x)}}\n", + "\\end{equation}\n", + "\n", + "Manipulate this expression so that it can be integrated numerically. Hint: normalize it and keep symmetry in mind." + ], + "metadata": { + "id": "RP1zfP1KV9uG" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Duscussion**\n", + "Discuss the boundary conditions and assumptions employed to derive the equation above. What limitations does this equation possess? Is it universally applicable across all Reynolds numbers?" + ], + "metadata": { + "id": "Ff0a8uFLT_kG" + } + }, + { + "cell_type": "markdown", + "source": [ + "Submit your answer and written work via **Gradescope**." + ], + "metadata": { + "id": "f-U-p9JZWHfy" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lZcAJ3QiPKJ3" + }, + "source": [ + "### 3-2-Numerically integrate the normalized expression\n", + "\n", + "Using the normalized form of the differential equation, use `scipy.integrate.solve_ivp` to numerically integrate the expression and find the value of x where $δ$ is fully developed.\n", + "\n", + "For more information on how to use `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7iAzmaKEp-P0" + }, + "outputs": [], + "source": [ + "def entrance(d, x, Re = 1):\n", + " '''Solving for the entrance length of the tube with non constant velocity\n", + " Args:\n", + " d: δ_star; Normalized δ; partial derivative wrt x or y (numpy array)\n", + " x: x_star; Normalized x; position along channel (numpy array)\n", + " Re: Reynolds number, constant dimensionless quantity used to show\n", + " turbulence or roughness of flow. Set to unity as default value (float)\n", + " Returns:\n", + " dxdy: Normalized expression for the entrance length\n", + " '''\n", + "\n", + " # assume Re is at unity for the example\n", + "\n", + "### BEGIN SOLUTION ###\n", + " dxdy = (Re*d/6)*((1+(2*d))/(2-d)**2)\n", + "### END SOLUTION ###\n", + "\n", + " return dxdy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BGKBtOjYsBc6" + }, + "outputs": [], + "source": [ + "# Integrate the solution in scipy using defined function\n", + "\n", + "### BEGIN SOLUTION ###\n", + "dspan = [0, 1] # since del is dimensionless it will range from 0 to 1\n", + " # where del of 0 is at the entrance of the tube and at a del of 1 is the\n", + " # begining of fully developed flow\n", + "\n", + "n = 300 # number of steps in linspace\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "\n", + "# Solve using scipy.integrate.solve_ivp\n", + "soln = integrate.solve_ivp(entrance, dspan, xo, t_eval= tspan)\n", + "d = soln.t\n", + "x = soln.y[0]\n", + "### END SOLUTION ###" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ufUkZqZNHuVN" + }, + "source": [ + "### 3-3-Plot the results\n", + "Plot the resulting data to show the behavior of the integrated expression.\n", + "\n", + "For more information on how to use `matplotlib` to make publication quality plots, click [here](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html#preparing-publication-quality-figures-in-python) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0h4ys3UGHL6L", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 597 + }, + "outputId": "09edcec3-d16b-44b0-d5d6-4390f5aa5a5e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAJECAYAAAD3xWxzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACT0UlEQVR4nOzdd3xUVf7/8fek90ISQhq99xZEuiAK6CKiWLCAuK6uYlvXn6irq+iurIurWFb9WhBdXRUpyoqCYAORjjQFAgRIA5JAOqlzf3/EDMRMKjM3k+T1fDzycHLLuZ/hBpx3zrnnWAzDMAQAAAAAAOrFrbELAAAAAACgKSJQAwAAAADQAARqAAAAAAAagEANAAAAAEADEKgBAAAAAGgAAjUAAAAAAA1AoAYAAAAAoAEI1AAAAAAANACBGgAAAACABiBQAwAAAADQAARqAAAAAAAagEANAAAAAEADEKgBAAAAAGgAAjUAAAAAAA1AoAYAAAAAoAEI1AAAAAAANACBGgAAAACABvBo7AJwfgoLC7V7925JUkREhDw8uKUAAAAAcK7S0lKlp6dLkvr06SMfHx+HtEv6auJ2796tIUOGNHYZAAAAANAkbN68WfHx8Q5piyHfAAAAAAA0AD3UTVxERITt9ebNmxUVFdWI1QAAAACA60lLS7ON7D03Q50vAnUTd+4z01FRUYqNjW3EagAAAADAtTly3imGfAMAAAAA0AAEagAAAAAAGoBADQAAAABAAxCoAQAAAABoAAI1AAAAAAANQKAGAAAAAKABCNQAAAAAADQAgRoAAAAAgAYgUAMAAAAA0AAEagAAAAAAGqDFBur9+/frpZde0syZM9WnTx95eHjIYrHo6aefPq9216xZo0mTJik8PFy+vr7q3r27Hn30UeXl5TmocgAAAACAK/Bo7AIay6uvvqoFCxY4tM3nn39ef/rTn2SxWDRy5EhFRkZq3bp1+vvf/64lS5Zo/fr1Cg8Pd+g1AQAAAACNo8X2UPfu3Vt//vOf9f777+uXX37RTTfddF7t7dixQw888IDc3d31+eef67vvvtPHH3+sQ4cOady4cdq/f7/uuOMOB1UPAAAAAGhsLbaH+ve//32l793czu93C88884wMw9Att9yiiRMn2rb7+fnprbfeUseOHbVkyRLt27dP3bt3P69rAQAAAAAaX4vtoXak4uJiff7555Kk6dOnV9nfrl07DR8+XJK0bNkyU2sDAAAAALNZrYZO5hY2dhlO12J7qB3pwIEDKigokCQNHjzY7jGDBw/WunXrtGPHDjNLAwAAAACnKC2zKi27UEcy83U0s0BHM/N1JLNAxzILdPRUvopLrdr31ER5eTTfflwCtQMkJiZKkkJCQhQYGGj3mLi4uErH1lVycnKN+9PS0urVHgAAAADUVUmZVcmnz+hIRr4tOB/JzNexzAIlnS5QSZlR4/kpWWfUIdzfpGrNR6B2gNzcXEmSv3/1PygBAQGSpJycnHq1XRHEAQAAAMAZSsqsSjl9RomZ+eXBOaO8p/lIZr6ST59RmbXm0FyTI5n5BGoAAAAAQNNVWmZVStYZJf4mMB/JKA/NpecRmmtyNCNf6uaUpl0CgdoBKoZ55+fnV3tMXl6eJCkoKKhebSclJdW4Py0tTUOGDKlXmwAAAACanzKrYetpPpqZXyk8J50qcFporsnRUwWmX9NMBGoHaN++vSQpKytLubm5dp+jrgjGFcfWVWxs7PmWBwAAAKCZKLMaSs06Y+tdTswonwwsMTNfSadqf6bZ2UL8PNUuzF/tw/zUrpWfLugY1qj1OBuB2gG6desmPz8/FRQUaOvWrbrooouqHLN161ZJ0sCBA80uDwAAAEATUmY1lJZ9RkcyCsp7m3+dECwxI19Jp86ouMzaqPW1DvRWuzA/W3BuawvQ/gr282zU2sxGoHYALy8vXXbZZVq8eLE++OCDKoH66NGj2rBhgyTpyiuvbIwSAQAAALgQwzCUmV+sxIx8HU7P0+GMfB1OLw/Nx04VqLi08UNz+/DyoNw+3F8dwvzVLsxf7cL85O9NjKzAn0Q9vPzyy3r55Zc1ZMgQvfvuu5X2zZkzR5988okWLlyoq666ShMmTJAkFRQU6NZbb1VZWZmuuuoqde/evTFKBwAAANAIzhSX6UhmeVg+nJ6nxIx8HcrIV2J6nnIKSxu1tohA7/LAHOZfHprDywNz+zB/QnMdtdg/pe3bt+vOO++0fX/o0CFJ0uuvv67//e9/tu3Lli1TVFSUJCkjI0P79+9XmzZtqrQ3cOBAPffcc/rTn/6kSZMmafTo0WrdurXWrVuntLQ0devWTa+99pqT3xUAAAAAs1U813w442xoruhtTsk606i1hQd42Q3M7cP9FUBoPm8t9k8wJydHmzZtqrI9OTlZycnJtu+Liorq3Ob999+vPn366LnnntPmzZuVn5+vtm3b6uGHH9bDDz9sd7IyAAAAAE1DVkGxDqVXDc2JmfmNOkQ7zN/r1+HZ5wzR/jU8B/q0rGeazWYxDKNxp4HDeUlOTlZcXJyk8pnEmRUcAAAAaLjCkjIdO1VQ5bnmw+l5Ol1Q0mh1tfL3qjQ82/Zcc7ifggjNtXJWbmqxPdQAAAAAWibDMHQ8p1CHTuYrMSNPhypCc0aeUk6fUSMs1yxJCvLxUIeIAHWs6G0OPxugg30Jza6IQA0AAACgWSoutepoZr4Opefp4Mny4HzwZJ4Op+cpv7isUWrydLeoXVj5kOyOEf7qFB6gDhH+6hjur1b+XrJYLI1SFxqGQA0AAACgScspLNGhcwLzofQ8HTqZp6OnClTWSN3NbYJ8bKG546+9zh0j/BUT4isPd7dGqQmOR6AGAAAA4PIMw9CJnKJzepvL/3vwZJ5O5tZ9ImFH8vdyLw/LERU9zuXBuUM4y061FNxlAAAAAC6jpMyqo5kFlYJzRe9zXpH56za7u1nUtpWfLSh3jAhQh3B/dYrwV0SgN0O0WzgCNQAAAADT5RWV/hqUK/c4H80sUGkjDNMOD/AuH57969DsDuHlPc9tW/nJkyHaqAaBGgAAAIDTnMovVsKJXB04maeDJ3Jtzzkfzyk0vRZPd4vah/mrU0SAOrcOUKfW/ur466RgLD2FhiBQAwAAADhvmXlFSjiZp4QTuUo4macDJ3J18GSeMvKKTa8l0NtDnVoHnA3OEf7q3DpAcfQ2w8EI1AAAAADqLCOvSAkn8pRwMlcJJ84G58x884NzmyCfSoG5IkDzbDPMQqAGAAAAUIlhGMrIK7aF5oSTuTpwovwZ51MmB2cPN4vahflVCsydIgLUqXWAAphJG42Mn0AAAACghTIMQ+l5RTr4a09z+ZDt8gB9uqDE1FoCvD3UKcL/N0O1A9QujGHacF0EagAAAKCZMwxD6blFtmebz33WOcvk4Nw60FudWwdU6XGODGKYNpoeAjUAAADQjGSfKdGBE7naf/ycrxO5yj5jbnBuE+SjLpEB6tI6UF0jA9QlMkCdWwcq2JfZtNF8EKgBAACAJqiotEwHf+1x3vdrcD5wPFep2eYuRxUV7KMukYHq0jpAXX8NzV0iA1iGCi0CgRoAAABwYVaroWOnCrT/ROUe58SMfJVZDdPqiK4UnAPVOTJAXVoHKJDgjBaMQA0AAAC4gIoJwg4cz9O+4znlPc4nymfXPlNSZlodMSG+vw7VDrAF6M4EZ8AuAjUAAABgsryiUltg3n88V/uO5+jACXOXpIoJ8f312eZAW3juzFJUQL3wtwUAAABwktIyqw5n5OuXtLM9zvuO5yr59BnTaogK9lG3NoHqFhlYqcfZn+AMnDf+FgEAAAAOkFVQrF/ScvVLWk7516+9zsWlVlOuH+Tjoe5tgtStTaC6tglU9zaB6hrJrNqAMxGoAQAAgHoosxo6kpl/Njj/GqLTTJpd28vDTV1aB9h6nbu1CVT3NkGs4ww0AgI1AAAAUI2cwhLtSyt/xvmXtBz9nFa+NJUZk4RZLFL7MH91izzb49ytTaDatfKTh7ub068PoHYEagAAALR4VquhpNMFttBc0fts1rPOrQO9f+1pLh+m3b1NkDq3DpCvl7sp1wfQMARqAAAAtCj5RaXad7w8NJf3POdqX1qO8oud3+sc6O2hrrbQHGgbth3q7+X0awNwPAI1AAAAmq2TuYXam5qjn1NztDc1Wz+n5ujoqQIZhnOvWzFcu0dUoHq0CVKPqCB1jwpUTIgvzzkDzQiBGgAAAE2eYRhKOnVGe1OztffX8LwnNUfpuUVOv3aAt4e6twlUj6igX7/Ke579vPioDTR3/C0HAABAk1KxtvPe1GztSTnb85xTWOr0a8e18rX1OPeIClLPqCDFhvrKzY1eZ6AlIlADAADAZRWWlGn/8dxKvc770nJU5OS1nX093dXt117nnlGB6h4VpO5tAhXow5rOAM4iUAMAAMAl5BaW6OfUHO0553nnhJN5KrM694Hn6GCfc4Zrlw/ZbhfmL3d6nQHUgkANAAAA06XnFlV63nlvao6OZhY49Zpe7m7q2iZAPaOC1L3N2fAc4scM2wAahkANAAAAp8rMK9LulGztTs7WrpRs7UnJVlp2oVOv6e/lrp7RQeoVHaxev/63S2SAPN3dnHpdAC0LgRoAAAAOk1VQrN0p2dqVXB6gd6dkKyXrjFOvGebvZQvPvWPK/9uulR8ThQFwOgI1AAAAGiT7TIn2pGSf0/ucpaRTzg3PMSG+th7nXtFB6h0TrMggb9Z2BtAoCNQAAACoVW5hifak5Gh3SpZ2p+Rod3KWjjjxmWeLReoY7q/eMWeHbPeMClKoP887A3AdBGoAAABUkl9Uqr2pOdqVnFXe+5ySrcPp+U67XsVkYb1/7XXuGR2sHlGB8vPioyoA18a/UgAAAC1YYUmZfknL0U9JWbZJww6l58lw0kpV3h5u6hEVpL6xweodE6ze0cHq3DpAXh5MFgag6SFQAwAAtBBWq6HDGfnamZSlnclZ+ikpS7+k5aikzDnp2cvdTT2iAtU7Jlh9Y4PVJyaEmbYBNCsEagAAgGbqZG6hdiZl66ek09qZlK2dyVnKLSx1yrU83S3q1iZQfWJCfg3PweoaGUjPM4BmjUANAADQDOQXlWp3SvbZ3udjWUp10lrP7m4WdY0MVN+YYPWJLe997tYmUN4e7k65HgC4KgI1AABAE1NaZtWBE3namZylnUnlQ7cPnMiV1Qkjt90sUtfIc4dtB6tHVJB8PAnPAECgBgAAcGGGYSgl60ylodu7U7J1pqTM4deyWKTOEQHq82tw7hsbrJ5RwfL1IjwDgD0EagAAABdyprhMu5KztO3YaW0/Wt77nJFX5JRrRQX7qF9siPq3DVG/2BD1iQ1WgDcfDwGgrvgXEwAAoJEYhqHk02e0/dhpbT96WtuPlc+6XeqEsdsB3h7qGxus/nEh6hcXov5xIYoM8nH4dQCgJSFQAwAAmKSwpEy7U7K17ejZAO2M3mcPN4t6RAWpX1yw+sWGaEDbEHUMD5Cbm8Xh1wKAloxADQAA4AQVzz5vP5al7UdPa8ex09qb6pze53ZhfuoXe7bnuVc0k4YBgBkI1AAAAA5QWFKmvakVvc9Z2n7stE7mOr73OdTPU/3iQio9+9zK38vh1wEA1I5ADQAA0ADHswu19egpW3jem5qtkjLH9j57ulvUMzpYA9uW9zz3jwtR21Z+slgYug0AroBADQAAUAur1dDB9DxtOXJKW4+c1pYjp5R8+ozDr9M60FsD24ZqYLsQDWwbqt4xwQzdBgAXRqAGAAD4jaLSMu1OztaWI6e19cgpbT16WtlnShx6DQ83i3pGB/0aoEM1sG2IYkJ86X0GgCaEQA0AAFq87IISbTt2yhagdyZnq7jU6tBrhAd4a2DbkF/Dc6j6xATL14veZwBoygjUAACgRamYfbti6PbWI6e1/0SuQ6/h7mZRj6hADWwbqkG/BujYUHqfAaC5IVADAIBmrcxqaP/xXG09erYHOi270KHXCPP30oBznn3uGxssPy8+ZgFAc8e/9AAAoFkpLrVqV3KWNiWe0ubEU9p+9LRyi0odeo3OrQMU3z5Ug9u10qB2oWoXxszbANASEagBAECTVlhSpp1J5QF6U2Kmth09rcISxz3/7OluUZ+YYMW3b6XB7csDNOs+AwAkAjUAAGhizhSXacex09qYeEqbDmdqR1KWQycQC/T20KD2oeUBul2o+sWFsHQVAMAuAjUAAHBp+UWl2nb0tDYlZmrT4VPamZylkjLDYe1HBfsovn2r8iHc7Vupa2Sg3N0Yvg0AqB2BGgAAuJTcwhJtPXJaG38N0HtSslVqdUyAtlikbpGBGlzRA92+lWJCfB3SNgCg5SFQAwCARpVdUKLNR8qHb29KPKW9qdlyUH6Wl7ub+sUF/9oD3UoD24Yq2M/TMY0DAFo8AjUAADBVflGpNh85pR8PZWrDoQztTc2R4aAA7e3hpoFtQ3VBx1a6oEOYBrTl+WcAgPM4NFB37NjRkc3ZZbFYdOjQIadfBwAAOEZhSZl2HMvSj4cytOFQpn5KynLYEG5fT3cNbh+qCzq00gUdw9Q3NljeHgRoAIA5HBqojxw5IovFIsNRv2a2gzUeAQBwbaVlVu1OydaGQ5n68VCmthw5pSIHzcId4O3xa4AO0wUdW6lPTLA83d0c0jYAAPXllCHfzgq9zgzqAACgYaxWQ/tP5P4aoDO06fAp5RaVOqTtIB8PDenQyhage0YFyYMADQBwEU57htrR4ZeeaQAAXINhGDqSWaANvw7h3ngoU5n5xQ5pO8TPU0Palw/fvqBDK/WICmIJKwCAy3JaoI6JiVHnzp0d0tbBgweVkpLikLYAAED9ncwp1LqEDFsvdGp2oUPaDfLx0IWdwnRhxzAN7RSmrq0D5UaABgA0EU4L1NOmTdO//vUvh7R1//33a8GCBQ5pCwAA1O5McZk2JWZqfUKG1iVkaP+JXIe06+vpriEdWmlYpzAN7xxODzQAoElj2SwAACCr1dDPaTlal5ChdQnp2nrktIrLzn8iMS93Nw1oG6JhncI1vHOY+saGyMuDZ6ABAM2DwwM1E4cBANA0HM8u1LqEdK1LyNAPBzMc8hy0m0XqExtS3gPdKVyD2oXK14tlrAAAzZNDA/W9995rez169GiHtevItgAAaKkKiku16fApfZ+QrvUJGUo4meeQdru3CdSFncI0rFO4LujYSkE+ng5pFwAAV2cxWniX8uLFi/XKK69o586dKi4uVufOnXXDDTfo/vvvl6dn/T4Q5Ofn68UXX9SSJUt04MABnTlzRmFhYRo8eLD+8Ic/aPLkyQ6vPzk5WXFxcZKkpKQkxcbGOvwaAICmyWo1tCc12zaMe9vR0yopO///7bcP89OFncI1rFOYLuwUpvAAbwdUCwCA8zgrN7XoZ6jvu+8+LViwQB4eHho7dqwCAgL09ddf66GHHtKKFSu0evVq+fr61qmtzMxMjRo1Sj///LMCAgI0bNgwhYSE6ODBg/r888/1+eef65577mFyNQCAU6XnFum7A+n6dv9J/XAwQ6cLSs67zRA/Tw3vFK6RXcI1oku4YkP9HFApAABNn0sF6pycHBUVFSkiIsLp11q+fLkWLFiggIAAfffddxo4cKAkKSMjQ2PHjtX69ev12GOPaf78+XVqb+7cufr55581aNAgrV69Wq1atbLtW7lypa644gq9+OKLuv766zV06FCnvCcAQMtTZjX0U9Jpfbs/Xd/uT9fulOzzbtPT3aKBbUM1sku4RnaJUO+YYGbiBgDADtMCdWpqqu21t7e3wsLCbN9/8skneuyxx3TgwAFJUkhIiO644w498cQT9R52XVd///vfJUlz5syxhWlJCg8P17///W+NHDlSL7/8sh577DEFBwfX2t7XX38tSXrooYcqhWlJmjRpki666CJ99dVX+vHHHwnUAIDzcm4v9LqEDGWfOf9e6E4R/hrZJUKjuobrgg5h8vd2qd+5AwDgkkz5v+WGDRs0cuRI2/d33323XnjhBUnlvbfXXnutpLMzhJ8+fVrz5s1TUlKS3n33XYfXk5KSoi1btkiSpk+fXmX/iBEjFBcXp6SkJK1cuVLXX399rW36+PjU6drh4eH1KxYA0OKd2wv9zf6T2pOSc95thvp5akSXCI3sXD6MOzqkbo84AQCAs0wJ1N9//70tLFssFk2bNs22b+7cuTIMQxaLRRbL2eFkhmHo/fff1x//+EddeOGFDq1nx44dkqRWrVqpQ4cOdo8ZPHiwkpKStGPHjjoF6okTJ2rr1q36xz/+oXHjxlUZ8v3NN9+oTZs2TpmYDADQ/Di6F9rL3U2D2oVqZNdwjewcoV7RQXJjGDcAAOfFlEBdEWAlyd/f3zbkOTU1VZs3b7YF6XNDd4UPPvjA4YE6MTFRktS2bdtqj6mYAa7i2No89NBD2rx5s1atWqV27dpp+PDhtknJtm3bpuHDh+utt96q0/DxcyUnJ9e4Py0trV7tAQBckzN6oTtF+Gt019Ya2TVcF3RoJT8vhnEDAOBIpvyfNSEhQVJ5UO7Tp4/c3d0lST/88EOl42644QZlZGRo1apVtlC9adMmh9eTm5srqTzcVycgIEBS+URpdeHv768VK1bokUce0XPPPadVq1bZ9oWFheniiy9WTExMvWutCPYAgOYnt7BE3x/I0NpfTuib/SfPe0ZuX093DesUpjHdW2tM1wjFtWI2bgAAnMmUQJ2RkWELyF26dLFt//nnn22vhwwZovfee09Wq1U9e/ZUQkKCDMOocw9xY0tLS9MVV1yhXbt26emnn9b111+v1q1b6+eff9Zf/vIXPfnkk1q+fLnWrVunwMDAxi4XANBIjmUWaM0vJ7R23wltTjx13utCd4rw15hurTWmW4Ti27eSj6e7gyoFAAC1MS1QVwgKCrK93r9/v+31sGHDJElubm668MILbTN+V/QmO1JFoM3Pz6/2mLy8vCr11mTGjBnasmWLnn32WT344IO27fHx8frf//6nQYMGaefOnZo/f76efPLJOtealJRU4/60tDQNGTKkzu0BAMxVZjW049hprfnlpNb+ckIJJ/POqz1fT3cN7xym0d3ohQYAoLGZEqitVqvtdUVQlSoH6nN7rs/twa14rtqR2rdvL6nmsFqxr+LYmqSkpOirr76SJLsTmHl6eurqq6/W7t27tWbNmnoF6tjY2DofCwBwDY4eyn1uL/SQDq3k7UEvNAAArsCUQB0SEqL09HQZhqENGzZIkrKysrR3717bMV27drW9Pjd0O2N49IABAyRJmZmZSkxMtDvT99atWyWp0hrV1Tl27JjtdXU92hWTkZ06dare9QIAXF/SqV+Hcv9yUpsSM89rKDe90AAANA2mBOrOnTvr5MmTksonKBs2bJjy8vJUXFxsO6Zfv3621xUB1WKxNGgir9rExsYqPj5eW7Zs0QcffKBHH3200v7169crKSlJ3t7emjRpUq3tnVvjpk2bNH78+CrHbNy4UZKqXaYLANC0WK2GdiZnafXPJ7T2lxM6cOL8hnLHhvrq4h6RGtu9tS7oSC80AABNgSmBevTo0dqwYYMsFosMw9CmTZsqLZHVv39/hYWF2Y7fvXu3bRKz7t27O6WmRx55RFdeeaXmzZuniRMn2nqiMzMzdeedd0qSZs+eXWmZq2XLlunhhx9WTEyM1q5da9vetm1bW0C/9957tXLlykpDxf/zn//oo48+kiRNnz7dKe8HAOB8xaVWbUrM1Kq9x/XVzyd0IqeowW1ZLNLAtqEa16O1Lu4RqS6tAyotGwkAAFyfKYH697//vebPn6/S0lLbh4WKcC1Jd9xxh+3Y3bt3Kz093XZcfHy8U2qaMmWK7rnnHr344osaOnSoxo0bJ39/f61du1ZZWVkaPny4nnrqqUrnZGdna//+/SosLKzS3ttvv62LLrpIv/zyi3r06KGhQ4cqPDxcv/zyi21o+4033qgbbrjBKe8HAOAc+UWl+v5AulbtPa61+04qt7C0wW35e7lrVNcIjesRqYu6RSgswNuBlQIAALOZEqg7dOigV199VX/84x9VUlJ5YpYpU6botttus31f0ZNrGIYsFovGjh3rtLoWLFig4cOH65VXXtGGDRtUUlKiTp06ac6cObr//vvl5eVV57Z69+6tPXv26Pnnn9cXX3yhLVu2qKioSKGhobr00ks1a9YsXXPNNU57LwAAxzmVX6w1v5zQ6r3HtS4hQ0Wl1tpPqkbFUO5xPVozoRgAAM2MxXDGNNrVSEhI0Mcff6xjx44pMDBQ48aN08SJEysd89lnnyk9Pb28OItFs2bNMqu8Jik5OVlxcXGSymcmZ1ZwAGiY5NMFWr33hFbtPa4tR07J2sD/O1os0oC4EI3rEamLe0SqayRDuQEAaGzOyk2mBmo4HoEaABrGMAwdOJGnVXuPa9Xe49qbmtPgtvy83DX616HcY7pFKJyh3AAAuBRn5SZThnwDAOAKDMPQ3tQcfb47TV/sTtORzIIGtxXm76WLe0Tqkl6RGt45XD6eDOUGAKClcYlAXVZWpk8++USbNm1SUVGRunbtquuvv16tW7du7NIAAE2cYRjanZL9a4g+rmOnGh6iY0N9dWmvNrqkZ6QGt28ldzeGcgMA0JKZEqhPnDihxx57zPb9oEGDdPvtt0uSsrKyNG7cOP3000+VznnyySe1fPlyjRo1yowSAQDNiGEY2pWcrZW707RyT5qSTp1pcFvd2wTqkl5tdGmvSPWMCuJ5aAAAYGNKoF67dq3efPNN24eQIUOG2PY98cQT2rFjR5VzsrKydM011+jgwYMKCAgwo0wAQBNmGIZ+SsoqD9G7jyslq2Eh2mKRBrUNLe+J7hWpdmH+Dq4UAAA0F6YE6o0bN0o6uxTWZZddJkkqKSnRokWL7P623zAMpaena9GiRbrrrrvMKBMA0MRYrYZ2JGXpi91p+mJPw0O0l7ubhnUO06W92ujiHpGKCGRSMQAAUDtTAvXu3bttrzt06KCoqChJ0tatW5WdnS2LxaJzJxs/N2B/+eWXBGoAgI1hGNp+LEuf70rTF3vSlJZd2KB2fDzdNLZ7a03oHaWLukUo0MfTwZUCAIDmzpRAnZaWJqk8KPfu3du2ffv27ZLKPxyFhoZq8+bNOn78uMaPH6+ioiIZhqGff/7ZjBIBAC7MMAz9kparz3amasXO1Ab3RPt6umtsj9aa1DtKF3WPkJ+XS8zNCQAAmihTPklkZGTYep3btGlj275v3z5J5UF74sSJ6tSpkzp16qSxY8dq5cqVkqSTJ0+aUSIAwAUdzczXZz+l6rOdqUo4mdegNvy83DW2e2td1idKY7q1lq8Xy1sBAADHMCVQZ2dn2167u5/9IHPgwAHb6169etlet2vXzva6sLBhQ/kAAE3TiZxCrfi1J3pncnbtJ9jh7+WucT0iNalPlMZ0i2CNaAAA4BSmBGpfX1/l5+dLko4dO2bbvnfvXtvrTp062V5brVbba29vJoYBgOYuq6BYK3cf12c7U7Qp8ZTOmVajzgK8PXRxj9aa2CdKo7sSogEAgPOZEqijo6OVkJAgwzC0du1affnll0pOTlZqaqrtmB49etheZ2Zm2l5HRESYUSIAwGT5RaVa88sJffZTqr5PSFdJWf1TdKC3hy7uWd4TPbJLOCEaAACYypRA3bdvXx04cEAWi0WFhYW2ZbMqZvcOCgqqNFlZxVBwi8Wi9u3bm1EiAMAEJWVWrUtI17IdqVrz8wmdKSmrdxs+nm4a1yNSk/tF0xMNAAAalSmBeurUqfrkk08kye4SWVOmTLFNWpaTk6Off/7Z9n3//v3NKBEA4CSGYWhvao6WbE/Wip2pysgrrncbHm4Wjeoaocn9onVxz0gFeDM7NwAAaHymfCK55ppr9Pzzz2vLli2yWCy2sGwYhnx9ffXoo4/ajl21apVKS0ttxwwbNsyMEgEADpaWfUbLd6Rq2Y5kHThR/xm6LRbpgg6tNLlfjCb2bqNQfy8nVAkAANBwpgRqNzc3ffHFF7r//vv1ySef6MyZ8vVD4+Pj9cILL6hz5862Y7/44gvFxMRIKu+9Hj9+vBklAgAcIL+oVF/uOa6lO5K14VBmgyYX6xsbrMn9onV532i1CfZxfJEAAAAOYjGMhnzcabjS0lKlp6crMDBQAQEBZl66WUpOTlZcXJwkKSkpSbGxsY1cEYCWpsxqaMOhDC3dnqIv9xxv0HPRnVsHaHK/aP2uX7Q6hPs7oUoAANCSOSs3mf4QmoeHh6Kiosy+LADAwfYdz9Gy7Sla/lOKTuQU1fv8qGAfTe4frSv6xahHVKDtUR8AAICmolFndSkoKNCJEyeUl5en8PBwgjYAuLjsghJ9tjNFH21N0p6UnHqf7+/lrgm9o3TVwBgN7RgmNzdCNAAAaLpMD9Q5OTl68cUX9cknn2jPnj22Gb/vvfdezZ8/X88884zKysqHC/br109XXHGF2SUCAM5htRr68XCmPtqSpC/3HldxqbVe57tZpBFdIjR1QIwu6RUpPy9m6AYAAM2DqZ9qvvnmG11//fVKT0+vsnSWVD552caNG7Vy5UpJUnR0tCZPnswwQABoBMmnC/TJtmQt3pqslKwz9T6/e5tATR0Yoyv6xygyiMnFAABA82NaoF63bp0mTJigkpIS27bfrkktSTfffLM+//xzSVJqaqrWrVunUaNGmVUmALRohSVlWv3zCS3emqT1BzPqPUt3RKC3pvSP1pUDYtUzOsg5RQIAALgIUwJ1YWGhrr/+epWUlNTa2zxhwgR5enqqtLRUkvTVV18RqAHAyfakZGvx1iQt/ylV2WdKaj/hHD6ebrq0VxtdOSBGIzqHy8PdzUlVAgAAuBZTAvXbb7+t1NRUW5g2DEO+vr629ajPFRgYqB49emjXrl2yWCzasmWLGSUCQIuTfaZEy3ek6OOtSdqbWv8Jxga1C9U1g2M1qU+UAn08nVAhAACAazMlUK9YsUJSeZC2WCz661//qkcffVReXl52e6y7d++uXbt2yTAMHThwwIwSAaBFMAxDPyVl6YNNx7RiV6oKS+o3wVh4gLeuGhSjaYPi1Ll1gJOqBAAAaBpMCdQVvc2GYahv377661//WuPxrVq1sr3OyMhwdnkA0OzlFZVq+Y4Uvb/pmH5Jq19vtLubRWO7t9Y1g+M0pluEPBnSDQAAIMmkQJ2ZmSmpfBKy+Pj4Wo8vLi62vS4sLHRaXQDQ3O1OztYHm4/q059SVVBcVq9zO0b469rBcbpyYIxaBzJLNwAAwG+ZEqh9fX1ts3vn5+fXevzRo0dtr4OCmCUWAOqjoLhUn/2Uqg82H9Ou5Ox6nevv5a7L+0brmvhYDWwbyrKFAAAANTAlUEdGRionJ0eGYei7775TaWmpPDzsXzo1NVXfffedbYh4dHS0GSUCQJP3S1qOPth0TMt3pCi3qLRe5w5uF6pr4uN0WZ8o+XubtqIiAABAk2bKp6YhQ4bowIEDslgsSktL06233qqXXnqpynEpKSm66qqrbEtmWSwWXXDBBWaUCABNUnGpVV/sSdOiDUe0/VhWvc4N9PHQVQNjNf2CtuoaGeicAgEAAJoxi2EYhrMvsmTJEk2bNs3W62yxWOTt7W17PtpisSgoKEi5ubmqKKfiuBUrVmjSpEnOLrHJSk5OVlxcnCQpKSlJsbGxjVwRADOcyCnU+5uO6YNNx5SRV1Svcwe0DdH0IW11ed9o+Xq5O6lCAAAA1+Gs3GRKD/XUqVPVrVs3Wy+1YRiVJhszDEPZ2Wef87NYLLJYLOrVqxdhGgB+ZRiGth09rXc2HNGXe46r1Fr334cGeHtoyoBoTR/STj2jmZsCAADAEUwJ1BaLRf/97381fPhwFRYWVprkpqJH+rfbfH199Z///MeM8gDApRWWlOmzn1K16Mcj2ptavyWv+sQE64YL2up3/aJ5NhoAAMDBTPt01b9/f61Zs0ZTp07ViRMnJJ3tia5QEa4jIyO1dOlS9e3b16zyAMDlJJ8u0Hsbj+qjLUnKKiip83l+Xu66on95b3Sf2GAnVggAANCymdpdceGFF+rgwYN65ZVXtGTJEm3btk1Wq1WS5ObmpkGDBmnq1KmaPXu2AgICzCwNAFyCYRjacChTizYc0ZpfTqgeo7rVpXWAbr6wnaYMiFGgj6fzigQAAIAkkyYlq47ValVmZqYkKSwsTG5ubo1VSpPFpGRA81BUWj6s+631idp3PLfO57lZpIt7RGrmsPa6sFMY60YDAADY0aQnJauOm5ubIiIiGrMEAGhUp/KL9f7Go1r049F6zdYd4uepa+PjdOMF7RTXys+JFQIAAKA6zFADAI3gUHqe3l6fqCXbk1VYYq3zeT2jgjRzWHtN7h8tH0+WvAIAAGhMDg3U33//vSObsxk1apRT2gUAMxmGoR8PZ+qtdYlau+9knc/zcLNoQu82mjmsvQa1C2VYNwAAgItwaKAeM2aMwz/oWSwWlZaWOrRNADBTcalVn+9O1ZvrEuu17FV4gLemX9BWN1zQVpFBPk6sEAAAAA3hlCHfjTjPGQC4jJzCEr2/8Zje2ZCoEzl1fz66e5tA/X5kR/2uX5S8PRjWDQAA4KqcEqgd1UtNMAfQFJ3MLdTb64/o/Y1HlVtU9xE2F3WL0O9HdtQwZusGAABoEhweqAnBAFqqo5n5+r/vD2vxtmQVl9ZtojFvDzdNHRirW0e0V+fWgU6uEAAAAI7k0EA9Y8YMRzYHAE3C3tRsvfbdYX2+K1XWOv5OMTzASzcNba8bh7ZVWIC3cwsEAACAUzg0UC9cuNCRzQGAyzIMQ5sST+nVbw/puwPpdT6va2SAfj+iI8teAQAANAOsQw0A9WC1Glq776Re/fagth/LqvN5wzuH6Q+jOmlUl3CejwYAAGgmCNQAUAdlVkOf707Ty18n6MCJvDqdY7FIE3u30R2jO6lvbIhzCwQAAIDpCNQAUIPSMqv+tytNL32doEPp+XU6x9PdoqsGxuoPozqqY0SAkysEAABAYzE1UGdmZuq9997T999/r8TEROXm5spqrXkmXIvFokOHDplUIQCUKy2z6tOfUvXyNweVmFG3IO3v5a4bhrbTrOEd1CbYx8kVAgAAoLGZFqiXLl2qW2+9VTk5OZLqvrwWzxoCMFNJmVXLtqfo5W8O6tipgjqd08rfS7cMa6+bL2yvYD9PJ1cIAAAAV2FKoN66dauuu+46lZaWVtpeW1hmTWsAZikutWrJ9mS98s1BJZ8+U6dzYkJ89YdRHXXN4Dj5ejFjNwAAQEtjSqCeN2+eSktL6W0G4HKKSsu0eGuyXv32kFKy6hak24f56a6LOmvKgBh5urs5uUIAAAC4KlMC9fr16yuFaXqeATS20jKrlu5I0YI1CXUO0h0j/HXP2C66vG+UPAjSAAAALZ4pgTorK0tSeZC2WCx64IEHdMcddygqKko+Pj5yc+ODKQBzWH9d/ur5NQd0uI6zdndpHaC7x3XRZX2i5O7GSBsAAACUMyVQt27dWikpKbJYLBo/frz++c9/mnFZALAxDENrfzmp5746oF/Scup0TrfIQN0zrosm9m4jN4I0AAAAfsOUQD169Gi9//77slgs6tixoxmXBACbHw5maP7q/dpxLKtOx/eICtK94zrrkp4EaQAAAFTPlEB9991367///a8Mw9B3331nG/oNAM607ehpzV+1Xz8ezqzT8b2ig3TvuC4a3zOSf6MAAABQK1MeXh4yZIjmzJkjwzC0b98+zZo1S5mZdfuACwD1tf94rm59Z4uuenVDncJ059YBevWGgfrf3SN0Sa82hGkAAADUiSk91HPnzpWXl5dat26tkydP6t1339XHH3+s8ePHq127dgoLC6vx/Mcff9yMMgE0ccezC/Wvr/brk23JstZhMYG2rfx038VddEX/GCYbAwAAQL1ZDBPWsHJzc7O7bFZde4HKysqcUldzkJycrLi4OElSUlKSYmNjG7kiwHy5hSV6/bvDenP9YRWWWGs9PjLIW/eM66JrBsexjjQAAEAL4KzcZEoPdYXfBum6ZHmGXgKoTkmZVf/dfEwL1iQoM7+41uNb+XvpzjGddOPQdvLxdDehQgAAADRnpgbq34bj2sKyCZ3nAJogwzC0au9x/ePL/UrMqH0t6UAfD/1hZEfdMqKDArxN/WcPAAAAzZhpnywJxwAcYdvRU/r7yn3advR0rcd6ebjplmHt9ccxnRTi52VCdQAAAGhJTAnUCxcuNOMyAJqx5NMFeuaLffp8V1qtx1os0pX9Y/SnS7oqNtTPhOoAAADQEpkSqGfMmGHGZQA0QwXFpXrtu8N6/btDKiqtfcKxEZ3DNWdid/WOCTahOgAAALRkPEwIwCUZhqHPdqZq3hf7lJZdWOvx3dsE6uFJPTSqSziTGQIAAMAUjR6oS0tLJUkeHo1eCgAXsTs5W0+u2KutdXhOuk2Qjx64pKumDoxlLWkAAACYyvQFWIuLi/Xaa69pwoQJCgsLk7e3t7y9vRUWFqYJEybo9ddfV3Fx7cvfOMrixYs1ZswYhYaGyt/fX/369dOzzz6rkpKSBrf56aefavLkyWrTpo28vLzUunVrDRs2THPnznVg5UDzk55bpIc+2aXJr6yvNUwHenvo/03opm8fHKNpg+MI0wAAADCdxTBx+u3t27frqquu0rFjxyRVnfm7Yphmu3bttGTJEg0YMMCp9dx3331asGCBPDw8NHbsWAUEBOjrr79WVlaWRowYodWrV8vX17fO7RUXF+vGG2/U4sWL5evrqwsvvFCRkZE6fvy49u7dq7KyMmVkZDj0PThrgXLATMWlVr2zIVEvrj2ovKLSGo+1WKTr4uP0wCXdFB7gbVKFAAAAaMqclZtMG2e9a9cujRo1SmfOnLEF6d8+51ix/ciRIxo1apR+/PFH9e7d2yn1LF++XAsWLFBAQIC+++47DRw4UJKUkZGhsWPHav369Xrsscc0f/78Ord52223afHixZoyZYreeOMNhYeH2/ZZrVZt3rzZ4e8DaOo2Hs7UY8v3KOFkXq3HDmnfSo//ricTjgEAAMAlmNJDbbVa1bt3b+3bt6/OkwUZhqGePXtq9+7dTplgaMiQIdqyZYuefvppPfroo5X2rV+/XiNHjpS3t7dOnDih4ODaP7yvXbtWF198sXr37q3t27fL09PT4TXbQw81mqqMvCL9feUvWro9pdZjo4N99MhlPXRZnygmHAMAAEC9OSs3mfIM9dKlS6uEacMw7H6d65dfftGSJUscXk9KSoq2bNkiSZo+fXqV/SNGjFBcXJyKioq0cuXKOrX50ksvSSofRm5WmAaaojKrofc2HtXY+d/WGqZ9PN10/8VdtfaBMbq8bzRhGgAAAC7FlEC9fPly22vDMBQeHq4XXnhBCQkJKiwsVGFhoRISEvTCCy9UGib923MdZceOHZKkVq1aqUOHDnaPGTx4cKVja1JWVqa1a9dKkkaNGqXjx4/rhRde0B//+Efdd999WrRokfLyah/OCjR3e1KyNfXfP+ix5XuUU1jzs9KT+0Xr6wfG6N6Lu8jXy92kCgEAAIC6M+UZ6s2bN8tiscgwDPn7+2vDhg3q1KlTpWM6deqke+65RxMnTtSAAQNsz1o747njxMRESVLbtm2rPaZiOEDFsTU5fPiwLTBv3LhRd955Z5UA/eCDD+rDDz/U2LFj61VrcnJyjfvT0tLq1R7QGHIKS/Tcqv16b+NRWWt5yKRHVJDmXtFL8e1bmVMcAAAA0ECmBOqTJ09KKp+EbNKkSVXC9Lm6dOmiyy67TIsXL650riPl5uZKkvz9/as9JiAgQJKUk5NTa3uZmZm217feequGDRum+fPnq3v37jp06JAeeeQRrVy5UldccYW2b9+uLl261LnWimAPNEWGYejz3Wl64rOflZFXVOOx/l7u+tMl3TTjwnbycDd9RT8AAACg3kwJ1GfOnLG9/u2QbnvCwsJsrwsLC51SkyOd++x3TEyMVq1aJW/v8uV8+vXrp88++0z9+/fXnj17NG/ePL311luNVSpgmuPZhfrL8j1a88uJWo+9rG+UHrusp9oE+5hQGQAAAOAYpgTq0NBQpaen13kI97nHhISEOLyewMBASVJ+fn61x1QM2Q4KCqpze5I0c+ZMW5iu4O7urttvv11333231qxZU69ak5KSatyflpamIUOG1KtNwJmsVkMfbknSMyt/UW4ta0q3D/PT3Ct6a1TXCJOqAwAAABzHlEDduXNn29Dt7du366mnntJjjz1m99innnpK27dvt83m27lzZ4fX0759e0k1h9WKfRXH1tZexTPiHTt2tHtMxfb6PvPMMlhoShIz8jVnyS5tSjxV43FeHm66c0wn3TG6k3w8mXAMAAAATZMpgXr06NHasGGDLXQ+8cQT+s9//qMJEyZUWgvsyy+/1MGDB23HWSwWjRkzxuH1DBgwQFL5s8+JiYl2Z/reunWrJGngwIG1thcQEKBu3bpp3759ysjIsHtMxfaKZ7OB5qS0zKo31yfq+a8OqKjUWuOxI7uEa+4VvdUhvPo5DAAAAICmwJRAfeutt+rZZ5+V1Wq1heWEhAQdPHiw0nEVzyJX9E67u7vr1ltvdXg9sbGxio+P15YtW/TBBx/o0UcfrbR//fr1SkpKkre3tyZNmlSnNqdNm6annnpKa9as0f33319l/1dffSVJDM9Gs7M3NVsPLdmlPSk1T+DXyt9Lf/1dT03ux3rSAAAAaB5MmUq3Y8eOuuuuuyoF5opgfe5XxfaKY2bPnl3tOtHn65FHHpEkzZs3T9u3b7dtz8zM1J133ilJmj17toKDg237li1bpu7du2vcuHFV2rvnnnsUGhqqlStX6vXXX6+078MPP9T7779vOw5oDkrKrHr+qwOa/PIPtYbpqQNitOZPo3VF/xjCNAAAAJoNi3HuFNVOVFpaqilTpmjlypW1fqA2DEOXX365li5dKg8P53Wi33vvvXrxxRfl6empcePGyd/fX2vXrlVWVpaGDx+ur776Sr6+vrbj33nnHd1yyy1q166djhw5UqW9r776SpMnT1ZhYaF69eqlHj166NChQ9qxY4ck6bHHHtPcuXMd+h6Sk5MrDZvnmWuYYf/xXD2w+Kdag3RMiK/+dmVvjenW2qTKAAAAgKqclZtMW+zVw8NDK1as0N/+9jeFhIRU6Z2u+AoJCdHf//53LV++3KlhWpIWLFigjz76SBdeeKE2bNiglStXKjY2VvPmzdPXX39dKUzXxfjx47Vz507NmDFDWVlZ+vTTT3Xs2DFNmjRJq1atcniYBsxWZjX02neH9LuX1tcYpi0Waeaw9lp1/yjCNAAAAJot03qoz1VQUKBvvvlGW7ZsUXp6uiQpIiJC8fHxuuiii+Tn52d2SU0WPdQwy5GMfD2weKe2HT1d43GdWwfoH1f10aB2rUyqDAAAAKiZs3KTKZOS/Zafn58uu+wyXXbZZY1xeQD1YLUa+s+mo3pm5T6dKSmr9jgPN4v+OKaTZo/tLG8PlsICAABA89cogRpA05CadUb/75NdWn/Q/nJwFbq0DtC/rumvPrHBNR4HAAAANCcEagB2fbE7TXOW7lb2mZJqj7FYpD+M7Kj7x3eVjye90gAAAGhZHBqox44da3t99dVX25afOnd7fVksFq1du/a8awNQNwXFpXrqfz/rv5uTajyuXZifnpvWT4Pb86w0AAAAWiaHBupvv/3WtiRW//797W6vj4q1qQGYY09Ktu75cIcOp+fXeNxNQ9vp4Und5efFIBcAAAC0XKZ+Gq7PhOIEacA8Vquht39I1D++3KeSsur/nkYF++jZq/tqZJcIE6sDAAAAXJOpgZqQDLiek7mFeuDjnVqXUPPEY5P7ReupKb0V7OtpUmUAAACAa3N4oK6uF7oRlrsGUIvvDqTrTx/9pMz84mqP8fdy11NTeuvKATH8UgwAAAA4h0MDdWJiou11UFCQ3e0AGl+Z1dALaw7o5W8OqqbfdfWLC9GL1/VXuzB/84oDAAAAmgiHBup27drVazsA853MLdS9//1JPx7OrPYYi0W6c0wn3XdxV3m6u5lYHQAAANB0MEUv0IL8eChT93y4Q+m5RdUe0ybIR89f218XdgozsTIAAACg6XGpQJ2Tk6OioiJFRDCDMOBIVquhV787pOdW75e1hiHel/aK1LypfRXq72VecQAAAEATZdpYztTUVNtXZmbloaaffPKJevToodDQULVp00ZhYWF69NFHVVJSYlZ5QLN1Or9YsxZt0T9XVR+mPd0t+uvveuq1GwcRpgEAAIA6MiVQb9iwQXFxcbavp556yrZv5cqVuvbaa3XgwAEZhiHDMHT69GnNmzdPt956qxnlAc3WnpRsXf7Sen27P73aY2JCfPXx7RfqluEdmMUbAAAAqAdTAvX3339vC8uSNG3aNNu+uXPn2rZbLBbbl2EYev/99/Xjjz+aUSLQ7Hz6U4qufm2DUrLOVHvM2O6t9b+7R2hA21ATKwMAAACaB1MC9Y4dO2yv/f39NXToUEnlw8A3b95s6xU7N3RX+OCDD8woEWg2Ssus+tvnP+veD39SYYnV7jHubhY9NKG73rx5MEO8AQAAgAYyZVKyhIQESeU90H369JG7u7sk6Ycffqh03A033KCMjAytWrXKFrI3bdpkRolAs3A6v1h3/3eH1h/MqPaY1oHeeun6AbqgI7N4AwAAAOfDlECdkZFhC8hdunSxbf/5559tr4cMGaL33ntPVqtVPXv2VEJCggzDUGJiohklAk3eL2k5+sN7W5V0qvoh3hd0aKWXpw9URKC3iZUBAAAAzZMpQ74zMs72lgUFBdle79+/3/Z62LBh5QW5uenCCy+0Df3Ozc01o0SgSVu5O01T/72hxjA9c1h7/ef3FxCmAQAAAAcxpYfaaj37HGdeXp7t9bmB+tye68DAQNvr3z5TDeAswzD08tcH9dxXB6o9xsvDTX+/so+uHhRrYmUAAABA82dKoA4JCVF6eroMw9CGDRskSVlZWdq7d6/tmK5du9penxu6zw3XAM4qKi3Tw0t2a+mOlGqPiQr20Ws3DlK/uBDzCgMAAABaCFMCdefOnXXy5ElJ5ROUDRs2THl5eSouLrYd069fP9vrY8eOSSqfxCwmJsaMEoEm5VR+se54b5s2HzlV7TFD2rfSKzfwvDQAAADgLKYE6tGjR2vDhg229aU3bdpUae3p/v37Kyzs7IzDu3fvtk1i1r17dzNKBJqMQ+l5mvXOFh3NLKj2mJuGttNjl/eUl4cp0yQAAAAALZIpn7Z///vfy9PTU5JsQbniv5J0xx132F7v3r1b6enptu/j4+PNKBFoEjYczNCVr/xQbZh2d7PoqSt66akpvQnTAAAAgJOZ8om7Q4cOevXVV+Xh4SHDMGxfkjRlyhTddttttmM/+ugjSWcnIxs7dqwZJQIu75Ntybr57c3KKSy1uz/Q20Nvz4zXTRe2N7cwAAAAoIUyZci3JM2aNUsjR47Uxx9/rGPHjikwMFDjxo3TxIkTKx03ZMgQvfHGG5LKe7EHDhxoVomASzIMQ69+d0jPfrm/2mNiQny18JZ4dY1kEj8AAADALBaDdamatOTkZMXFxUmSkpKSFBvL0kjNidVqaO7/ftY7G45Ue8yAtiH6v5sGM/kYAAAAUA1n5SbTeqgB1E9RaZn+9PFOfb4rrdpjLu8bpfnT+snH093EygAAAABIBGrAJeUWluj297Zpw6HMao+566JOemB8N7m5Wao9BgAAAIDzmBqoMzMz9d577+n7779XYmKicnNzZbVaazzHYrHo0KFDJlUINL6TOYWasXCLfknLsbvfYpHmTu7F5GMAAABAIzMtUC9dulS33nqrcnLKQ0JdH90+d3ktoLlLOlWgG97cpGOn7C+L5eXhpgXX9tfEPlEmVwYAAADgt0wJ1Fu3btV1112n0tLKy/3UFpaZLw0tyeH0PN345ialZhfa3R/o46E3bh6soR3DTK4MAAAAgD2mBOp58+aptLSU3magGvuO5+jGNzcrI6/I7v7IIG8tmjVE3dsEmVwZAAAAgOqYEqjXr19fKUzT8wyctSs5Sze/vVlZBSV293eK8NeiWUMUG+pncmUAAAAAauJmxkWysrIknQ3SDzzwgBISEpSXl6fS0lJZrdZqv8rKyswoEWgUW46c0vQ3NlUbpnvHBGnxHcMI0wAAAIALMqWHunXr1kpJSZHFYtH48eP1z3/+04zLAi7th4MZ+v2irTpTYv+XRoPahWrhLfEK8vE0uTIAAAAAdWFKD/Xo0aNtvdMdO3Y045KAS9twMEOz3tlSbZge3jlM7906hDANAAAAuDBTAvXdd98tN7fyS3333Xc8Q40W7cdDmZq1aIuKSu2vwT62e2u9NSNefl6mLhMPAAAAoJ5MCdRDhgzRnDlzZBiG9u3bp1mzZikzM9OMSwMuZdPhTM16Z4sKS+yH6cv6ROm1GwfJx9Pd5MoAAAAA1JcpXWBz586Vl5eXWrdurZMnT+rdd9/Vxx9/rPHjx6tdu3YKC6t5Xd3HH3/cjDIBp9py5JRuqWGY99SBMfrn1f3k7sbycgAAAEBTYDFMGH/t5uZmd9msuq5LzUzf1UtOTlZcXJwkKSkpSbGxsY1cEezZdvSUbn5rs/KLqwnTA2L0z2mEaQAAAMAZnJWbTH1I87dBui5Zvq6hG3BVu5KzNOPtLdWG6Sn9ownTAAAAQBNkaqD+bTiuLSwzeRmauoMnczXj7c3KKyq1u/93/aI1nzANAAAANEmmBWrCMVqa5NMFuvHNzTpdUGJ3/2V9ovT8Nf3k4W7K3IAAAAAAHMyUQL1w4UIzLgO4jPTcIt301mYdzym0u39i7zZ64br+hGkAAACgCTMlUM+YMcOMywAuIftMiWa8vVmJGfl294/t3lovXj9AnoRpAAAAoEnjEz3gQGeKy/T7RVv0c1qO3f1DOrTSv28YSJgGAAAAmgE+1QMOUmY1dPd/d2jLkdN29/eKDtKbMwbLx9Pd5MoAAAAAOIOps3xXWL9+vT755BP9+OOPOn78uPLy8nTHHXfo6aef1rp162zHRUdHq3Pnzo1RIlAvhmHoyRV7teaXE3b3dwz316JZQxTk42lyZQAAAACcxdRAfeLECd18881as2aNbZthGLJYLDpz5owsFov+9Kc/aceOHZKkvn372l4DruzNdYl698ejdvdFBfvovd9foPAAb5OrAgAAAOBMpg35TklJUXx8vNasWSPDMKpdRmvWrFm2/bt27dLevXvNKhFokM93pelvK3+xuy/Uz1Pv3XqBYkJ8Ta4KAAAAgLOZFqinTZum5ORkSZLFYpHFYrF73BVXXGE7RpJWrVplToFAA2w5ckr3f/yT3X3eHm56c0a8OrcOMLcoAAAAAKYwJVB/+umn2rhxoy0k19RDHRMTo06dOtn2//DDD2aUCNTb4fQ83fbuVhWXWqvss1ikBdf116B2oY1QGQAAAAAzmBKoP/roo0rfT5gwQT/88IPt+enf6tWrl6Ty4L1v3z4zSgTqJftMiX6/aKuyCkrs7n/ssp6a0DvK5KoAAAAAmMmUSckqeqcNw1BsbKyWLVsmb+/qJ2iKjIy0vU5NTTWjRKDOSsusuvu/O3Q4I9/u/lnDO2jWiA4mVwUAAADAbKb0UJ88eVJS+XPRY8aMqTFMS5Kb29my8vPthxagscz7Yp++P5Bud9+EXm306GU9TK4IAAAAQGMwbVKyCp6eta/De26vtJ+fnzPLAepl8dYkvbk+0e6+frHBeuG6/nJ3sz/hHgAAAIDmxZRAHRYWJqn8meitW7fWeGxBQYG+//5727PV4eHhTq8PqIttR0/p0WV77O5rHeit128aLB9Pd5OrAgAAANBYTAnU/fv3t83avWfPHr366qvVHnv//fcrOztbUvkQ8UGDBplRIlCjEzmFuv297Souqzqjt5eHm/7v5sFqE+zTCJUBAAAAaCymBOpLLrlEkmwTk82ePVsXXnihJNmC9ldffaUePXrozTfftB0nSZdeeqkZJQLVKimz6q73tysjr8ju/mev6qv+cSHmFgUAAACg0ZkSqGfOnKnQ0PL1eCvC8ubNm237DcPQzz//rP3791danzosLEzTp083o0SgWvO+2KetR0/b3XfH6E6aMiDG5IoAAAAAuAJTArW/v79eeeUVW1g+twe6QsWa1BX7LBaLXnnlFfn4MIwWjefzXWl6q5pJyMZ2b60HL+1mckUAAAAAXIVps3xfd911+te//lUpMP/2SyoP1m5ubnruuec0bdo0s8oDqjh4Mk//75Oddve1C/PT89cyozcAAADQkpm6bNZ9992nDRs2aMKECXJ3d5dhGJW+3NzcdMkll+iHH37QfffdZ2ZpQCX5RaX643+2Kb+4rMo+bw83/fuGgQr2rX0JOAAAAADNl4fZFxwyZIhWrlyp3Nxcbdu2Tenp6ZKk1q1ba8CAAQoKCjK7JKCKv362Vwkn8+zue3pKb/WKDja5IgAAAACuxvRAXSEwMFBjxoxprMsD1fr0pxR9si3Z7r7r4uM0bXCcyRUBAAAAcEWmDvkGXN2xzAL9Zdkeu/t6xwTpicm9TK4IAAAAgKtqtECdnZ2t5ORkHTt2rNYvZ1q8eLHGjBmj0NBQ+fv7q1+/fnr22WdVUlJy3m2vXLnSNuHaxRdf7IBq4UwlZVbd8+EO5RaVVtkX6O2hf08fJB9P90aoDAAAAIArMnXI99dff62XXnpJ33//vbKysup0jsViUWlp1YDjCPfdd58WLFggDw8PjR07VgEBAfr666/10EMPacWKFVq9erV8fX0b1Pbp06d122232V0iDK7phTUH9FNSlt19f5vaR23D/MwtCAAAAIBLM62H+v/9v/+n8ePH67PPPtPp06erzPBd05czLF++XAsWLFBAQIA2bdqkVatWacmSJUpISFCfPn20fv16PfbYYw1u/+6779aJEyd0xx13OLBqOMuGQxn697eH7O6bNihWk/tFm1wRAAAAAFdnSqBevHix5s+fbwvI9tagrm5damf5+9//LkmaM2eOBg4caNseHh6uf//735Kkl19+WdnZ2fVue9myZXr//ff1pz/9SUOGDHFMwXCanMISPbh4l+z97qZjuD/PTQMAAACwy5RA/eqrr0pSlaDcGD3TkpSSkqItW7ZIkqZPn15l/4gRIxQXF6eioiKtXLmyXm1nZGTojjvuULdu3TR37lyH1Avnevp/Pysl60yV7Z7uFr14/QD5ezfaZPgAAAAAXJgpSWHHjh22IF0RlDt06KA2bdrIy8vLjBKq1CNJrVq1UocOHeweM3jwYCUlJWnHjh26/vrr69z2H//4R2VkZGjp0qXy8fFxSL1wnq/3ndDHW+0vkfXQhO7qHcN60wAAAADsMyVQV0wqZhiGwsPDtWrVKg0YMMCMS9uVmJgoSWrbtm21x8TFxVU6ti4+/PBDffLJJ7r33ns1fPjw8yvyV8nJ9sNehbS0NIdcpyU6nV+sh5bstrvvwo5hmjXc/i9bAAAAAEAyKVB37txZO3fulMVi0eWXX96oYVqScnNzJUn+/v7VHhMQECBJysnJqVObx48f11133aVOnTrZns92hIpgD8f762d7lZ5bVGV7gLeHnr26r9zcnPscPwAAAICmzZRnqG+88Ubb61OnTplxSdP94Q9/0OnTp/Xmm2/Kz4/llVzdl3vS9NnOVLv7/nJZD8W14h4CAAAAqJkpPdSzZ8/WBx98oB07dujzzz/X4sWLNW3aNDMubVdgYKAkKT8/v9pj8vLyJElBQUG1trdo0SKtWLFCf/zjHzVmzBiH1FghKSmpxv1paWnMJF5P2WdK9Pine+3uG9MtQtfGMyoAAAAAQO1MCdTe3t76/PPPNXXqVG3cuFHXXXed/vWvf+niiy9WXFxcrZN33XzzzQ6tp3379pJqDqsV+yqOrcmyZcskSVu2bKkSqI8fPy5J2rZtm23fhx9+qDZt2tSp1tjY2Dodh7r7x5f7dNLOUO9gX0/946q+Tl+yDQAAAEDzYNp6QCEhIbrgggu0ceNGGYahzZs3a/PmzXU619GBuuIZ7szMTCUmJtqd6Xvr1q2SVGmN6tpUnGNPVlaWvvvuO0lSYWFhfcqFA205ckofbDpmd99ff9dTkUHMzA4AAACgbkx5hrqkpESTJk3Siy++aFuLurY1qJ25FnVsbKzi4+MlSR988EGV/evXr1dSUpK8vb01adKkWttbvnx5tfUvXLhQkjRu3Djbtrr0esPxikrLNGfJLrv7RnWN0JUDYkyuCAAAAEBTZkqgfuWVV/Ttt99WCskVwbqmL2d65JFHJEnz5s3T9u3bbdszMzN15513Sip/9js4+Ow6xMuWLVP37t01btw4p9YG53j120M6lF71uXkfTzf9bUpvhnoDAAAAqBdThnwvWrRIkioFFmf1PtfVlClTdM899+jFF1/U0KFDNW7cOPn7+2vt2rXKysrS8OHD9dRTT1U6Jzs7W/v372fIdhOUmJGvf39zyO6+P43vyqzeAAAAAOrNlEB98OBB2zBvqXyir1GjRqlNmzby8fFptJ7BBQsWaPjw4XrllVe0YcMGlZSUqFOnTpozZ47uv/9+eXl5NUpdcCzDMPTkir0qLrNW2dcrOkizhld9hh4AAAAAamMxTOgqjoyMVEZGhgzDUO/evbV58+ZaZ/ZG3SQnJysurnyZp6SkJGYFt2PNzyf0+3erThjnZpE+vWuE+sQG2zkLAAAAQHPhrNxkyjPUF1xwgQzDkMVi0bBhwwjTME1hSZme/J/9NadvvrA9YRoAAABAg5kSqO+77z7b63MnAAOc7f++P6ykU2eqbA/z99L947s2QkUAAAAAmgtTAvXYsWP16KOPyjAMbdu2TXfccYeys7PNuDRasOTTBXrlm4N29z00sbuCfT1NrggAAABAc2LKpGSzZs2SJIWFhSkzM1NvvPGGFi1apMGDBysuLq7GIeAWi0VvvfWWGWWimXn2y/0qKq06EVn/uBBdPZBnzQEAAACcH1MC9TvvvGObybtitu+ioiJt2LChxvMqnrsmUKO+diZl6bOdqVW2WyzS3Ct6yc2NNacBAAAAnB9TAnWFignFK8J1Y69FjebJMAz9beUvdvddOzhOfWNDzC0IAAAAQLNkaqD+7XrTta0/TeBGQ3z18wltTjxVZbufl7v+dAkTkQEAAABwDNMCNeEYZigps2reF/vs7rtjdCe1DmTJNgAAAACOYUqg/uabb8y4DKAPtyTpcEZ+le2RQd76/cgOjVARAAAAgObKlEA9evRoMy6DFu5McZleWptgd98Dl3STn5epTzgAAAAAaOZMWYcaMMN/Nh7VydyiKtu7twnUVSyTBQAAAMDBCNRoFvKKSvXqd4fs7ntoQne5s0wWAAAAAAdz6BjYY8eO2V4HBQUpJCSkyvaGaNu27Xmdj+Zv4fpEncovrrJ9ULtQjekW0QgVAQAAAGjuHBqo27dvb1sK695779W//vWvKtvry2KxqLS01GE1ovnJLijR/607bHffA5d0bfDPHgAAAADUxOGzNBmGYTfAsGwWnOWtHxKVW1j1ly7DOoVpWKfwRqgIAAAAQEvg8EBdXW9gQ3oJCeGoTV5Rqd75IdHuvgcu6WZyNQAAAABaElPXESIgw9He33hUOXZ6py/qFqFB7UIboSIAAAAALYVDA/WoUaNsPdGdO3e2ux1wlMKSMr2xzn7v9OyxXUyuBgAAAEBL49BA/e2339ZrO3A+Fm9NUkZe1XWnh3ZsRe80AAAAAKdjHWo0SSVlVr32nf2ZvWdfRO80AAAAAOcjUKNJ+uynVKVknamyvV9ssIZ3DmuEigAAAAC0NARqNDmGYej17w/Z3XfnRZ15Xh8AAACAKRz6DPXcuXMd2ZzN448/7pR20TStP5ihAyfyqmzvGhmg8T0iG6EiAAAAAC2RQwP1E0884ZTeQQI1zrXwhyN2t98xupPc3OidBgAAAGAOp6xD7cj1phm+i3MlZuTr630nq2xvHeity/tGN0JFAAAAAFoqpwRqR4VgRwZzNA/v/GB/3embhraTlwdTAgAAAAAwj8MDdV1CsMViqfa4mvahZcs+U6LF25KrbPfycNP0C9o2QkUAAAAAWjKHBuqFCxfWuH/+/Pnau3evDMNQfHy8JkyYoNjYWElScnKyVq1apc2bN8tisSguLk6PP/643N3dHVkimrDFW5NUUFxWZfsV/aIVFuDdCBUBAAAAaMkcGqhnzJhR7b77779fe/fulcVi0WuvvabbbrutyjFPPvmk3nrrLd12221KSkrS999/r3feeceRJaKJsloNvfvjUbv7bhneweRqAAAAAMCkdajXrl2rBQsWyGKxaPTo0XbDdIVbb71VY8aMkWEYeu+997R8+XIzSoSL++FQho6dKqiyfWjHVuoZHdQIFQEAAABo6UwJ1C+99JLtdY8ePWo9/txjXn/9dafUhKblw81JdrfPHEbvNAAAAIDGYUqgrnguWpIOHTpU6/EVxxiGoR07dji1Nri+jLwirf75eJXtrQO9Na5H60aoCAAAAABMCtSnT5+WVB6Q16xZoyVLllR77NKlS/XVV1/ZAnh2drYZJcKFLdmWrJKyqjO/TxscK093lsoCAAAA0Dicsg71b8XExCgxMVEWi0VWq1XXXHONLrnkEl166aWVZvlevXq1Vq1aJcMwbIE6OjrajBLhogzD0H83H7O777p4lsoCAAAA0HhMCdQTJ07UK6+8IovFYltnevXq1Vq9enWVYyvCdMV/J02aZEaJcFE/Hs7Ukcyqk5GN7BKuuFZ+jVARAAAAAJQzZbzsww8/rKCgszMxVwRme18VPdOSFBgYqDlz5phRIlzUR1vsT0ZG7zQAAACAxmZKoI6OjtayZcvk5+cnwyh/Frait/q3X1J5L7Wfn5+WLFmimJgYM0qEC8orKtWqvVUnIwvz99L4npGNUBEAAAAAnGXajE4XXXSRtm3bposuuqja3umKr4pjx40bZ1Z5cEGr9x5XYYm1yvapA2Pk5cFkZAAAAAAalynPUFfo2rWr1q5dq7179+qLL77QTz/9pMzMTElSWFiY+vfvrwkTJqh3795mlgUXtWxHit3tUwfGmlwJAAAAAFRlaqCu0KtXL/Xq1asxLo0m4mROoX44mFFle/c2geoRFWTnDAAAAAAwF+Nm4ZI+25kqa9WlpzVlAM/UAwAAAHANDu2hzsnJsb329vaWt7e3Q9otKipSUVGR7ftzZwxH87T8p6rDvS0WaXI/1iUHAAAA4Boc2kMdEhKi0NBQhYaG6uGHH3ZYu3PmzLG126pVK4e1C9d08GSu9qTkVNk+tEOYokN8G6EiAAAAAKjK4c9Q/3YtaUe2i5Zh5e6qS2VJ0pUM9wYAAADgQhz+DLUzwjRalpW706ps83S36NLebRqhGgAAAACwz2mzfCcnJ+v77793WFtoGY5k5Gvf8dwq20d0Dlewr2cjVAQAAAAA9jklUBuGoSVLlmjJkiUOa9NisTDsuwX4Yo/94d4Te0eZXAkAAAAA1MxpPdSODr8MJW8ZvtxTdbi3u5tF43tGNkI1AAAAAFA9pwRqwi8aIvl0gXYmZ1fZfmHHMIX6ezVCRQAAAABQPafM8g00xKq9J+xun8BkZAAAAABckEMD9cKFCx3ZHFqYtb9UDdQWi3RpLwI1AAAAANfj0EA9Y8YMRzaHFiS3sESbE09V2T6obagiAr0boSIAAAAAqJnD16EGGmJdQoZKrVUfFxjbo3UjVAMAAAAAtSNQwyV8ve+k3e1juxOoAQAAALgmAjUandVq6Nv9VQN1dLCPukUGNkJFAAAAAFA7AjUa3e6UbGXkFVfZflH31izBBgAAAMBlEajR6BjuDQAAAKApIlCj0a0/mFFlm7eHm4Z1Cm+EagAAAACgbgjUaFS5hSX6KSmryvYLOobJ18vd/IIAAAAAoI4I1GhUmxNPqczOclkjOoc1QjUAAAAAUHcEajSqHw5m2t3OcG8AAAAAro5AjUa14VDV56dD/TzVMyqoEaoBAAAAgLojUKPRpOcWad/x3Crbh3UKl5sby2UBAAAAcG1OC9R79+7VFVdcoVdeeaXS9jfffFOXXXaZdu3a5axLo4mw1zstScM7M9wbAAAAgOvzcFbDS5Ys0YoVK7R582bNmjVLvr6+Kiws1BNPPKG0tDT1799fffv2ddbl0QRsTjxld/twJiQDAAAA0AQ4rYf6z3/+syIjI3Xy5Em98MILkqQFCxYoNTVVERERevjhh511aTQRW4+crrItKthHbVv5NUI1AAAAAFA/TgvUfn5+mjt3rgzD0Pz583X48GH94x//kMVi0RNPPKGAgABnXRpNQHZBifafqPr8dHz7VrJYeH4aAAAAgOtz6qRkt956q3r27KmsrCyNHDlSWVlZ6tGjh/7whz8487L1snjxYo0ZM0ahoaHy9/dXv3799Oyzz6qkpKRe7ezYsUPPPPOMxo0bp8jISHl6eio0NFQjR47UK6+8Uu/2mrutR+0P945vH2pyJQAAAADQMA5/hnru3LmVvm/btq1+/vlnpaWlyWKxqG3btnr66acrHfP44487uow6ue+++7RgwQJ5eHho7NixCggI0Ndff62HHnpIK1as0OrVq+Xr61trO6WlpRo4cKAkKSAgQPHx8YqMjFRycrJ+/PFHrV+/Xu+++65WrVqlkJAQJ7+rpmGLneHekhTfoZXJlQAAAABAw1gMwzAc2aCbm1u9h+yWlZU5soQ6Wb58ua688koFBATou+++swXijIwMjR07Vrt379YDDzyg+fPn19pWaWmphg4dqoceekiTJ0+Wt7e3bd/u3bt16aWXKi0tTbfccovefvtth76P5ORkxcXFSZKSkpIUGxvr0Pad5epXN2jr0cqhOtDHQzsfv4QlswAAAAA4lLNyk8MD9ZgxYyoF6hMnTmjfvn22bd26dVNkZGSlc7755htHllAnQ4YM0ZYtW/T000/r0UcfrbRv/fr1GjlypLy9vXXixAkFBwef17X+85//6KabbpKvr6+ys7Pl6el5Xu2dqykG6sKSMvV9YrWKy6yVtl/ULUILbxnSSFUBAAAAaK6clZscPuT722+/rfT95Zdfrn379snT01MlJSXq0KGDPv/8c0dftl5SUlK0ZcsWSdL06dOr7B8xYoTi4uKUlJSklStX6vrrrz+v6w0YMECSdObMGWVkZCgqKuq82mvqfk7LqRKmJWlwe4Z7AwAAAGg6nDop2bfffquVK1fK09NTn376qdzd3fXll182So/0uXbs2CFJatWqlTp06GD3mMGDB1c69nwkJCRIkry8vNSqFaFxV1KW3e0D2zIhGQAAAICmw+E91Od68MEHZbFYNHPmTF166aW69dZb9frrr+vPf/6ztm3b5sxL1ygxMVFS+YRp1akYDlBxbEMZhqFnn31WUnlv/bnPV9dFcnJyjfvT0tIaXFtj2ZWSXWWbxSL1jglqhGoAAAAAoGGcFqg//PBDbdu2TT4+PrZZvB9//HG9++67+umnn7Ro0SLNmDHDWZevUW5u+frH/v7+1R5TsU52Tk7OeV3rySef1I8//qiAgADNmzev3udXBPvmZFdy1UDdMdxfgT6Oe7YcAAAAAJzNaUO+y8rKFBERodtvv10xMTGSpKioKM2ePVuhoaFy8FxoLundd9/V3Llz5ebmprfffltdunRp7JIaXV5RqQ6l51XZ3i82xPxiAAAAAOA8OK2H+oYbbtAVV1xRZUmsv/zlL3r00UcVFNR4w3sDAwMlSfn5+dUek5dXHvoaWufixYs1a9YsSdIbb7yhadOmNaidpKSkGvenpaVpyJCmMzP2npRs2ftdSt/Y85tJHQAAAADM5tRnqCuGTZ+rIsw2pvbt20uqOaxW7Ks4tj6WLl2q6dOny2q16vXXX7cF64ZoCstg1ceu5Cy72/vQQw0AAACgiXFqoK7OwYMH9fbbb+vbb79VamqqSkpKFBERofj4eF155ZWaNGmSU69fsYxVZmamEhMT7c70vXXrVknSwIED69X28uXLdd1116msrEyvvvqqbrvttvMvuBnZaef5aQ83i3pFMyEZAAAAgKbFqctm2fPss8+qd+/e+sc//qFNmzbp2LFjSktL065du/T222/rd7/7nYYPH17rUOfzERsbq/j4eEnSBx98UGX/+vXrlZSUJG9v73qF+xUrVuiaa65RaWmpXn31Vd1+++0Oq7m52GNnhu+ukYHy8XRvhGoAAAAAoOEcGqhPnz6tK664QpMnT9bkyZP1/fffV9r/r3/9S3PmzFFxcbEMw5BhGLJYLLJYLJJk2/bjjz9q6NChtS4ZdT4eeeQRSdK8efO0fft22/bMzEzdeeedkqTZs2crOPjss73Lli1T9+7dNW7cuCrtrVy5UldffbVKS0v12muvEabtyC8q1dHMgirb+8Tw/DQAAACApsehQ77ff/99rVixQpLk7u6u//znP7Z9hw4d0iOPPGILz7917nbDMJSWlqbp06dXCeWOMmXKFN1zzz168cUXNXToUI0bN07+/v5au3atsrKyNHz4cD311FOVzsnOztb+/ftVWFhYafvJkyc1depUFRcXKzY2Vhs2bNCGDRvsXnf+/PkKDw93yntydQdO5Nrd3j2q8Z+rBwAAAID6cmigXrt2re119+7dK82QPX/+fBUXF1fqjbanosfaMAz98MMPWrNmjS6++GJHlmmzYMECDR8+XK+88oo2bNigkpISderUSXPmzNH9998vLy+vOrVTUFCgoqIiSVJycrIWLVpU7bFPPPFEiw3U+4/bD9Td2hCoAQAAADQ9Dg3U+/btk1Qeis+dHbusrEyLFy+2BWU3Nzfdeuutuvbaa9W2bVvl5OToyJEjWrRokT7//PNKbX700UdOC9SSdM011+iaa66p07EzZ87UzJkzq2xv3759i1hX+3ztqyZQd2/DhGQAAAAAmh6HBuq0tDRbD3RkZKRt+65du3Tq1Clb77O92a8HDRqkq666Sp9++qmmTp1qC9/VDZ1G02Ovhzoi0Fut/Os2EgAAAAAAXIlDJyXLz8+3vfbx8bG9rliCSioPzjUtJXXFFVfokksusfX4pqWlObJENBLDMLTveE6V7d0Z7g0AAACgiXJooPbwONvhfe4kY+cG6okTJ9baTseOHW2vzw3paLrSc4t0uqCkynYCNQAAAICmyqGB+txJyA4fPixJKikp0WeffWbbHhMTU2s7O3bssL0+d9kqNF3VPT/djeenAQAAADRRDg3UHTt2tK0l/dVXX+mJJ57QtddeqxMnTtieiZ47d652795dbRv//Oc/tXHjRlsP97mTm6HpOpSeZ3c7PdQAAAAAmiqHTkp24YUXatOmTbJYLCotLa2yjrPFYlFqaqoGDBigyy+/XCNHjlRsbKwKCgp05MgRffTRR0pISLCFb4vFolGjRjmyRDSSw+n2h+53jPA3uRIAAAAAcAyHBurp06frhRdekCRbKLb32mq1asWKFVqxYkWl8889poK9ZarQ9CRmVA3UUcE+8vNy6I8gAAAAAJjGoUO+Bw8erJkzZ9oNxo888ohGjhxp63muGBp+7lfFsloV5954443q3bu3I0tEI7EXqDuE0zsNAAAAoOlyePfgG2+8oc6dO2vhwoVKSkpSbGysZs+erfvuu0+pqakaPXq0Dh06VCls/5ZhGBoyZIheffVVR5eHRlBYUqaUrDNVthOoAQAAADRlDu2hliR3d3c98sgjSkhIUGFhoQ4ePKj77rtPkhQdHa2NGzfq8ssvt9tDbRiG3N3ddccdd+ibb76Rn5+fo8tDIziSaf/5aQI1AAAAgKbM9AdYw8LC9Nlnn2njxo1asmSJ9u/fr7KyMkVERCg+Pl6TJ09WXFyc2WXBiRKZkAwAAABAM9RoM0INHTpUQ4cObazLw0SH7Tw/LUkdwgNMrgQAAAAAHMfhQ76B37I3IZmHm0Wxob6NUA0AAAAAOAaBGk6XfLqgyraYUF95uvPjBwAAAKDpItHA6ezN8E3vNAAAAICmjkANpyqzGkrLKqyyPSaEQA0AAACgaSNQw6lO5BSq1GpU2R4bypJoAAAAAJo2AjWcyt5wb4keagAAAABNH4EaTmVvQjKJZ6gBAAAANH0EajhVyulqeqgJ1AAAAACaOAI1nCrZTqB2d7OoTZBPI1QDAAAAAI5DoIZTHc+pOsN3myAfebAGNQAAAIAmjlQDpzqZU1RlW+sg70aoBAAAAAAci0ANp0rPsxOoAwnUAAAAAJo+AjWcpsxqKNNuoOb5aQAAAABNH4EaTpOZVySrUXV7BD3UAAAAAJoBAjWc5mRu1d5piSHfAAAAAJoHAjWc5mRu1Rm+JSYlAwAAANA8EKjhNOnV9lDzDDUAAACApo9ADaext2SWxJBvAAAAAM0DgRpOY2/JLItFauXv1QjVAAAAAIBjEajhNJn5xVW2tfLzkoc7P3YAAAAAmj6SDZwmu6CkyrYQP89GqAQAAAAAHI9ADafJOlO1hzrUj+HeAAAAAJoHAjWc5nQ+PdQAAAAAmi8CNZwm+0zVQB3sSw81AAAAgOaBQA2nKC61Kq+otMr2UHqoAQAAADQTBGo4hb3eaYkh3wAAAACaDwI1nCKroOqEZJIUwqRkAAAAAJoJAjWcIoseagAAAADNHIEaTpFlZw1qSQphUjIAAAAAzQSBGk6RV2Q/UAf5ephcCQAAAAA4B4EaTpFXVGZ3u783gRoAAABA80CghlPk21kyS5ICCNQAAAAAmgkCNZyiukBNDzUAAACA5oJADafIqyZQ+3m6m1wJAAAAADgHgRpOYa+H2s/LXW5ulkaoBgAAAAAcj0ANp8i3MykZw70BAAAANCcEajiFvSHfTEgGAAAAoDkhUMMp7A359vfm+WkAAAAAzQeBGk6RX2xnyLcXPdQAAAAAmg8CNZyiqLRqoPZhhm8AAAAAzQiBGk5RVGKtss3bgx83AAAAAM0HCQdOUVxWNVB7EagBAAAANCMkHDhFUUnVId/eHgz5BgAAANB8EKjhFEWldoZ8e/LjBgAAAKD5IOHA4QzDsD/k250fNwAAAADNBwkHDldSZsgwqm6nhxoAAABAc0LCgcPZWzJLkrzpoQYAAADQjJBw4HDFdp6fliRv1qEGAAAA0IwQqOFw9iYkk1iHGgAAAEDzQsKBw1XXQ8061AAAAACaExIOHK7UamdGMkkebvy4AQAAAGg+SDhwOKu9Kb4luVlMLgQAAAAAnIhADYerNlCTqAEAAAA0IwRqOFxZNUO+3SwEagAAAADNR4sP1IsXL9aYMWMUGhoqf39/9evXT88++6xKSkoa1N62bds0bdo0RUZGysfHRx06dNDdd9+tkydPOrhy11VNB7VYhhoAAABAc9KiI859992na665Rj/88IOGDBmiCRMm6NixY3rooYc0duxYnTlzpl7tffLJJxo6dKg++eQTtWvXTldccYXc3Nz08ssvq2/fvjp48KCT3olroYcaAAAAQEvQYgP18uXLtWDBAgUEBGjTpk1atWqVlixZooSEBPXp00fr16/XY489Vuf2UlNTNWPGDJWWlur111/X5s2b9dFHH+nAgQO68cYbdeLECU2fPl1Gdd23zUj1k5IRqAEAAAA0Hy02UP/973+XJM2ZM0cDBw60bQ8PD9e///1vSdLLL7+s7OzsOrX3wgsvqKCgQBdffLH+8Ic/2La7u7vr1VdfVXBwsLZs2aLVq1c78F24JgI1AAAAgJagRQbqlJQUbdmyRZI0ffr0KvtHjBihuLg4FRUVaeXKlXVqc9myZdW2FxAQoMmTJ0uSli5d2tCym4xqRnzzDDUAAACAZqVFRpwdO3ZIklq1aqUOHTrYPWbw4MGVjq1Jbm6u7fnoivPOp72mrrpnqC30UAMAAABoRjwau4DGkJiYKElq27ZttcfExcVVOrYmR44csb2urs36tHeu5OTkGvenpaXVqz0zMOQbAAAAQEvQIgN1bm6uJMnf37/aYwICAiRJOTk5dW6vpjbr0965KoJ4U2K12t/OkG8AAAAAzQkRBw5XXQ81Q74BAAAANCctsoc6MDBQkpSfn1/tMXl5eZKkoKCgOrdX0WZwcPB5tXeupKSkGvenpaVpyJAh9WrT2aoL1O4EagAAAADNSIsM1O3bt5dUc1it2FdxbE3atWtne33s2DH16dPnvNo7V2xsbL2OdwU8Qw0AAACgJWiRgXrAgAGSpMzMTCUmJtqd6Xvr1q2SVGmN6uoEBQWpc+fOOnjwoLZu3Wo3UNenvaZuUNtWWvLHC2U1ymf8thqGrFapd0z9eucBAAAAwJW1yGeoY2NjFR8fL0n64IMPquxfv369kpKS5O3trUmTJtWpzSuvvLLa9vLy8rRixQpJ0tSpUxtadpMR7OepQe1aKb59Kw3tGKZhncI1oku4Qvy8Grs0AAAAAHCYFhmoJemRRx6RJM2bN0/bt2+3bc/MzNSdd94pSZo9e3al56GXLVum7t27a9y4cVXau+++++Tn56c1a9bojTfesG0vKyvTnXfeqaysLMXHx+uSSy5x1lsCAAAAAJioxQbqKVOm6J577lFeXp6GDh2qiRMn6uqrr1bnzp21e/duDR8+XE899VSlc7Kzs7V//34dOnSoSnvR0dF655135O7urj/84Q8aOnSorrvuOnXt2lXvvfeeIiMj9cEHHzDTNQAAAAA0Ey02UEvSggUL9NFHH+nCCy/Uhg0btHLlSsXGxmrevHn6+uuv5evrW6/2pk2bpk2bNmnq1Kk6fPiwli1bprKyMt11113auXOnOnfu7KR3AgAAAAAwm8UwqpmSGU1CcnKy4uLiJJXPJN4UZwUHAAAAAGdyVm5q0T3UAAAAAAA0FIEaAAAAAIAGIFADAAAAANAABGoAAAAAABqAQA0AAAAAQAMQqAEAAAAAaAACNQAAAAAADUCgBgAAAACgAQjUAAAAAAA0AIEaAAAAAIAG8GjsAnB+SktLba/T0tIasRIAAAAAcE3nZqVzM9T5IlA3cenp6bbXQ4YMacRKAAAAAMD1paenq3379g5piyHfAAAAAAA0gMUwDKOxi0DDFRYWavfu3ZKkiIgIeXi4zqCDtLQ0W6/55s2bFRUV1cgVwdG4x80f97j54x43f9zj5o973Pxxj89faWmpbXRvnz595OPj45B2XSd9oUF8fHwUHx/f2GXUKioqSrGxsY1dBpyIe9z8cY+bP+5x88c9bv64x80f97jhHDXM+1wM+QYAAAAAoAEI1AAAAAAANACBGgAAAACABiBQAwAAAADQAARqAAAAAAAagEANAAAAAEADEKgBAAAAAGgAi2EYRmMXAQAAAABAU0MPNQAAAAAADUCgBgAAAACgAQjUAAAAAAA0AIEaAAAAAIAGIFADAAAAANAABGoAAAAAABqAQA0AAAAAQAMQqAEAAAAAaAACNQAAAAAADUCgRiWLFy/WmDFjFBoaKn9/f/Xr10/PPvusSkpKGtTetm3bNG3aNEVGRsrHx0cdOnTQ3XffrZMnT9Z43okTJzR79mx16NBB3t7eioyM1LRp07R9+/YG1YGzGvseHzt2TK+//rqmTp2qdu3aydvbWwEBAerXr58eeeQRpaenn8/bw68a+z7bk5KSotDQUFksFnl4eDSoDpzlSvd4586dmjVrljp06CAfHx+FhoaqT58++uMf/6jMzMwG1QPXuMeGYej999/XxRdfrPDwcHl6eiokJETDhw/Xiy++qOLi4oa+Pchx9zgzM1PvvPOO7r77bg0bNkx+fn6yWCy6+OKL63T+wYMHNXPmTMXGxsrb21uxsbGaOXOmDh8+3JC3hXM09j3ev3+/XnjhBU2aNEkxMTHy8vJSUFCQ4uPj9cwzzygvL+983h4kyQB+de+99xqSDA8PD+OSSy4xpk6daoSEhBiSjBEjRhgFBQX1am/x4sWGh4eHIcmIj483rrnmGqNjx46GJCMyMtJISEiwe97+/fuN1q1bG5KMjh07Gtdcc40RHx9vq23p0qWOeLstkivc4+HDh9tqiI+PN6699lpj/PjxRlBQkCHJiIiIMHbs2OGgd9wyucJ9tmfixImGxWIxJBnu7u4NeWv4lSvd43/+85+Gu7u74ebmZsTHxxvXXXedMXHiRKNz586GJGP37t3n+3ZbJFe5x9dee60hyXBzczNGjBhhXHvttcaYMWMMT09PQ5IxdOjQeteCco68x8uWLTMkVfkaN25creeuX7/e8PPzMyQZvXr1Mq699lqjV69ehiTD39/f+PHHH8/nbbZornCPY2JiDEmGj4+PMWLECOO6664zLrroIsPHx8eQZHTq1Mk4evTo+b7VFo1ADcMwzv4lDQgIMLZt22bbnp6ebvTp08eQZDzwwAN1bi8lJcX2j/Prr79u215aWmrceOONtv+hW63WSudZrVZjwIABhiTjpptuMkpLS237Xn/9dVuNaWlp5/FuWyZXucfXXHON8fzzzxsZGRmVtp88edIYM2aMIcno0qVLpXuPunOV+/xbb7zxhiHJmD17NoH6PLnSPX777bcNSUa3bt3sBuc9e/YYWVlZ9XyHcJV7vHTpUkOSERwcbPz000+V9h06dMj2Qf2ZZ55p4DttuRx9jzds2GDcfvvtxuuvv25s2bLFeO211+oUtvLz843o6GhDkvHwww9X2vfwww8bkoy4uDh+adIArnKPx44da7z11ltGbm5upe2JiYm2X5xcdNFF9XtzqIRADcMwDFsP8NNPP11l37p16wxJhre3d50/GD344IOGJOPiiy+usi83N9cIDg42JBlffvllpX2ff/65IckICQmp8hffMAxj3LhxhiRjzpw5dXxnqOAq97gmSUlJtt+4rlu3rs7n4SxXvM9HjhwxAgMDjaFDhxqHDh0iUJ8nV7nHp06dMoKCggxfX1/j0KFDDXszsMtV7nHFL8DuvPNOu+3+7W9/MyQZkydPrlMdOMvR9/i3Fi5cWKew9corrxiSjK5duxplZWWV9pWVlRldu3Y1JBmvvfZag+poyVzlHtekog5JRlJSUoPbael4hhpKSUnRli1bJEnTp0+vsn/EiBGKi4tTUVGRVq5cWac2ly1bVm17AQEBmjx5siRp6dKlds+bPHmyAgICqpxb0d5vz0PNXOke1yQ2Nlbh4eGSpKSkpDqfh3KueJ8Nw9CsWbNUXFyst99+W25u/G/nfLjSPV60aJFycnJ01VVXqWPHjvV6H6ieK91jHx+fOrVf8e826sYZ97ihKn42rrvuuir/Pru5uenaa6+VxOeu+nKle1yTAQMG2F7zuavh+GQD7dixQ5LUqlUrdejQwe4xgwcPrnRsTXJzc3Xw4MFK59W1vYrvazsvISFB+fn5tdaCcq50j2uSkZGh06dPS5KioqLqfB7KueJ9/ve//62vv/5af/3rX9WjR49ar4maudI9XrVqlSRp1KhROnPmjN577z3dc889uuuuu/TCCy/w4ayBXOkeT5w4UZL0wQcfaOfOnZX2HT58WK+++qosFotuu+22WuvAWY6+x46oxZH/L4dr3eOaJCQk2F7zuavhmGYVSkxMlCS1bdu22mPi4uIqHVuTI0eO2F5X12Z17dVWS8V5hmHoyJEj6tWrV631wLXucU3mz5+vsrIyRUVFadiwYXU+D+Vc7T4fOnRIDz30kAYNGqQHH3yw1uuhdq50j3ft2iWpPLD17t27ymzADz30kJ555hn96U9/qrUOnOVK93js2LF69NFH9be//U0DBw7U8OHDFRMToxMnTmj9+vWKi4vTp59+qqFDh9ZaB85y9D1uqNzcXNss/LX9bKSnpys/P1/+/v5Oq6c5cZV7XJt58+ZJkgYOHKj27ds3Wh1NHT3UUG5uriTV+I9kxfDrnJycOrdXU5vVtVdbLecOA69LLSjnSve4OmvWrNH8+fMlSc8995y8vLzqdB7OcqX7bLVaNXPmTBUXF2vhwoUsk+UgrnSPKz6Iz5kzR2VlZVqxYoVOnz5t+0VKSUmJHnjgAf33v/+ttQ6c5Ur3WJKefvpp/ec//5Gfn5/WrVunDz/8UN98840Mw9DFF1/ML7YbwNH3+HzrqKkWPnc1jKvc45q88847+uijj+Tu7q4FCxY0Sg3NBYEaQKPbvXu3pk2bprKyMt199926/vrrG7sknKcXXnhB69ev11/+8hf16dOnscuBExiGIan8lycrV67U5ZdfrpCQEHXs2FHz5s3THXfcIUn6y1/+0phl4jyUlJRo1qxZuvHGGzVlyhTt3r1b+fn5OnDggGbPnq033nhD8fHx+umnnxq7VAD1sHbtWt1+++2SpGeffVYjRoxo5IqaNgI1FBgYKEk1PpNcseh7UFBQndurqc3q2qutlnMXn69LLSjnSvf4t/bt26eLL75YWVlZuuWWW/gt6Xlwlfu8f/9+Pfroo+rXr58efvjh2gtHnbnKPT733JEjR6pnz55VzrvzzjsllT9r25hDGpsaV7rHzz77rBYuXKhJkybpvffeU+/eveXn56cuXbro+eef1x/+8AedOnVK9957b6114CxH3+PzraOmWvjc1TCuco/tWb9+va644goVFxfrr3/9K4/lOACBGrZnJmqaQKZiX12er2jXrp3t9bFjx+rVXsX3tZ1nsVgqXQc1c6V7fK4DBw5o7NixOnnypG6++Wa9+eabslgstV4f9rnKff7iiy9UWFio/Px8jR8/XmPGjLF9XXfddZKksrIy27Yvv/yy1lpQzlXusSTbzN7VzfB97va0tLRaa0E5V7rH77zzjiRVO2qoYvbi9evXq6ioqNZaUM7R97ihAgMD1apVK0m1/2yEh4fz/HQ9uMo9/q0NGzZo0qRJys/P16OPPqonnnjCtGs3ZwRq2KbMz8zMrLYXYevWrZLKJy2oTVBQkDp37lzpvLq2V/F9bed16dLF7rJasM+V7nGFhIQEXXTRRUpLS9ONN96ohQsXsqTSeXK1+3zw4EF99913lb42bdpk21+x7fjx47XWgnKudI8HDRokqXx2fnvO3c6/13XnSve4ImRV14MWHBwsqXzYf1ZWVq21oJyj7/H5qOvnLmfX0dy40j2usHHjRk2YMEG5ubl65JFH9PTTT5ty3ZaAT69QbGys4uPjJZUvjfFb69evV1JSkry9vTVp0qQ6tXnllVdW215eXp5WrFghSZo6dard8z777DO7w2Qq2vvteaiZK91jqXz254suukipqam68cYbtWjRIsK0A7jKfb7vvvtkGIbdr4oPFu7u7rZtM2fOrNf7bMlc5R5L0rRp0ySVf0iz9+/1V199Jak8TLNkWt250j2OiYmRpEq/CDvXxo0bJZX3dLIWdd054x43VMXPxocffiir1Vppn9Vq1UcffSSJz1315Ur3WJI2b96sSy+91Bam//a3vzn9mi2KARiGsWzZMkOSERAQYGzbts22PSMjw+jTp48hyXjggQcqnbN06VKjW7duxtixY6u0l5KSYvj5+RmSjP/7v/+zbS8tLTVuuukmQ5IRHx9vWK3WSudZrVZjwIABhiTj5ptvNkpLS237Xn/9dVuNaWlpjnrrLYar3OPDhw8bcXFxhiTjpptuMsrKyhz8Tls2V7nP1UlMTDQkGe7u7g18h3Clezxy5EhDkjFz5kyjsLDQtn3nzp1GmzZtDEnGgw8+6Ii33aK4yj1+8MEHDUmGr6+v8c0331Tat2PHDiMiIsKQZNx6660OeNcti6Pv8W8tXLjQkGSMGzeuxuPy8/ON6OhoQ5LxyCOPVNr3yCOPGJKM2NhYo6CgoB7vDobhOvd4y5YtRnBwsN17DMcgUMPmnnvuMSQZnp6exoQJE4yrrrrKCAkJMSQZw4cPr/KPacVf5Hbt2tlt7+OPPzbc3d0NScYFF1xgXHvttUbHjh0NSUZkZKSRkJBg97x9+/bZ/ifdsWNH49prrzWGDBliSDI8PDyMpUuXOvqttxiucI8rfmHi7e1t3HTTTcaMGTPsfq1bt84ZfwQtgivc5+oQqB3DVe7xsWPHjPbt2xuSjJiYGGPKlCnGqFGjDC8vL0OSMX78+EpBG3XnCvc4JyfHiI+PNyTZQvc111xjDBs2zNZWnz59jIyMDGf8ETR7jr7HF1xwge2r4t4GBQVV2v6///2vynnr16+3/cKld+/exnXXXWf07t3bkGT4+/sbP/74ozPefovgCvc4NDTUkGSEhIRU+5lrxowZxi+//OKsP4Zmj0CNSj766CNj1KhRRlBQkOHr62v07t3bmDdvnlFUVFTl2Nr+0huGYWzdutWYOnWqERERYXh5eRnt2rUz7rrrLuP48eM11pGWlmbcddddRrt27QwvLy8jIiLCmDp1aqXf8KFhGvset2vXzvbhrKavhQsXOugdt0yNfZ+rQ6B2HFe5x1lZWcacOXOMrl27Gt7e3kZgYKAxdOhQ49VXX600ygj15wr3uKioyFiwYIExYsQIIzQ01HB3dzeCgoKMoUOHGv/85z/puTxPjrzH5/P/1oSEBOPmm282oqOjDU9PTyM6Otq4+eabjYMHDzrw3bZMjX2P63KOpCqjUFB3FsP4dSFJAAAAAABQZ8wCBAAAAABAAxCoAQAAAABoAAI1AAAAAAANQKAGAAAAAKABCNQAAAAAADQAgRoAAAAAgAYgUAMAAAAA0AAEagAAAAAAGoBADQAAAABAAxCoAQAAAABoAAI1AAAAAAANQKAGAAAAAKABCNQAAAAAADQAgRoAAAAAgAYgUAMAUAfffvutLBZLjV8//fSTw9qeOXNmleNmzpxZ5bhvv/32vN4XavfbP/P27ds3dkn18sQTT1R5D++8805jl+VUL7zwQq1/XwHAEQjUAIBKzieoXX/99bbz33vvvSptVvfl7e2t8PBwDRw4ULfccos+/fRTWa1WB74rAAAAxyNQAwAcorS0VF9++aUkyd3dXZdddlmdzy0uLlZmZqZ27Nihd955R1OmTNHgwYN17NgxZ5ULAABw3jwauwAAQON54oknNHHiRF1wwQU1Hnfs2DE999xzevbZZ+Xt7W33mO+//15ZWVmSpOHDh6tVq1bnVduOHTt06aWXaufOnfLy8jqvtpxl/Pjx6tmzp+37iIgIp17vkksuUUhISKVtsbGxTr0mpHvvvbfS9+f7sw3nGzBgQKX7tnr1av3yyy+NWBGA5opADQAt1MaNG/Xkk0/qySef1LRp0/TMM8+oU6dOlY7Jzs7WM888owULFqiwsFBt27bVAw88YLe9zz77zPZ68uTJtV7/qquuUmxsrEpKSpSUlKSvvvpKhYWFlY7Zt2+fPvroI910000NeIfON336dLvPOjvzetOnTzfteij3wgsvNHYJqKfRo0dr9OjRtu9nzpxJoAbgFARqAGihQkJC9Lvf/U4rVqzQ4sWLtXz5ct1xxx22/e+8846uvvpqZWZmSpL69u2rPn36VNveihUrbK/rEqhnz56tMWPG2L4/ePCgBgwYoLy8vErHff311y4bqAEAQMvGM9QA0MScPn1asbGxlSb18vLy0u7du6sc+80338jNza3SsX379lVRUZG6d++uzz77TBs3btS4ceNUUlKil156yXbuokWLlJmZqU6dOun999/XTz/9pEsuucRuTXv37tXhw4clSd26dVOXLl3q/b46d+6sK6+8ssr2tLS0Ws/dtGmT7r77bg0YMEARERHy8vJSRESEhg4dqscff1ypqan1rseRTp8+rUceeUQ9evSQr6+vIiIiNH78eC1evLhe7dRllu8jR45UOabiFxfbt2/X9ddfr+joaPn5+alHjx564oknlJOTYzvfarXqzTff1NChQxUcHKygoCANHTpUr7/+usrKymqtsbi4WO+8846uueYadezYUUFBQfLx8VFcXJymTJmid999V6WlpdWeX9OM5/v27dPtt9+uDh06yMfHR2FhYZo4caJWr15dY00nTpzQ008/rTFjxig6Olq+vr7y9vZWdHS0+vbtqylTpuiJJ57Q2rVrVVxcXOX8+s7yffz4cT399NMaO3asoqOj5ePjo4CAALVv315XX3213n77bRUVFZn6Z1Bfq1ev1m233abevXurVatW8vLyUps2bTRmzBj94x//sD3eUZPPP/9cN998s3r37q3g4GB5enoqJCREnTt31vDhw3X77bfr7bff1tGjR+2ef773DQBMYQAAmpyvvvrKsFgshiTb1+DBg43S0lLbMXl5eUaHDh0qHePt7W3s2rXLbpuPPfZYpWMlGSNHjjQKCgpqrefvf/+77ZwHH3ywyv7ftivJ+Oabb6oc99BDD1U57tprr632uunp6cbll19ut/1zv3x9fY2XXnqp1vdRk2+++aZKuwsXLqz1vN27dxtRUVHV1nb11Vcbq1evrrJ9xowZVdqaMWNGrX+OiYmJVY4ZPXq08eqrrxoeHh52a+jdu7dx/PhxIycnxxg/fnyNtVqt1mrf69q1a42YmJha70e3bt2MPXv21PnPecaMGcYrr7xieHl5Vdvm888/b7e9lStXGgEBAbXWVPG1bt26Km389ph27drZvZbVajWeeeYZw9vbu9brREdHG2vXrjXlz+Cvf/1rnX92ExMTjQsvvLDW+kNCQozFixfbbePMmTPGZZddVuc/83Hjxjnlvp3L3t8dAHAE/jUBgCbq3nvvrfIB8R//+Idt/+zZs6vsf+6556q0s3XrVuOSSy6p9oNqly5djI8//rjGIHXuB/C6BBJ7QdAwDOOGG26octxf/vIXu9fMyMgwOnfuXOcP3JKMuXPn1uFP1r6GBOr09HSjTZs2tdbVq1cvuwHqtxoaqENDQ6v8Aua3X9OmTTOmTp1aa61vvPGG3fe6ZMkSw83Nrc73IigoyG6otvfnHBERUWt7Hh4eVdrLzMw0QkJC6vUzcj6B+o477qjXtdzd3Y0VK1Y49c/AMOoeqBMSEozw8PA612+xWIxFixZVaefxxx+v15/DbwO1o+7buQjUAJyFZ6iB/9/evQdFVf5/AH/vIhEoDiigImgSKEhe0hwHzFlugWUWha4po1x0zNLEvFs5NM4XhJxxStSk0XEErcHRsEQU8Ao6iuQNiUsgBWgKAnIVjeD8/vDHfvd4DrAsC0bf92uGGfZznvOcZ8+zMPs5z/OcQ9RHRUVF4dSpU/j11181sfDwcPj7++P+/fvYuXOnqLy3tzc+/fRTzeuioiJs3LgRR44cgSAIMDY2xocffogdO3YAABYuXIikpCQUFhZCrVbjtddew9atW0XrngGgoqICmZmZAAArKyu4u7vr9X4KCgqQmJgoihkZGSEkJES2fHBwMIqKikQxU1NT+Pr6YujQoSgqKsKZM2cgCIJme3h4ODw8PDB9+nS92thV69evx/379yVxd3d3jB8/HiUlJUhJSRH1YU94+PAhgKfT8VUqFW7cuIErV66IymhPP/fy8sKoUaOQkpKCO3fuiMrFxMRg8eLFolhpaSkWLFggeXa4g4MD3N3d0a9fP1y4cEHUX3V1dZg9ezZu3bqFfv06/jry4MEDAIC9vT38/PxQVVWFo0ePivr277//RmxsLLZv366JJScnS6YmDx8+HB4eHrCwsEBDQwOKi4uRnZ2N2traDtvQmR9++AG7d++WxNvOeWNjI5KTkzV9AQAtLS2YP38+CgsLMWTIkA7r1/cc6Kq1tRUBAQGorKwUxS0sLODj4wNLS0vk5OTg0qVLmm2CIGDp0qVwd3eHo6OjJn7w4EFRHUZGRvDw8NCUefDgAXJzc1FQUCBqf5ve7Dciom57ntk8ERF1z/Xr1yVTQN3d3SUjt5aWlsKdO3dE+2ZkZGi2+/v7C7/99psgCP8djTt79qxQXV0trFq1SnOMqKgoSRv27t2r2UduVFW7Tu2fgIAAISwsTFi2bJkwa9Ys2WmykZGRsvVdvnxZUtbV1VW4f/++qFxKSopkmrOnp6ceZ7rrI9SVlZWy70l7FoEgPJ3aKjeya8gRagDCjBkzhL/++ksQBEFoaWlpd1rvli1bNHXdvXtX9j1UV1eLjvnRRx9Jyqxbt05oaWnRlGlubhZCQkIk5Z4d4ZQ7z/j/UUzt5QcxMTGSMhMmTBDVFRERIdo+YsQIobGxUXJeW1pahKysLGHDhg3CrVu3JNufPY7cCPXo0aMl5UJDQ0XLMMrLy2XLPbtMwpDnQBB0G6FOSEiQlPH09BTq6upE5bT/3tt+QkJCRGWMjY1F23fs2CFpkyA8ncFx4MAB4T//+Y8obqh+08YRaiLqKfxvQkTUx0VHR8t++db+SUhIkN13/fr1Qnp6uigml6jdvn1bWLJkiex6an9/f80+hw8flj1OZ+179sfe3r7DZHXt2rWSfZKTk2XLPrsmWKFQCJWVle3W3Z6uJtSHDh2SlB8zZozs1Pk5c+b0eEL97FRguWm5tra2QnNzs6icp6enpNy1a9c021tbWwUbGxvR9mHDhomS6TZ3796V1DVr1qxOzzMAydr/x48fC0ZGRqIyAwcOFJXZvn27aLuNjY1QWloqaVdnOkuob926JSljbm4u1NfXS+o6evSopKyTk1OPnQNB0C2hlvsM5ubmyp4PJycnUTkLCwtRfw8aNEi0/fPPP5f9PLTHUP2mjQk1EfUUTvkmIurj1qxZg+TkZJw/f152+4IFC6BWq2W3RUVF6XQMBwcHxMbGSuKPHz9GWloaAMDExAR+fn46trp9SqUSgYGBmDt3brtl2qaYa3vrrbd0ql8QBFy+fBkzZ87Uu426uHHjhiTm6+sLhUIhic+YMaPLd/zuCltbW7i6uopiQ4cOlZTz8PCQTL+WK1dfX6/5/Y8//kBFRYVo+71792BkZKRT27SnELdn3Lhxkke2mZiYwNLSUjRFWbtdwNOp69oqKiowatQouLi4YMyYMRgzZgxcXFzg5uYmeQZ7V2RlZUliKpUKAwYMkMT9/PxgZGQkumN6YWEhampqYGFh0e4x9D0HupL7mxo7dqxO+9bU1CAvL0/zGfP29hZ9niMiIhAbG4tXXnkFo0ePhrOzMyZOnIipU6fCzMxMUl9v9RsRkSHwsVlERH2cUqlEXFyc7BfTIUOGaNZE94TTp0+jsbERAODp6SmbQHRVa2sroqKioFKp0NTUJFumbT2pvuTWNRta2/O7tdnZ2cmWbS9uKPb29pLYiy++qFO5F154QRLTXivd3b6oqqrq8DFaADBy5EjZ+LPvQXhmPa6rqyvCwsJEsZaWFuTk5ODIkSOIjIzEggUL4OjoCFdXV8TFxenxDuTPgdy5bGuztbW1TnVo0/cc6MqQf1MRERGwsrISba+srMS5c+fw3XffYdWqVfDy8oKVlRWCgoJw9+5dUdne6jciIkNgQk1E9C9w8+ZNPHr0SBJ/8OCB7EhpR4Sny4EkNx+Tc+zYMc3v77zzTpeOc/bsWbS2tuLPP/9EdHQ0jI2NRduzsrKwcuXKLtWpq4aGhh6p959KLnmWGymXK9fTBEHQXJRpz+DBg2XjuoyCf/3110hISIC7uzuUyva/9uTm5iIoKAhbt27ttM7noTvnoDdo/005OTkhOzsby5Ytk7140KapqQlxcXFwc3NDdXW1aNu/pd+I6N+PU76JiPq48vJyLFq0SHZba2srFi5ciOzsbAwcONCgxxUEAUlJSZrXs2bN6nIdCoUCw4YNw7p162BiYiJJoPfs2YNly5Zh/PjxoriNjQ3y8vJEsdDQUJibm+t03IkTJ3a5rV0llwA9e8fszuJ9gY2NjSRmZ2eHgIAAneuQGwU3JLVaDbVajZqaGty8eRMFBQUoKipCVlYWzp8/LxrV3bx5M8LCwrrUJrmksaysTLbskydPZEeDO0o8e4ONjQ1KSko0r5VKJZYvXy574UWOg4OD6PWwYcOwY8cOxMTEID8/H7m5uSgqKkJeXh5OnjyJ8vJyTdmysjLExsZi48aNojp6ut+IiAyBCTURUR8XGhra4XTNkpISLF++3ODTIq9du6aZqvnqq692e9ryJ598gtjYWFGi3Nraik2bNuGnn34SlZ0yZYpkzbiXlxcCAwM7PU5LS0uvjOrJJe1paWkQBEGSpKSkpPR4e3rKyJEjYW1tLfoM1tbWYsuWLTA1Ne10/97qD+DpI6BUKhVUKpUm9sUXXyAiIkLzuqGhAbm5uV266DJlyhRJLD09HY2Njejfv78onpKSIlo/DTwd0e1o/XRvmDJliiihbm1thVqtxrRp0zrdt6M+VCgUcHFxgYuLiyZWU1MDOzs70cwEuTXcbXqq34iIDIFTvomI+rBdu3YhOTlZFFu5ciX8/f1Fsfj4eIPf9Ornn3/W/N7V6d5ylEolNmzYIIkfO3YMOTk5otj7778vKRcWFtbuDa6am5tx9uxZLFmyRHJueoqnp6dktCw/Px/btm0TxVJTU3H48OFeaVNPUCgUeO+990Sx+vp6qNVqyTTeNpWVldi/fz9UKhUOHDjQY23LzMzEihUrkJmZKXlGdhvtkdI2T5486dJx2m62pa2urg5hYWGi5LmiogJr166V7N9bn8mOyP1NLVy4EPn5+bLlm5qacPz4ccybNw8ff/yxaNvq1auxb9++di/01dTUSM6x9uve6jciIkPgCDURUR9VUFAg+XLu6OiIyMhI1NXVISMjQ3RjrKVLl2LatGmwtbU1yPENnVADwPz587Fp0yaUlpZqYoIgIDIyEt9//70m5ubmhjfffBMnTpzQxKqqquDu7o7JkyfD2dkZFhYWqK2tRXFxMbKzszVrPLVHuXqSlZUVAgMDsW/fPlF8zZo1SExMxPjx41FSUoKTJ0+2mzT0FZ999hni4+NFN5FLSkqCnZ0dVCoV7O3toVAoUFVVhdzcXBQUFGjec0hISI+1q76+HjExMYiJiYGFhQXGjRuHUaNGwdzcHE1NTbh27ZrkHgNKpVKvO0d/+eWXmD9/vii2d+9eXLhwASqVCo8ePcLx48fx8OFDURlzc3OsXr26y8cztLlz5yIyMlJ08aq4uBhjx46Fu7s7HB0d0b9/fzx8+BCFhYXIycnB48ePAQBBQUGiujIzM7Ft2zYoFArNHbmtrKxgbGyMe/fu4dSpU5Ib0WlfkOjNfiMi6i4m1EREfVBzczMCAwNFNyJTKpXYt28fTE1NYWpqip07d+KDDz7QbK+urkZwcDBSUlJ0XhfZnrKyMs0XWjs7O0yaNKlb9bXp168f1qxZgxUrVojihw4dwubNm+Ho6KiJ7d+/H25ubrh9+7ao7NWrV3H16lWDtKe7oqOjcfz4ccljpS5evIiLFy9qXtvb27e75rYvGDlyJOLj46FWq0UXB5qamnDy5Mnn2LL/qqmpQUZGBjIyMjosN2fOHMkdqnUxb948pKenY/fu3aJ4QUEBCgoKZPcxMjLCwYMHMWTIkC4fz9CUSiV+/PFHuLm5iS7ECYIg+bzqShAE5OfntzvK3cbY2BiLFy+W3dbT/UZE1F2c8k1E1AeFh4dLksYVK1bg9ddf17yeO3cuZs+eLSqTlpaGmJiYbh9f++7eb7/9drfr07Zo0SLJF+OWlhZER0eLYtbW1rh8+TLeffddnes2MzPD9OnTDdJOXVhbWyM1NbXDhMnb21uShPVFAQEBSEtLw4gRI3Tex8HBAU5OTj3Wpq5eOOpuX+zatQuRkZEwMTHptKytrS1SU1P1uplfT3FycsIvv/wi+j/SGUtLS0ydOlUU68p579+/P+Li4kTP2O7tfiMi6g6OUBMR9TEXLlyQJJdtU72f9e233yI9PV00Qrp+/Xr4+Phg7NixerehO4/L6oyZmRnCwsKwadMmUTwuLg7h4eGim59ZWVnh6NGjuHHjBuLj43Hx4kX8/vvvqKmpgVKphIWFBV5++WVMmDAB3t7e8PX1NcizsrtiwoQJyM3NxVdffYXExESUlpbCzMwMrq6uCAoKQmhoqOQGa32Vl5cXioqKcOTIESQlJSErKwvl5eVoaGiAmZkZbGxs4OzsjKlTp8LX11eSiBmat7c3cnJycOrUKVy5cgV5eXkoKytDbW0tBEHAgAEDMGLECEyePBlqtRozZszo1vEUCgU2btyIkJAQ7NmzB6dPn0Z+fj6qq6vRr18/WFtbY/LkyZg5cyYCAwN1Srx720svvYSMjAykp6cjISEBly5dQmlpKWpra2FsbIxBgwbByckJkyZNgo+PD7y8vCTv48SJEzhz5gwyMjJw/fp1FBcXo6KiAk1NTTAxMcHgwYPh7OwMHx8fBAcHSy449Xa/ERF1h0LQfuYAERFRJxoaGmBlZYUnT55gwIABqKys/EcmBoZ27tw5eHp6imJvvPGG6MLE2rVrMXz48N5uGhE94/z580hMTNS8Tk1NlTxqj1+BicgQOEJNRERdkpKSormbrq+v7/9EMt2etLQ0pKWlaV4HBwczoSb6B7h+/Tq++eab590MIvofwISaiIi6xNzcHOHh4QAAPz+/59waIiIioueHCTUREXWJr68vfH19n3cziIiIiJ47rqEmIiIiIiIi0gMfm0VERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkBybURERERERERHpgQk1ERERERESkh/8DZKCFYAjSx8EAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "fig = plt.figure(figsize=(5, 3), dpi=200) # formats the plotted figure\n", + "\n", + "# Plot the integrated expression\n", + "plt.plot(x, d, linewidth=2)\n", + "\n", + "# Format for publication quality\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=10, fontweight='bold')\n", + "plt.ylabel('δ* [dimensionless]', fontsize=10, fontweight='bold')\n", + "plt.xticks(fontsize=8)\n", + "plt.yticks(fontsize=8)\n", + "plt.grid(False) # Remove grid lines\n", + "\n", + "# Customize plot layout\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QK8RXm8ZboYw" + }, + "source": [ + "### 3-4-Define the entrance length\n", + "\n", + "At what value of x does the boundary layer become fully developed?\n", + "\n", + "Hint: What is the coordinate where $δ$ = 1?\n", + "\n", + "Store your solution as a numpy array labelled `Le`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EYKTX9Qfc20I", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "e54962a0-a928-473c-b68b-a118dde977b3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Le (x @ δ*=1) = 7955615.397\n" + ] + } + ], + "source": [ + "### BEGIN SOLUTION ###\n", + "Le = np.array(x[-1])\n", + "### END SOLUTION ###\n", + "\n", + "# Print Value\n", + "print(\"Le (x @ δ*=1) =\",np.round(Le,3)) # we want to know the dimensionless\n", + " # length at which del is 1 since this will give us our entrance length where\n", + " # flow is stil developing" + ] + }, + { + "cell_type": "markdown", + "source": [ + "###3-4-Compare the result of approximation with the integral method\n", + "Let's first find the entrance lenght for the formula one wind tunnel" + ], + "metadata": { + "id": "Hx9-mqmWPs3u" + } + }, + { + "cell_type": "code", + "source": [ + "def entrance(d, x, Re = 62666667):\n", + " '''Solving for the entrance length of the tube with non constant velocity\n", + " Args:\n", + " d: δ_star; Normalized δ; partial derivative wrt x or y (numpy array)\n", + " x: x_star; Normalized x; position along channel (numpy array)\n", + " Re: Reynolds number, constant dimensionless quantity used to show\n", + " turbulence or roughness of flow. Set to unity as default value (float)\n", + " Returns:\n", + " dxdy: Normalized expression for the entrance length\n", + " '''\n", + "\n", + " # assume Re is at unity for the example\n", + "\n", + "### BEGIN SOLUTION ###\n", + " dxdy = (Re*d/6)*((1+(2*d))/(2-d)**2)\n", + "### END SOLUTION ###\n", + "\n", + " return dxdy\n", + "\n", + "# Integrate the solution in scipy using defined function\n", + "\n", + "### BEGIN SOLUTION ###\n", + "dspan = [0, 1] # since del is dimensionless it will range from 0 to 1\n", + " # where del of 0 is at the entrance of the tube and at a del of 1 is the\n", + " # begining of fully developed flow\n", + "\n", + "n = 300 # number of steps in linspace\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "\n", + "# Solve using scipy.integrate.solve_ivp\n", + "soln = integrate.solve_ivp(entrance, dspan, xo, t_eval= tspan)\n", + "d = soln.t\n", + "x = soln.y[0]\n", + "### END SOLUTION ###\n", + "\n", + "\n", + "fig = plt.figure(figsize=(5, 3), dpi=200) # formats the plotted figure\n", + "\n", + "# Plot the integrated expression\n", + "plt.plot(x, d, linewidth=2)\n", + "\n", + "# Format for publication quality\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=10, fontweight='bold')\n", + "plt.ylabel('δ* [dimensionless]', fontsize=10, fontweight='bold')\n", + "plt.xticks(fontsize=8)\n", + "plt.yticks(fontsize=8)\n", + "plt.grid(False) # Remove grid lines\n", + "\n", + "# Customize plot layout\n", + "plt.tight_layout()\n", + "\n", + "# Show the plot\n", + "plt.show()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 597 + }, + "id": "ZerxXUKptP6G", + "outputId": "8899dd70-2dc6-45e9-b135-2ec64fc2cad9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAJECAYAAAD3xWxzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACW3klEQVR4nOzdd3hUZf7+8XvSey+UhBqadCSRKgiigC5gQQV1QVnLuqi4rivWxfJTdHUXFHRdOwpfFRCUBaWJICAdAeklgTRIgVRIP78/QkZiEkjCzJmU9+u6cjE555nnfAIoufM0i2EYhgAAAAAAQI04OboAAAAAAADqIwI1AAAAAAC1QKAGAAAAAKAWCNQAAAAAANQCgRoAAAAAgFogUAMAAAAAUAsEagAAAAAAaoFADQAAAABALRCoAQAAAACoBQI1AAAAAAC1QKAGAAAAAKAWCNQAAAAAANQCgRoAAAAAgFogUAMAAAAAUAsEagAAAAAAaoFADQAAAABALRCoAQAAAACoBRdHF4DLk5eXpz179kiSQkND5eLCHykAAAAAXKioqEipqamSpK5du8rDw8Mm/ZK+6rk9e/YoJibG0WUAAAAAQL2wZcsWRUdH26QvpnwDAAAAAFALjFDXc6GhodbXW7ZsUdOmTR1YDQAAAADUPcnJydaZvRdmqMtFoK7nLlwz3bRpU0VERDiwGgAAAACo22y57xRTvgEAAAAAqAUCNQAAAAAAtUCgBgAAAACgFgjUAAAAAADUAoEaAAAAAIBaIFADAAAAAFALBGoAAAAAAGqBQA0AAAAAQC0QqAEAAAAAqAUCNQAAAAAAtdBoA/XBgwf19ttva+LEieratatcXFxksVj08ssvX1a/q1at0siRIxUSEiJPT0917NhRzzzzjHJycmxUOQAAAACgLnBxdAGO8u6772rmzJk27fPf//63/vrXv8pisWjgwIEKDw/XTz/9pFdeeUULFy7U+vXrFRISYtNnAgAAAAAco9GOUHfp0kV/+9vfNHfuXO3fv1933333ZfW3c+dOPf7443J2dtbSpUu1du1affXVVzp69KiGDh2qgwcP6sEHH7RR9QAAAAAAR2u0I9R/+tOfyn3u5HR5P1t49dVXZRiG7rnnHo0YMcJ63cvLSx9++KHatGmjhQsX6sCBA+rYseNlPQsAAAAA4HiNdoTalgoKCrR06VJJ0vjx4yvcb9mypfr37y9JWrRokam1AQAAAIDZSkoMpWTnOboMu2u0I9S2dOjQIZ09e1aS1Lt370rb9O7dWz/99JN27txpZmkAAAAAYBdFxSVKzsxTXHqujqef1fH0XMWln9WJ9LM6fjpXBUUlOvDSCLm5NNxxXAK1DcTGxkqSAgIC5OvrW2mbyMjIcm2rKyEh4aL3k5OTa9QfAAAAAFRXYXGJ4k+f1fH0s9bgHJeeqxPpZxV/5qwKi42Lvj8x45xah3ibVK35CNQ2kJ2dLUny9q76L4qPj48kKSsrq0Z9lwVxAAAAALCHwuISJZ45p9j0XMWlnf84H5wTzpxTccnFQ/PFxKXnEqgBAAAAAPVXUXGJEjPOKfZ3gTkurTQ0F11GaL6Y42m5Uge7dF0nEKhtoGyad25ubpVtcnJyJEl+fn416js+Pv6i95OTkxUTE1OjPgEAAAA0PEXFJUrKyPttpDn9t/Acf/qs3ULzxRw/fdb0Z5qJQG0DrVq1kiRlZGQoOzu70nXUZcG4rG11RUREXG55AAAAABqI4hJDSedHmo+n5yo27beR5uqsaba3AC9XtQz2VqtgL7UM8tJVbYIdWo+9EahtoEOHDvLy8tLZs2e1bds2XXPNNRXabNu2TZLUq1cvs8sDAAAAUI+Uhea487tml61rjk3PVfxpx4fmMF93tQz2sgbnFtYA7S1/L1eH1mY2ArUNuLm56YYbbtD8+fM1b968CoH6+PHj2rhxoyTppptuckSJAAAAAOoQwzCUllOg2LRcHUvNUWxaro6m5lp30C4oLnFofWG+7moV4q3Wwd5qGeJV+muwt1oGe8nbnRhZht+JGpg1a5ZmzZqlmJgYzZkzp9y9qVOnasGCBfr44491yy23aPjw4ZKks2fPatKkSSouLtYtt9yijh07OqJ0AAAAAA5wtqBIsWm554NzrjVAH0vLVXZekUNrC/V1Px+UvUrDc4i3WhGaa6TR/i7t2LFDDz30kPXzo0ePSpLee+89/e9//7NeX7RokZo2bSpJSktL08GDB9WkSZMK/fXq1Utvvvmm/vrXv2rkyJEaNGiQwsLC9NNPPyk5OVkdOnTQf/7zHzt/VQAAAADMVlxiKPHMOR1Ly/ktNJ9/nZyZ59DaQnzc1aqSwNwqxFs+hObL1mh/B7OysrR58+YK1xMSEpSQkGD9PD8/v9p9PvbYY+ratavefPNNbdmyRbm5uWrRooWeeuopPfXUU5VuVgYAAACg7jMMQ2fOFlpHl0uDc2loPu7gKdohPm7n1zN7q3VI6drm1iGlwdnXo3GtaTabxTAMx65ox2VJSEhQZGSkpNKdxNkVHAAAAKi9vMJixaX/Nj376Pn1zcdSc5V5rtBhdQV5u/020hzsrZYXrG/2IzRfkr1yU6MdoQYAAADQOJWUGErKPKdjqb9tCFY26pyUeU6OGnL093RV6xBvtQkp3QCsVYjX+ZFmb/l7EprrIgI1AAAAgAYpv6hYcWlndSQlR0dTc6y/HkvN1bnCYofU5ObspJbBpUG5TaiP2oR4q01o6etAL1dZLBaH1IXaIVADAAAAqNcyzxbqSGq2jqbk6khqjo6m5OhIao7iT59ViYNGm5v6e6hNqPf5EWcftQ71VtsQHzUP9JSzE6G5oSBQAwAAAKjzyqZpH03NtY40Hz3/a1pOgUNq8nV3+S00h/pYX7cO8ZaXG1GrMeBPGQAAAECdUTZN+8Ip2kdSHDdN28XJohbBXmoTUhqY24T8FqBDfNyYot3IEagBAAAAmK50mvZvo8xl4fmEg6Zph/m6W9cyl61rbh3io8hAT7k4O5lfEOoFAjUAAAAAuzAMQ6nZ+TqckqNDp7J1JKUsOOcqLSff9HrcXJzUJsRbbUN91DbUW23DfKzrm33ciUaoOf7WAAAAALgshmEoJTtfh05l6/CpHB1OKfs1xyFnN/t7uioqrDQ0l/7qo6gwH0UEerEhGGyKQA0AAACgWgzD0MmsPB0+9duI86FT2TqckqPsvCLT62ke4Km2YT6KCvVR2zDv87/6KNibtc0wB4EaAAAAQDmGYSgpM0+Hfxeaj5zKUXa+ucHZzdlJrUO8rSPObc+POLcJZSdtOB5/AwEAAIBGquwoqsMpOTp8frr2oZQcHTmVrdwCc3fUvnCadtkU7bahPooMYpo26i4CNQAAANDAlZQYSsw4Z13bfOhUjo6klI46nzU5OJdN0/79+mamaaM+IlADAAAADYRhGErNydehkzk6cDJLB09mW6drmx2cI4M81T7MV1HhPmoX5qv24aXh2ZvdtNGA8LcZAAAAqIdy8ot08GS2NTQfOJmlQ6dydDq3wLQaLBapRZCX2oX5KOp8aG4X5qu2YaxvRuPA33IAAACgDisoKtHR1JzzoTlbh06W/pqYcc60GiwWqWWQl9qF+6pdmI/alQXnUB95ujmbVgdQ1xCoAQAAgDqgpMRQwplz50eaS0PzwZPZik3LVVGJYUoNThapVXDp2ub24b5qF/7b5mAergRn4PcI1AAAAIDJUrPzLwjNWTp4qnSXbbPWOTs7WdQy2Evtw34Lze3DfdU6xJvgDNQAgRoAAACwk7MFpeucy0aby9Y7p5u0ztlyfsS5Q/j59c3nR51bh3jL3YXgDFwuAjUAAABwmQzDUFJmnvYnZWl/cpb2n8zS/uRsxaXnyjBntrbC/dzVPtxXHZv4qkMTP3UI91VUGGucAXsiUAMAAAA1kFdYfH7UuTQ070vO0oHkLGXlFZnyfF93F3Vo4vvbR7iv2of7KtDbzZTnA/gNgRoAAACohGEYOpmVVzrinJx9/tcsxablyow9wtycnRQV5lMuOHdo4qum/h6yWCz2LwDAJRGoAQAA0OjlFRbrSErO+dHmbOu07YyzhXZ/dtmRVL+FZj91aOKrVsFecnF2svvzAdQegRoAAACNhmEYSs3O174LRp0PnMzS0dRcFZsw7Bzm615utLlDE1+1C/NlnTNQTxGoAQAA0CAVlxiKTcvR3qQs7U3K0r7zG4aZscO2m4uT2of7qFMTP3Vq6qeOTX3VqYkf65yBBoZADQAAgHovv6hYh07maG9SpvYmZenXpEwdSM7WuUL7n+sc5uuuTk39zn/46oqmfmod4s10baARIFADAACgXsnOK9T+5Gz9mph5fvQ5U0dSclRk5ynbrs4WtQvzVcfzoblTUz91bOKrYB93uz4XQN1FoAYAAECdlZqdbx113nc+PMeln7X7c0N83NWpqa911LlTUz+1DfWRK6POAC5AoAYAAIDDGYahhDPnrOG5bOT5VFa+XZ/r4mRRVJiPOjbxvWDatp9CfRl1BnBpBGoAAACYqqi4RMfSckvDc+Jv4Tkrr8iuzw3wcrVO1S4beY4K85G7CztsA6gdAjUAAADsprjE0LHUHO1OyNSexNKPvUmZyisssetzm/l76Ipm/urczK/0o7m/mvl7yGKx2PW5ABoXAjUAAABsoqTE0LG0XO1JzNCehCztSczQ3qQsnS2w307bFovUOsRbnS8Mz838FcTxVABMQKAGAABAjZWUGIpLzy0ddU7I1O7ETO1LylJOvv2mbbs6W9Q+3Fedm/mpS/PSAN2xiZ+83fmWFoBj8H8fAAAAXJRhGDqeftY6ZXt3Qob2JmYp247h2dvNWVecH22+4vzIc7swX7m5sMs2gLqDQA0AAAArwzAUf/pcaXBOzNCv50eg7blhWLC3mzU8l03bbhXsLScn1jsDqNsI1AAAAI3Yycw8/RKfoV0JpeF5d0KmMs8V2u15Yb7u6hbhry7N/dW1ub86N/NXuJ87m4UBqJcI1AAAAI1Edl6h9iRk6peEDP1yojRE2/Oc5xCf38Jzt+b+6hrhr3A/D7s9DwDMRqAGAABogAqKSnTwZHa58Hw0NUeGYZ/nBXu7qWtE6ahz1+b+6hYRwMgzgAaPQA0AAFDPlW0atishQ7/El37sTcpSQZF9znoO9HJV14gAdW3up67NA9Q1gjOeATROBGoAAIB6Jj0n/3x4ztSu8+ufM87aZ92zv6druWnbXZr7KyLQk/AMACJQAwAA1GnnCor1a1JpcC7bPCz+9Dm7PMvXw6V0ynaEv7o1D1DX5v6KDCI8A0BVCNQAAAB1RNnU7R0nzpR+HM/QwVPZKi6x/cJnN2cndWrmp56RAeoe6a/uEQFqHeJNeAaAGiBQAwAAOMjZgiLtis/UjhNntPPEGe08kaH03AK7PKtNqLd6RASoR4sAdY8IUMemvnJ3cbbLswCgsSBQAwAAmMAwDJ04fdY68rzjxBkdOGmf0ecQH3f1iAxQj0h/dY8MULeIAPl7utr8OQDQ2BGoAQAA7OBsQZF2J2RaA/Qv8WeUlmP70WcvN2d1be6vHpEB6n7+gx23AcAcBGoAAIDLZBiG4k+f+23t84kz2p9s+9FnJ4vUoYmfekT+FqCjQn3k4uxk0+cAAKqHQA0AAFBDeYXF2hWfoR0nMqzrn+0x+tzU30O9WgRaw3OX5n7ycuPbNwCoK/g/MgAAwCWczi3Q9uNntC3utLbGndaexEwVFtt29NnN2Umdm/upV4vA0o+WAWrq72nTZwAAbItADQAAcIGy6dtb405r2/HT2hp3RkdScmz+nCZ+HurVMkC9WgSqZ4tAdW7mJw9Xdt0GgPqEQA0AABq1ouISHTiZXRqg485oa9xppWTn2/QZrs4WdW7mbx157tUiUM0CGH0GgPqOQA0AABqV3Pwi/RKfoa1xp7X9+BntOH5GuQXFNn1GuJ97uanbnZv5M/oMAA0QgRoAADRoKdl52h53Rlvjzmjb8dPam5Rl0923XZ0tuqKZv3q1CDgfoAM5tgoAGgkCNQAAaDDK1j9vik3XltjT2hZ3WnHpZ236DH9PV/VuGajerYLUu1WgujZn9BkAGisCNQAAqLcMw1BsWq42x57W5mPp2hx7WsmZeTZ9RkSgp6LPh+foVkGKCvWRkxOjzwAAAjUAAKhHDMPQkZQcbTofoLfE2nYDMSeL1KmpX7kRaI6uAgBUhUANAADqrJISQwdPZVtHn7fEnlZ6boHN+vdwdVLPyEBFtyoN0D1bBMjXw9Vm/QMAGjYCNQAAqDOKSwztT87SpvMBemvcaWWcLbRZ/yE+burdsnTkuXerIHVu5idXZyeb9Q8AaFwI1AAAwGGKikv0a1KWdQR6a9xpZecV2az/1iHe1tHn6FZBahXsxe7bAACbIVADAADTlJQYOnAyWxuPpmnj0dI10Dn5tgvQUWE+uqp1kK5qE6yrWgcp3M/DZn0DAPB7Ng3Ubdq0sWV3lbJYLDp69KjdnwMAAC5f2S7cG46m6+ejafr5aLrO2HAKd8cmvtYAHdM6SCE+7jbrGwCAS7FpoI6Li5PFYpFhGLbsthymaQEAULclZZzThiOl4Xnj0XSdzLLNMVYWi3RFUz9d1TpYV7UJUkyrIAV6u9mkbwAAasMuU77tFXrtGdQBAEDtpOXkW8Pzz0fTFJd+1ib9Olmkrs39rdO3e7cKkr8nO3ADAOoOu62htnX4ZWQaAIC6ISuvUJuPndbG81O4D5zMtkm/Lk4WdY3wt45A924ZyBFWAIA6zW6Bunnz5oqKirJJX0eOHFFiYqJN+gIAADWTV1is7cfPaP2R0o3E9iRkqMQGPzd3drKoW4S/+rYJVt+2wbqyZaC83NgvFQBQf9jtX62xY8fqX//6l036euyxxzRz5kyb9AUAAC7OMAwdPJWt9YfTtO5wmrbEpiuvsMQmfXdq6qd+bYPVPypY0a2CGIEGANRr/BgYAAAoJTtPG46k6afDaVp/OE0p2fk26bdNiLf6tg1Wv7Yh6ts2WEFsIgYAaEBsHqjZOAwAgLovr7BYW+NO66fDpSF6f3KWTfpt6u+hfm1D1K9tsPpFBaupv6dN+gUAoC6yaaB+9NFHra8HDRpks35t2RcAAI2RYRg6cDJbPx1O1U+H07Ql9rTyiy5/GneQt9v5EejSUehWwV5sJAoAaDQsRiMfUp4/f75mz56tXbt2qaCgQFFRUbrzzjv12GOPydW1Zuu6cnNz9dZbb2nhwoU6dOiQzp07p+DgYPXu3Vv333+/Ro0aZfP6ExISFBkZKUmKj49XRESEzZ8BAKifUrLytP78NO6fDqcpLefyp3H7urvoqjZB6nt+FLpDuK+cnAjQAIC6zV65qVGvoZ4yZYpmzpwpFxcXDRkyRD4+Pvrhhx/05JNPasmSJVqxYoU8Pas3VS09PV1XX3219u3bJx8fH/Xr108BAQE6cuSIli5dqqVLl+qRRx5hczUAgN0UFJVo2/HTWnswVWsPpdrkOCtnJ4t6RAZoYLsQDWwXqu4R/nJxdrJBtQAA1H91KlBnZWUpPz9foaGhdn/W4sWLNXPmTPn4+Gjt2rXq1auXJCktLU1DhgzR+vXr9dxzz+mNN96oVn8vvvii9u3bpyuvvFIrVqxQUFCQ9d6yZcs0evRovfXWWxo3bpz69Oljl68JAND4JGee048HU7XmQIo2Hk1XTn7RZffZKthLA84H6L5tg+XHTtwAAFTKtECdlJRkfe3u7q7g4GDr5wsWLNBzzz2nQ4cOSZICAgL04IMPatq0aTWedl1dr7zyiiRp6tSp1jAtSSEhIXrnnXc0cOBAzZo1S88995z8/f0v2d8PP/wgSXryySfLhWlJGjlypK655hqtXLlSP//8M4EaAFBrhcUl2hZ3Rj8eStGPB1J18NTlj0L7ebiof1RIaYiOClWLYC8bVAoAQMNnSqDeuHGjBg4caP384Ycf1owZMySVjt7efvvtkn7bIfzMmTOaPn264uPjNWfOHJvXk5iYqK1bt0qSxo8fX+H+gAEDFBkZqfj4eC1btkzjxo27ZJ8eHh7VenZISEjNigUANHrJmee09mCq1hxM0YYjlz8K7exkUa8WARrYLlQD2oWoW3OmcQMAUBumBOp169ZZw7LFYtHYsWOt91588UUZhiGLxVJuV1DDMDR37lz9+c9/Vt++fW1az86dOyVJQUFBat26daVtevfurfj4eO3cubNagXrEiBHatm2bXnvtNQ0dOrTClO81a9aoSZMmdtmYDADQsFw4Cr32oG3WQrcO8baug+7TJki+TOMGAOCymRKoywKsJHl7e1unPCclJWnLli3WIH1h6C4zb948mwfq2NhYSVKLFi2qbFO2A1xZ20t58skntWXLFi1fvlwtW7ZU//79rZuSbd++Xf3799eHH35YrenjF0pISLjo/eTk5Br1BwCom05m5unHgyn68WCqNhxJU/ZljkL7urtoQLsQXd0+VAOiQhQZxDRuAABszZRAffjwYUmlQblr165ydnaWJG3YsKFcuzvvvFNpaWlavny5NVRv3rzZ5vVkZ5f+pN/b27vKNj4+PpJKN0qrDm9vby1ZskRPP/203nzzTS1fvtx6Lzg4WNdee62aN29e41rLgj0AoGExDEO/JmZp1f5TWn3glH5NrN6/NxfTsYmvrukYpsHtQ9WrZaBcmcYNAIBdmRKo09LSrAG5Xbt21uv79u2zvo6JidFnn32mkpISXXHFFTp8+LAMw6j2CLGjJScna/To0dq9e7defvlljRs3TmFhYdq3b5+effZZvfDCC1q8eLF++ukn+fr6OrpcAIAD5BUWa8ORNK3an6IfDpzSqazLOxe6bBR6cIdQDWofpib+1dvPAwAA2IZpgbqMn5+f9fXBgwetr/v16ydJcnJyUt++fa07fpeNJttSWaDNzc2tsk1OTk6Fei9mwoQJ2rp1q15//XU98cQT1uvR0dH63//+pyuvvFK7du3SG2+8oRdeeKHatcbHx1/0fnJysmJiYqrdHwDAXClZeVp9IEWr95/S+iNpyissuaz+Ojbx1eAOYRrcIVRXMgoNAIBDmRKoS0p+++ahLKhK5QP1hSPXF47glq2rtqVWrVpJunhYLbtX1vZiEhMTtXLlSkmqdAMzV1dX3XrrrdqzZ49WrVpVo0AdERFR7bYAAMczDEP7krO0en9piN6VkHlZ/fm4u2hA1PlR6A6haurvaaNKAQDA5TIlUAcEBCg1NVWGYWjjxo2SpIyMDO3du9fapn379tbXF4Zue0yP7tmzpyQpPT1dsbGxle70vW3bNkkqd0Z1VU6cOGF9XdWIdtlmZKdPn65xvQCAui2vsFg/H0vX6v2n9MP+FCVl5l1Wfx2b+GpQh1ANbh+mK1sGys2FUWgAAOoiUwJ1VFSUUlJSJJVuUNavXz/l5OSooKDA2qZ79+7W12UB1WKx1Gojr0uJiIhQdHS0tm7dqnnz5umZZ54pd3/9+vWKj4+Xu7u7Ro4cecn+Lqxx8+bNGjZsWIU2mzZtkqQqj+kCANQvZ3ILtGr/Ka3cVzqV+2xBca37cndxUv+oEA3tFKZrOoSpWQCj0AAA1AemBOpBgwZp48aNslgsMgxDmzdvLndEVo8ePRQcHGxtv2fPHusmZh07drRLTU8//bRuuukmTZ8+XSNGjLCORKenp+uhhx6SJE2ePLncMVeLFi3SU089pebNm2v16tXW6y1atLAG9EcffVTLli0rN1X8888/15dffilJGj9+vF2+HgCA/SVlnNOKvSe1fO8pbYk7reKS2i9LCvFx19COYRraKUwD2oXIy82Uf5IBAIANmfKv95/+9Ce98cYbKioqsgblsnAtSQ8++KC17Z49e5SammptFx0dbZeaxowZo0ceeURvvfWW+vTpo6FDh8rb21urV69WRkaG+vfvr5deeqncezIzM3Xw4EHl5VWcyvfRRx/pmmuu0f79+9WpUyf16dNHISEh2r9/v3Vq+1133aU777zTLl8PAMA+jqRka/neU1q+96R2X+Z66E5N/XRtpzAN7RSubs395eRksVGVAADAEUwJ1K1bt9a7776rP//5zyosLCx3b8yYMbrvvvusn5eN5BqGIYvFoiFDhtitrpkzZ6p///6aPXu2Nm7cqMLCQrVt21ZTp07VY489Jjc3t2r31aVLF/3666/697//re+++05bt25Vfn6+AgMDdf311+vee+/VbbfdZrevBQBgG4ZhaFdCppbvPanle0/qWGrVJ0Jcipuzk/q2Dda1ncI0pFO4mjOVGwCABsVi2GMb7SocPnxYX331lU6cOCFfX18NHTpUI0aMKNfm22+/VWpqamlxFovuvfdes8qrlxISEhQZGSmpdGdydgUHgJorLC7RltjTWr73pFbsPaWTWbXfVCzEx03XdCgdhR7YLkTe7kzlBgDA0eyVm0wN1LA9AjUA1E5eYbHWHUrV8r2ntPrAKWWcLbz0m6rQIdxX115RGqJ7RAQwlRsAgDrGXrmJH5sDABqNswVFWnMgVUv3JGnNgVSdK6zdztwWi9SrRaCu7xyu665oolYh3jauFAAA1Ad1IlAXFxdrwYIF2rx5s/Lz89W+fXuNGzdOYWFhji4NAFDPnS0o0g8HUrRsT7J+OJCivMKSWvXj6mxR37Yhur5zuIZ1CleYn4eNKwUAAPWNKYH61KlTeu6556yfX3nllXrggQckSRkZGRo6dKh++eWXcu954YUXtHjxYl199dVmlAgAaEBsFaI9XZ01uEOohndposEdwuTv6WrjSgEAQH1mSqBevXq1PvjgA+tRWDExMdZ706ZN086dOyu8JyMjQ7fddpuOHDkiHx8fM8oEANRjZSF66e5krTlY+xAd6OWqoZ3CdX3nJhrYLkQers42rhQAADQUpgTqTZs2SfrtKKwbbrhBklRYWKhPP/3UGrQvZBiGUlNT9emnn+ovf/mLGWUCAOqZ3PzfRqIvJ0Q38/fQdZ2b6LrO4YppFSQXZycbVwoAABoiUwL1nj17rK9bt26tpk2bSpK2bdumzMxMWSwWXbjZ+IUB+/vvvydQAwCszhYUafX+yw/RrYK9NLJrUw3v0kRdm/tX+sNdAACAizElUCcnJ0sqDcpdunSxXt+xY4ek0tHowMBAbdmyRSdPntSwYcOUn58vwzC0b98+M0oEANRhhcUl+ulwqr75JUkr953S2YLa7c5dFqJv6NZUVzT1I0QDAIDLYkqgTktLs37T0qRJE+v1AwcOSCoN2iNGjFDbtm3Vtm1bDRkyRMuWLZMkpaSkmFEiAKCOKSkxtCXutL7dlaRle5JrfU50q2Av3dCtqUZ2JUQDAADbMiVQZ2ZmWl87O/+2ucuhQ4esrzt37mx93bJlS+vrvLw8O1cHAKgrDMPQ3qQsfbsrSUt2JSk5s3b/BhCiAQCAGUwJ1J6ensrNzZUknThxwnp979691tdt27a1vi4p+W09nLu7uwkVAgAcKTYtV9/+kqRvdiXqWGpurfpoHeKtkV2bEKIBAIBpTAnUzZo10+HDh2UYhlavXq3vv/9eCQkJSkpKsrbp1KmT9XV6err1dWhoqBklAgBMdjIzT//bnaRvdyVpd0Lmpd9QCUI0AABwJFMCdbdu3XTo0CFZLBbl5eVZj80q293bz8+v3GZlZVPBLRaLWrVqZUaJAAATZOcV6rs9J7VoZ6I2xabrggMeqq2Jn4dG9WimUd2bqXMzQjQAAHAcUwL1zTffrAULFkhSpUdkjRkzxvoNUVZWlvbt22f9vEePHmaUCACwk+ISQ+uPpOnrHQlavvdkrY65CvBy1ciuTTW6ezNFtwqSkxMhGgAAOJ4pgfq2227Tv//9b23dulUWi8Ualg3DkKenp5555hlr2+XLl6uoqMjapl+/fmaUCACwsYMns/X1jgQt2pmolOz8Gr/f09VZ13UO1+gezTQgKlRuLk52qBIAAKD2TAnUTk5O+u677/TYY49pwYIFOnfunCQpOjpaM2bMUFRUlLXtd999p+bNm0sqHb0eNmyYGSUCAGwgLSdf3/ySpK93JGhvUlaN3+/qbNGg9qEa1aO5ru0UJi83U/6ZAgAAqBWLYdRmBVvtFRUVKTU1Vb6+vvLx8THz0Q1SQkKCIiMjJUnx8fGKiIhwcEUAGpu8wmKt3p+ir3ck6MdDqSouqdk/KxaLdFXrII3u0VwjujRRgJebnSoFAACNlb1yk+k/+ndxcVHTpk3NfiwAwIYMw9COE2e0cEei/rcrSVl5RTXuo3MzP43p0Vx/6N5MTfw97FAlAACAfTl0Lt3Zs2d16tQp5eTkKCQkhKANAHVcSnaeFm5P1Pxt8TqWVvPzosN83XVTz+a6qVdzdWziZ4cKAQAAzGN6oM7KytJbb72lBQsW6Ndff7Xu+P3oo4/qjTfe0Kuvvqri4mJJUvfu3TV69GizSwQAXKCouERrDqbqy63xWnMwpcZTuj1cnXR95ya6uVeEBkSFyJkdugEAQANhaqBes2aNxo0bp9TU1ApHZ0mlm5dt2rRJy5YtkyQ1a9ZMo0aN4oxRAHCA2LRcfbk1Xgt3JCi1Frt0X9U6SLdcGaERXZrI18PVDhUCAAA4lmmB+qefftLw4cNVWFhovfb7M6kl6Y9//KOWLl0qSUpKStJPP/2kq6++2qwyAaBRO1dQrGV7kvXltnhtiT1d4/e3DvHWzT2ba0zP5ooM8rJDhQAAAHWHKYE6Ly9P48aNU2Fh4SVHm4cPHy5XV1cVFZVucLNy5UoCNQDYkWEY2p2QqS+3xWvJL0nKzq/ZBmN+Hi76Q/dmurlXhHq1CGBWEQAAaDRMCdQfffSRkpKSrN9kGYYhT09P63nUF/L19VWnTp20e/duWSwWbd261YwSAaDRyTxbqK93JujLrfE6cDK7Ru+1WKSB7UJ1e+9IXXtFmNxdnO1UJQAAQN1lSqBesmSJpNIgbbFY9I9//EPPPPOM3NzcKh3J6Nixo3bv3i3DMHTo0CEzSgSARsEwDO1KyNTnm45rya4k5ReV1Oj9zQM8NbZ3hMb2jlTzAE87VQkAAFA/mBKoy0abDcNQt27d9I9//OOi7YOCgqyv09LS7F0eADR4uflF+uaXJM3dfFx7k7Jq9F43Zydd1zlct0dHqn/bEDmxSzcAAIAkkwJ1enq6pNJNyKKjoy/ZvqCgwPo6Ly/PbnUBQEO3PzlLczcf1+KdScqp4drojk18dXt0pMb0aK5Abzc7VQgAAFB/mRKoPT09rbt75+bmXrL98ePHra/9/PzsVhcANER5haU7dc/dfELbj5+p0Xt93V30hx7NdHvvSHWL8GeDMQAAgIswJVCHh4crKytLhmFo7dq1KioqkotL5Y9OSkrS2rVrrVPEmzVrZkaJAFDvHUvN0bzNJ7RgR4IyzhZe+g0XiGkVpNujIzWya1N5urHBGAAAQHWYEqhjYmJ06NAhWSwWJScna9KkSXr77bcrtEtMTNQtt9xiPTLLYrHoqquuMqNEAKiXiksMrd5/Sp/+HKcNR9Jr9F5fDxfd0itCd17VQu3Cfe1UIQAAQMNlMQzDsPdDFi5cqLFjx1pHnS0Wi9zd3a3roy0Wi/z8/JSdna2ycsraLVmyRCNHjrR3ifVWQkKCIiMjJUnx8fGKiIhwcEUAzJB5tlBfbjuhOT8fV8KZikcQXkz3yADdeVUL/aFbM0ajAQBAo2Cv3GTKCPXNN9+sDh06WEepDcMot9mYYRjKzMy0fm6xWGSxWNS5c2fCNABc4NCpbH2yMU6LdiTqXGFxtd/n6eqsMT2baXxMS3WN8LdjhQAAAI2HKYHaYrHo//7v/9S/f3/l5eWV2+SmbET699c8PT31+eefm1EeANRpZdO6P9kYp41Hazatu0O4r+7q00KjezaXn4ernSoEAABonEwJ1JLUo0cPrVq1SjfffLNOnTol6beR6DJl4To8PFxff/21unXrZlZ5AFDn1HZat5uzk27o1lR3XtVCV7YMZKduAAAAOzEtUEtS3759deTIEc2ePVsLFy7U9u3bVVJSIklycnLSlVdeqZtvvlmTJ0+Wj4+PmaUBQJ1x8OT5ad07E5RXWFLt9zUP8NTdfVvqtt6RCuLcaAAAALszZVOyqpSUlCg9vXT6YnBwsJycnBxVSr3FpmRAw2AYhn46nKb3fzqmnw6n1ei9/doGa2K/VhraKVzOToxGAwAA/F693pSsKk5OTgoNDXVkCQDgUPlFxfr2lyR9uD5WB05mV/t9Hq5OurlXhCb0baUOTTjyCgAAwBEcGqgBoLHKOFuguZtP6NONcUrJzq/2+yICPTWhbyvd1jtS/l5sMgYAAOBINg3U69ats2V3VldffbVd+gUAsx1Pz9VH62P11baEGh171T8qWBP7tdaQjmFM6wYAAKgjbBqoBw8ebPPdZC0Wi4qKimzaJwCYbfvxM/rgp2NavvekSqq5c4Wnq7Nu7tVcE/q1UvtwpnUDAADUNXaZ8u3Afc4AoM4oKTG0cv8pvbf2qHacyKj2+8J83TWxfyvdGdOSad0AAAB1mF0Cta1GqQnmAOqjwuISfftLkt5de1RHUnKq/b6OTXz1p4FtNKp7M7m5cOoBAABAXWfzQE0IBtBY5RUW68ut8frvumNKzDhX7fdd3T5U9w1srQFRITZfNgMAAAD7sWmgnjBhgi27A4B6ISuvUJ/9fFwfrY9Vem5Btd7j6mzR6B7N9aeBrdWxiZ+dKwQAAIA92DRQf/zxx7bsDgDqtNTsfH20IVaf/3xc2fnV2zzR39NVd/VpoQl9WynMz8POFQIAAMCeOIcaAGoo/vRZvf/TMX25NV75RSXVek9EoKfuG9hGY3tHyMuN//UCAAA0BHxXBwDVFJeWq1lrjmjRzkQVV/Psq/bhPvrz4La6sVszuTqz0RgAAEBDQqAGgEuITcvV2z8c1je/JFU7SPeIDNBfronS0I5hcnJiozEAAICGyNRAnZ6ers8++0zr1q1TbGyssrOzVVJy8emSFotFR48eNalCAPjNsdQczfrhiBb/kqhq5mgNbBeiPw9uq75tgtmxGwAAoIEzLVB//fXXmjRpkrKysiRV/3gtviEFYLaj54P0N9UM0haLdP0VTfTQNW3VLSLA7vUBAACgbjAlUG/btk133HGHiorK74J7qbDMmdYAzHQkJUezfjisb3clVStIuzhZNKZncz04qK2iwnzsXyAAAADqFFMC9fTp01VUVMRoM4A66UhKjt4+H6Sr83M8V2eLbusdqT8PbquIQC/7FwgAAIA6yZRAvX79+nJhmpFnAHVB/Omzmrn6sL7ekVCtEWk3ZyfdHl0apJsFeNq/QAAAANRppgTqjIwMSaVB2mKx6PHHH9eDDz6opk2bysPDQ05OHCUDwDwpWXmateaI/m/LCRUWXzpJuzk76Y6Y0iDd1J8gDQAAgFKmBOqwsDAlJibKYrFo2LBh+uc//2nGYwGgnIyzBfrP2mP6ZGOs8govfsKAJLm5OGlcdKQeJEgDAACgEqYE6kGDBmnu3LmyWCxq06aNGY8EAKvc/CJ9tD5W/113TNn5RZds7+bipPExLfTgoLZq4u9hQoUAAACoj0wJ1A8//LD+7//+T4ZhaO3atdap3wBgT3mFxZq7+YTeWXNE6bkFl2xfFqT/PLitwv0I0gAAALg4UxYvx8TEaOrUqTIMQwcOHNC9996r9PR0Mx4NoBEqLjH01dZ4XfPGj3rpf/suGaadnSwaF9NCa58YrGmjOhOmAQAAUC2mjFC/+OKLcnNzU1hYmFJSUjRnzhx99dVXGjZsmFq2bKng4OCLvv/55583o0wA9ZxhGPrxUKqmLzugg6eyL9neYpFGdW+mKde2V+sQbxMqBAAAQENiMUw4w8rJyanSY7OqO+27uLjYLnU1BAkJCYqMjJQkxcfHKyIiwsEVAY7xa2KmXv1uvzYcqd7sl2s7henx6zqoU1M/O1cGAAAAR7NXbjJlhLrM74N0dbI8a60BXExixjm9ufygFv2SqOr8eLBPmyA9cX1HXdky0P7FAQAAoEEzNVD/PhxfKiybMHgOoJ7KyivUO2uO6qMNsSoouvQRWN0j/PXE9R3VPyqYH9QBAADAJkwL1IRjALZQUFSiuZuP663Vh3XmbOEl27cJ9dbfr++o6zuHE6QBAABgU6YE6o8//tiMxwBowAzD0A8HUvTy0v2KTcu9ZPsQHzc9em173REdKVdnUw40AAAAQCNjSqCeMGGCGY8B0EAdScnWi//br3WHUi/Z1sPVSfcNbKMHBrWVj7upq1oAAADQyPDdJoA6K/NcoWauOqw5P8epqOTiy0YsFmnslRH667AOauLPOdIAAACwP4cH6qKiIkmSi4vDSwFQRxSXGPpi6wm9ueKQTucWXLL9oPahempkR3VswhFYAAAAMI/pCwsLCgr0n//8R8OHD1dwcLDc3d3l7u6u4OBgDR8+XO+9954KCi79DbStzJ8/X4MHD1ZgYKC8vb3VvXt3vf766yosvPRmR1X55ptvNGrUKDVp0kRubm4KCwtTv3799OKLL9qwcqBh2nQsXTe+vV7PLPr1kmG6U1M/fT7pKn16bwxhGgAAAKazGCZuv71jxw7dcsstOnHihKSKO3+X7cDbsmVLLVy4UD179rRrPVOmTNHMmTPl4uKiIUOGyMfHRz/88IMyMjI0YMAArVixQp6entXur6CgQHfddZfmz58vT09P9e3bV+Hh4Tp58qT27t2r4uJipaWl2fRrsNcB5YDZEjPO6ZWl+7V0T/Il24b4uOmJ6zvo1isj5ezEzt0AAAC4OHvlJtPmWe/evVtXX321zp07Zw3Svz/Cpux6XFycrr76av3888/q0qWLXepZvHixZs6cKR8fH61du1a9evWSJKWlpWnIkCFav369nnvuOb3xxhvV7vO+++7T/PnzNWbMGL3//vsKCQmx3ispKdGWLVts/nUA9V1BUYk+XB+rt1Yf1rnC4ou2dXGy6J7+rfTw0Hby83A1qUIAAACgcqaMUJeUlKhLly46cOBAtc+BNQxDV1xxhfbs2WOXs2NjYmK0detWvfzyy3rmmWfK3Vu/fr0GDhwod3d3nTp1Sv7+/pfsb/Xq1br22mvVpUsX7dixQ66u5nyzzwg16rOfj6bruW9+1ZGUnEu2HdIxTM/c0EltQ31MqAwAAAANib1ykylrqL/++usKYdowjEo/LrR//34tXLjQ5vUkJiZq69atkqTx48dXuD9gwABFRkYqPz9fy5Ytq1afb7/9tqTSaeRmhWmgvkrJztNjX/6ice9vumSYbhPqrY/vidZHE6MJ0wAAAKhTTAnUixcvtr42DEMhISGaMWOGDh8+rLy8POXl5enw4cOaMWNGuWnSv3+vrezcuVOSFBQUpNatW1fapnfv3uXaXkxxcbFWr14tSbr66qt18uRJzZgxQ3/+8581ZcoUffrpp8rJufQIHNDQFZcYmvNznIa+uVaLdiZetK2vh4uevaGTlk+5Wtd0CDOpQgAAAKD6TFlDvWXLFlksFhmGIW9vb23cuFFt27Yt16Zt27Z65JFHNGLECPXs2dO61toe645jY2MlSS1atKiyTdl0gLK2F3Ps2DFrYN60aZMeeuihCgH6iSee0BdffKEhQ4bUqNaEhISL3k9OvvQGTkBd8Et8hp5dvEe/JmZdsu0d0ZH62/UdFOLjbkJlAAAAQO2YEqhTUlIklW5CNnLkyAph+kLt2rXTDTfcoPnz55d7ry1lZ2dLkry9vats4+NTOrU0K+vS3/ynp6dbX0+aNEn9+vXTG2+8oY4dO+ro0aN6+umntWzZMo0ePVo7duxQu3btql1rWbAH6qusvEK9/v0Bzd18QpfaseGKpn56+aYu6tUi0JziAAAAgMtgSqA+d+6c9fXvp3RXJjg42Po6Ly/PLjXZ0oVrv5s3b67ly5fL3b10ZK179+769ttv1aNHD/3666+aPn26PvzwQ0eVCphqxd6Teu6bX3UqK/+i7XzcXfT4de11d5+WcnE2ZSUKAAAAcNlMCdSBgYFKTU2t9hTuC9sEBATYvB5fX19JUm5ubpVtyqZs+/n5Vbs/SZo4caI1TJdxdnbWAw88oIcfflirVq2qUa3x8fEXvZ+cnKyYmJga9QnYW0p2nqZ9u1fL9py8ZNtR3Zvp2Rs6KczPw4TKAAAAANsxJVBHRUVZp27v2LFDL730kp577rlK27700kvasWOHdUfwqKgom9fTqlUrSRcPq2X3ytpeqr+yNeJt2rSptE3Z9ZqueeYYLNQnhmHoq23x+n9L9ysrr+iibduEeuul0V3UP+rSs1YAAACAusiUQD1o0CBt3LjRGjqnTZumzz//XMOHDy93Ftj333+vI0eOWNtZLBYNHjzY5vX07NlTUuna59jY2Ep3+t62bZskqVevXpfsz8fHRx06dNCBAweUlpZWaZuy62Vrs4GGJi4tV099vUc/H0u/aDt3Fyc9MrSd/jSwtdxdnE2qDgAAALA9UwL1pEmT9Prrr6ukpMQalg8fPqwjR46Ua1e2FrlsdNrZ2VmTJk2yeT0RERGKjo7W1q1bNW/ePD3zzDPl7q9fv17x8fFyd3fXyJEjq9Xn2LFj9dJLL2nVqlV67LHHKtxfuXKlJDE9Gw1OUXGJPlgfq3+vPKT8opKLth3YLkT/b0xXtQj2Mqk6AAAAwH5M2f2nTZs2+stf/lIuMJcF6ws/yq6XtZk8eXKV50RfrqefflqSNH36dO3YscN6PT09XQ899JAkafLkyfL397feW7RokTp27KihQ4dW6O+RRx5RYGCgli1bpvfee6/cvS+++EJz5861tgMaikOnsnXTOxs1/bsDFw3T/p6uemNsd825N4YwDQAAgAbDYhiXOsjGNoqKijRmzBgtW7bMGpqrYhiGbrzxRn399ddycbHfIPqjjz6qt956S66urho6dKi8vb21evVqZWRkqH///lq5cqU8PT2t7T/55BPdc889atmypeLi4ir0t3LlSo0aNUp5eXnq3LmzOnXqpKNHj2rnzp2SpOeee04vvviiTb+GhISEctPmWXMNMxSXGHr/p2P614pDKii++Kj0H7o30/M3XqFQX86UBgAAgGPYKzeZdj6Ni4uLlixZov/3//6fAgICKoxOl30EBATolVde0eLFi+0apiVp5syZ+vLLL9W3b19t3LhRy5YtU0REhKZPn64ffvihXJiujmHDhmnXrl2aMGGCMjIy9M033+jEiRMaOXKkli9fbvMwDTjCsdQcjf1P6aj0xcJ0U38PfTiht94e15MwDQAAgAbJtBHqC509e1Zr1qzR1q1blZqaKkkKDQ1VdHS0rrnmGnl5MSW0uhihhllKSgx9sjFOry8/oLzCqoO0xSL9sU9LPTG8o3zcTdmmAQAAALgoe+Umh3y36+XlpRtuuEE33HCDIx4PoIbiT5/V3+bv0ubY0xdt1zbUW6/f2k1XtgwyqTIAAADAcRg+AlAlwzD0f1vi9fLSfTpbUFxlO4tF+tOA1nr8ug7ycOUoLAAAADQOBGoAlUrPydeTC3dr1f6Ui7ZrGeylN8Z2V3QrRqUBAADQuNg0UA8ZMsT6+tZbb7UeP3Xh9ZqyWCxavXr1ZdcGoPrWHkrV3+bvUmp2/kXbTejbUk+O6CgvN342BwAAgMbHpt8F//jjj9YjsXr06FHp9ZooO5sagDnyCov1+vcH9dGG2Iu2ax7gqX+O7aZ+bUNMqgwAAACoe0wdVqrJhuIEacBcB09m69EvdurAyeyLthsX00LP3NCJHbwBAADQ6Jn6HTEhGah7DMPQnJ+P6/8t26+CoqqPwwrxcdc/x3bTNR3CTKwOAAAAqLtsHqirGoV2wHHXAC7hdG6B/jZ/l344cPGNx4Z2DNNrt3ZTiI+7SZUBAAAAdZ9NA3Vs7G/rLv38/Cq9DqBu2BZ3Wg//304lZ+ZV2cbdxUnP3tBJd/VpyQwTAAAA4HdsGqhbtmxZo+sAzFdSYuj9n47p9eUHVVxS9cyRTk399NYdPdQu3NfE6gAAAID6g12FgEbkTG6BHq/GFO8/DWitJ4Z3kLuLs0mVAQAAAPVPnQrUWVlZys/PV2hoqKNLARqc7cfP6OF5O5R0kSneob7uenNsd13dnv8GAQAAgEtxMutBSUlJ1o/09PRy9xYsWKBOnTopMDBQTZo0UXBwsJ555hkVFhaaVR7QYBmGoffXHdPt7/180TA9ICpEyx4ZSJgGAAAAqsmUEeqNGzdq4MCB1s8ffvhhzZgxQ5K0bNky3X777ZJ+2wn8zJkzmj59uuLj4zVnzhwzSgQapJz8Ij3+1S9avvdUlW2cLNKUa9vrL9dEydmJjccAAACA6jJlhHrdunUyDMMamMeOHWu99+KLL1qvWywW64dhGJo7d65+/vlnM0oEGpyjqTkaM3vDRcN0qK+7Pv/TVXpkaDvCNAAAAFBDpgTqnTt3Wl97e3urT58+kkqngW/ZssV6HM+FobvMvHnzzCgRaFBW7julMbM26EhKTpVt+kcFa9kjA9WvbYiJlQEAAAANhylTvg8fPiypdAS6a9eucnYu3Tl4w4YN5drdeeedSktL0/Lly60he/PmzWaUCDQIJSWGZqw6pLd+OFJlG4tFmjK0vSYPYYo3AAAAcDlMCdRpaWnWgNyuXTvr9X379llfx8TE6LPPPlNJSYmuuOIKHT58WIZhKDY21owSgXov81yhpnyxU2sOplbZJsjbTW+P66n+UYxKAwAAAJfLtEBdxs/Pz/r64MGD1tf9+vWTJDk5Oalv3746dOiQJCk7O9uMEoF67dCpbN0/Z5vi0s9W2aZrc3/95+4r1TzA08TKAAAAgIbLlEBdUlJifZ2T89uazgsD9YUj176+vtbXv19TDaC8Hw+maPK8ncrJL6qyza1XRujlMV3k4epsYmUAAABAw2ZKoA4ICFBqaqoMw9DGjRslSRkZGdq7d6+1Tfv27a2vLwzdF4ZrAL8xDEOfbozTi//bp5Iqfu7k4mTRP/5whe7q09K67AIAAACAbZgSqKOiopSSkiKpdIOyfv36KScnRwUFBdY23bt3t74+ceKEpNJNzJo3b25GiUC9UlhcoheW7NXnm05U2SbU113v3NlL0a2CTKwMAAAAaDxMCdSDBg3Sxo0bredLb968udzZ0z169FBwcLC1/Z49e6yjaR07djSjRKDeyDxXqL/M3aH1R9KqbNOzRYD+c9eVCvfzMLEyAAAAoHEx5RzqP/3pT3J1dZUka1C+cPrpgw8+aH29Z88epab+tktxdHS0GSUC9UJcWq5uemfDRcP0zb2a64v7+xCmAQAAADszJVC3bt1a7777rlxcXGQYhvVDksaMGaP77rvP2vbLL7+U9NtmZEOGDDGjRKDO2xZ3WmPe2aBjqblVtvn78A56c2x3ubuw+RgAAABgb6ZM+Zake++9VwMHDtRXX32lEydOyNfXV0OHDtWIESPKtYuJidH7778vqXQUu1evXmaVCNRZy/ee1CP/t1P5RSWV3vd0dda/b++u4V2amlwZAAAA0HhZDM6lqtcSEhIUGRkpSYqPj1dERISDK4KtfbbpuP7xza9V7uQd7ueuDydEq0tzf3MLAwAAAOoJe+Um00aoAdSMYRh6Y8VBzV5ztMo2XZv764MJvVkvDQAAADgAgRqogwqLSzR14R4t3JFQZZvrO4drxu095enGemkAAADAEUwN1Onp6frss8+0bt06xcbGKjs7WyUlla8JLWOxWHT0aNUjdEBDk5tfpIfm7tDaQ6lVtvlj35b6xx86y9nJUmUbAAAAAPZlWqD++uuvNWnSJGVlZUn6bRfvS7nweC2gocs4W6AJH2/VrviMKts8ObyjHhzUhv82AAAAAAczJVBv27ZNd9xxh4qKispdv1QgYL80NCap2fm6+8PNOnAyu9L7Lk4WvX5rN93ci43nAAAAgLrAlEA9ffp0FRUVMaIGVCEp45zu+mCzjqVVfsa0t5uz3r3rSl3dPtTkygAAAABUxZRAvX79+nJhmpFn4Ddxabm684PNSsw4V+n9EB83fXJPDMdiAQAAAHWMkxkPycjIkPRbkH788cd1+PBh5eTkqKioSCUlJVV+FBcXm1Ei4BCHTmVr7Hs/Vxmmmwd4asGD/QjTAAAAQB1kygh1WFiYEhMTZbFYNGzYMP3zn/8047FAnfZrYqbu/nCzzpwtrPR+m1Bvzf3TVWrq72lyZQAAAACqw5QR6kGDBllHp9u0aWPGI4E67dfETN35QdVhulNTP331QF/CNAAAAFCHmRKoH374YTk5lT5q7dq1rKFGo7YvKUt3fbhZmecqD9M9IgP0xX19FOLjbnJlAAAAAGrClEAdExOjqVOnyjAMHThwQPfee6/S09PNeDRQp+xPztKdH2xSRhUj033bBOvzP10lfy9XkysDAAAAUFOmrKF+8cUX5ebmprCwMKWkpGjOnDn66quvNGzYMLVs2VLBwcEXff/zzz9vRpmAXR08mX3Rad6DO4TqP3ddKQ9XZ5MrAwAAAFAbFsOE+ddOTk6VHptV3XOp2em7agkJCYqMjJQkxcfHKyIiwsEVoTKHT2Xrjv9uUnpuQaX3CdMAAACA/dgrN5kyQl3m90G6Olm+uqEbqKti03I17v3NVYbpq9sTpgEAAID6yNRA/ftwfKmwzOZlqO+SM8/prg82Ky0nv9L7A9uF6L93E6YBAACA+si0QE04RmNzOrdAd32wWYkZ5yq9369tsP57d2/CNAAAAFBPmRKoP/74YzMeA9QZ2XmFmvjxFh1Nza30fp82QfpwQrQ83QjTAAAAQH1lSqCeMGGCGY8B6oS8wmLdN2ebdidkVnq/V4sAwjQAAADQAJhyDjXQWBQVl2jyvJ3adOx0pfc7NvHVxxNj5O1u6vYFAAAAAOyAQA3YiGEYembRr1q1/1Sl91sGe2nOvTHy93I1uTIAAAAA9uCQYbL169drwYIF+vnnn3Xy5Enl5OTowQcf1Msvv6yffvrJ2q5Zs2aKiopyRIlAjc364Yi+3BZf6b0wX3d9Pukqhfl5mFwVAAAAAHsxNVCfOnVKf/zjH7Vq1SrrNcMwZLFYdO7cOVksFv31r3/Vzp07JUndunWzvgbqsoXbE/TmykOV3gvwctXnf7pKkUFeJlcFAAAAwJ5Mm/KdmJio6OhorVq1SoZhVHmM1r333mu9v3v3bu3du9esEoFa2XAkTU8u3F3pPS83Z308MVrtw31NrgoAAACAvZkWqMeOHauEhARJksVikcViqbTd6NGjrW0kafny5eYUCNTCgZNZevCz7SoqqfgDIieLNHt8L/VsEeiAygAAAADYmymB+ptvvtGmTZusIfliI9TNmzdX27Ztrfc3bNhgRolAjZ3MzNPEj7YqO7+o0vsvj+mqazqGmVwVAAAAALOYEqi//PLLcp8PHz5cGzZssK6f/r3OnTtLKg3eBw4cMKNEoEbyCot1/2fbdDIrr9L7Dw1uq/FXtTC5KgAAAABmMmVTsrLRacMwFBERoUWLFsnd3b3K9uHh4dbXSUlJZpQIVJthGPr7gt3anZBZ6f3RPZrpb9d1MLkqAAAAAGYzZYQ6JSVFUum66MGDB180TEuSk9NvZeXm5tq1NqCm3vnxqL7dVfkPevq0CdLrt3aTk1PlewQAAAAAaDhM25SsjKur6yXbXDgq7eXFUUOoO1buO6U3Vhys9F6bEG+9d1dvubs4m1wVAAAAAEcwJVAHBwdLKp0qu23btou2PXv2rNatW2ddWx0SEmL3+oDqOHAyS1O+2KnK9tPz83DRBxN6y9/r0j8wAgAAANAwmBKoe/ToYd21+9dff9W7775bZdvHHntMmZmla1MtFouuvPJKM0oELirjbIHum7NNuQXFFe45WaRZ43upTaiPAyoDAAAA4CimBOrrrrtOkqwbk02ePFl9+/aVJGvQXrlypTp16qQPPvjA2k6Srr/+ejNKBKpUUmLosS9/Ufzpc5Xef/aGK3R1+1CTqwIAAADgaKYE6okTJyowMFDSb6F6y5Yt1vuGYWjfvn06ePBgufOpg4ODNX78eDNKBKo0a80RrTmYWum923tH6p7+rcwtCAAAAECdYEqg9vb21uzZs61h+cIR6DJlZ1KX3bNYLJo9e7Y8PDzMKBGo1LpDqfr3qkOV3otuFaiXxnSp9Cx1AAAAAA2fabt833HHHfrXv/5VLjD//kMqDdZOTk568803NXbsWLPKAypIzDinR6vYhCzU112z7+wlNxfTN8oHAAAAUEeYmgamTJmijRs3avjw4XJ2dpZhGOU+nJycdN1112nDhg2aMmWKmaUB5eQXFeuhz7frzNnCCvecnSyaPb6XwnyZPQEAAAA0Zi5mPzAmJkbLli1Tdna2tm/frtTU0rWpYWFh6tmzp/z8/MwuCahg+ncHtCshs9J7T43oqJjWQSZXBAAAAKCuMT1Ql/H19dXgwYMd9XigSqv3n9LHG+IqvTeyaxNNGtDa3IIAAAAA1EksAAUucCorT08s2F3pvTah3nrtlm5sQgYAAABAkgMDdWZmphISEnTixIlLftjT/PnzNXjwYAUGBsrb21vdu3fX66+/rsLCimtna2rZsmXWDdeuvfZaG1QLeyo+f9706dyCCvc8XJ307p1XytfD1QGVAQAAAKiLTJ3y/cMPP+jtt9/WunXrlJGRUa33WCwWFRUV2aWeKVOmaObMmXJxcdGQIUPk4+OjH374QU8++aSWLFmiFStWyNPTs1Z9nzlzRvfdd1+lR4ShbvrP2qPaeDS90nvP39hZHZr4mlwRAAAAgLrMtBHqv//97xo2bJi+/fZbnTlzpsIO3xf7sIfFixdr5syZ8vHx0ebNm7V8+XItXLhQhw8fVteuXbV+/Xo999xzte7/4Ycf1qlTp/Tggw/asGrYy84TZ/SvlZWfNz2iSxONi4k0uSIAAAAAdZ0pgXr+/Pl64403rAG5sjOoqzqX2l5eeeUVSdLUqVPVq1cv6/WQkBC98847kqRZs2YpM7PynZ4vZtGiRZo7d67++te/KiYmxjYFw27OFhTpr1/tUnFJxR/eNPP30PSbWTcNAAAAoCJTAvW7774rSRWCsiNGpiUpMTFRW7dulSSNHz++wv0BAwYoMjJS+fn5WrZsWY36TktL04MPPqgOHTroxRdftEm9sK/Xvz+o2LTcCtedLNLMcT3l78W6aQAAAAAVmbKGeufOndYgXRaUW7durSZNmsjNzc2MEirUI0lBQUFq3bryI5B69+6t+Ph47dy5U+PGjat233/+85+Vlpamr7/+Wh4eHjapF/az4UiaPtkYV+m9R4e2V3QrzpsGAAAAUDlTAnXZpmKGYSgkJETLly9Xz549zXh0pWJjYyVJLVq0qLJNZGRkubbV8cUXX2jBggV69NFH1b9//8sr8ryEhISL3k9OTrbJcxqjrLxC/b2KI7J6tgjQX65pa3JFAAAAAOoTUwJ1VFSUdu3aJYvFohtvvNGhYVqSsrOzJUne3t5VtvHx8ZEkZWVlVavPkydP6i9/+Yvatm1rXZ9tC2XBHrb30pJ9Ssw4V+G6h6uT3hzbXS7OHNMOAAAAoGqmJIa77rrL+vr06dNmPNJ0999/v86cOaMPPvhAXl5eji4Hl/DDgVOav73y0f+pwzuqTaiPyRUBAAAAqG9MGaGePHmy5s2bp507d2rp0qWaP3++xo4da8ajK+XrW3qecG5uxY2oyuTk5EiS/Pz8Ltnfp59+qiVLlujPf/6zBg8ebJMay8THx1/0fnJyMjuJ11BOfpGeWfRrpff6tgnWH/u2MrcgAAAAAPWSKYHa3d1dS5cu1c0336xNmzbpjjvu0L/+9S9de+21ioyMvOTmXX/84x9tWk+rVq0kXTyslt0ra3sxixYtkiRt3bq1QqA+efKkJGn79u3We1988YWaNGlSrVojIiKq1Q7V98byg0rOzKtw3cfdRf8c201OThyRBQAAAODSTAnUkhQQEKCrrrpKmzZtkmEY2rJli7Zs2VKt99o6UJet4U5PT1dsbGylO31v27ZNksqdUX0pZe+pTEZGhtauXStJysurGOZgjh0nzujTn+MqvffcjZ0UEch0fQAAAADVY8oa6sLCQo0cOVJvvfWW9SzqS51Bbc+zqCMiIhQdHS1JmjdvXoX769evV3x8vNzd3TVy5MhL9rd48eIq6//4448lSUOHDrVeq86oN2yvoKhETy3co8r+WvVtE6zberMBHAAAAIDqMyVQz549Wz/++GO5kFwWrC/2YU9PP/20JGn69OnasWOH9Xp6eroeeughSaVrv/39/a33Fi1apI4dO2ro0KF2rQ328d7aozp4KrvCdXcXJ71yc1e7/50DAAAA0LCYMuX7008/laRygcVeo8/VNWbMGD3yyCN666231KdPHw0dOlTe3t5avXq1MjIy1L9/f7300kvl3pOZmamDBw8yZbseOp6eq7fXHKn03qPXtlPrkKqPUAMAAACAypgSqI8cOWKd5i2VbvR19dVXq0mTJvLw8HDYyODMmTPVv39/zZ49Wxs3blRhYaHatm2rqVOn6rHHHpObm5tD6oLtvbBknwqKSipc79TUT/cNbOOAigAAAADUdxbDhKHi8PBwpaWlyTAMdenSRVu2bLnkzt6onoSEBEVGlq79jY+PZ1fwSqzef0qTPq24YZyTRVr0UH91jwwwvygAAAAAprFXbjJlDfVVV10lwzBksVjUr18/wjRMk1dYrBeW7Kv03l19WhKmAQAAANSaKYF6ypQp1tcXbgAG2Nt7a4/pxOmzFa4He7vp8WEdHFARAAAAgIbClEA9ZMgQPfPMMzIMQ9u3b9eDDz6ozMxMMx6NRiz+9Fm982PlG5E9Obyj/L1cTa4IAAAAQENiyqZk9957ryQpODhY6enpev/99/Xpp5+qd+/eioyMvOgUcIvFog8//NCMMtHAvPb9AeVXshFZj8gA3Xola80BAAAAXB5TAvUnn3xi3cm7bLfv/Px8bdy48aLvK1t3TaBGTe04cUb/251c4brFIr00uoucnDhzGgAAAMDlMSVQlynbULwsXDv6LGo0TIZh6OX/Vb4R2R3RLdQ1wt/kigAAAAA0RKYG6t+fN32p86cJ3KiN7349qR0nMipc93F30ePXtTe/IAAAAAANkmmBmnAMM+QXFWv6dwcqvffnwW0V4uNuckUAAAAAGipTAvWaNWvMeAygzzedqPSYrKb+Hpo0oLUDKgIAAADQUJkSqAcNGmTGY9DI5eYX6Z01lR+T9cT1HeTh6mxyRQAAAAAaMlPOoQbM8PGGWKXnFlS43qW5n8b0aO6AigAAAAA0ZARqNAiZZwv13rpjld6bOrwTx2QBAAAAsDmbTvk+ceKE9bWfn58CAgIqXK+NFi1aXNb70fD996ejys4rqnC9T5sg9Y8KdkBFAAAAABo6mwbqVq1aWY/CevTRR/Wvf/2rwvWaslgsKiqqGJSAMmk5+fp4Q1yl9564vkOt/+4BAAAAwMXYfFMywzAqDTAcmwV7+e+6YzpbUFzh+pCOYbqyZZADKgIAAADQGNg8UFc1GlibUUJCOC7lTG6BPt90vNJ7j1/X3uRqAAAAADQmphybVYaADFv7ZGNcpaPTI7s2Uedm/g6oCAAAAEBjYdNAffXVV1tHoqOioiq9DthKTn6RPtkYV+m9yde0M7cYAAAAAI2OTQP1jz/+WKPrwOX4fNNxZZ4rrHB9aMcwXdHMzwEVAQAAAGhMOIca9VJeYbE++Cm20nsPXRNV6XUAAAAAsCUCNeqlr7bFKy0nv8L1vm2CdWXLQAdUBAAAAKCxIVCj3ikqLtF7a49Vem/yEEanAQAAAJjDpmuoX3zxRVt2Z/X888/bpV/UTyv3nVJixrkK17tHBqhf22AHVAQAAACgMbJpoJ42bZpddvMmUONCH2+Iq/T6Q4Pbsps8AAAAANPY5RxqW543TUDChfYkZGpL3OkK11sGe+naTuEOqAgAAABAY2WXQG2rEGzLYI6G4eMNle/sPbFfKzk78cMXAAAAAOaxeaCuTgi2WCxVtrvYPTRuKVl5WrI7qcJ1X3cXje0d6YCKAAAAADRmNg3UH3/88UXvv/HGG9q7d68Mw1B0dLSGDx+uiIgISVJCQoKWL1+uLVu2yGKxKDIyUs8//7ycnZ1tWSLqsc83HVdhccUfttwWHSkfd7tMtgAAAACAKtk0hUyYMKHKe4899pj27t0ri8Wi//znP7rvvvsqtHnhhRf04Ycf6r777lN8fLzWrVunTz75xJYlop7KLyrW3M0nKlx3spRO9wYAAAAAs5lyDvXq1as1c+ZMWSwWDRo0qNIwXWbSpEkaPHiwDMPQZ599psWLF5tRIuq4lftOKT23oML1YVeEKzLIywEVAQAAAGjsTAnUb7/9tvV1p06dLtn+wjbvvfeeXWpC/fJ/WyqOTkvSBEanAQAAADiIKYG6bF20JB09evSS7cvaGIahnTt32rU21H1xabnacCS9wvU2Id7q2ybYARUBAAAAgEmB+syZM5JKA/KqVau0cOHCKtt+/fXXWrlypTWAZ2ZmmlEi6rAvtsZXen1cTAvOKQcAAADgMKZsjdy8eXPFxsbKYrGopKREt912m6677jpdf/315Xb5XrFihZYvXy7DMKxBqVmzZmaUiDqqoKhEC7ZXDNRuzk665coIB1QEAAAAAKVMCdQjRozQ7NmzZbFYrOdMr1ixQitWrKjQtixMl/06cuRIM0pEHbV6/yml5VTcjOz6Lk0U5O3mgIoAAAAAoJQpU76feuop+fn5WT8vC8yVfVw4hdfX11dTp041o0TUUf9X1XTv6EiTKwEAAACA8kwJ1M2aNdOiRYvk5eUlwzAkyTpa/fsPqXSU2svLSwsXLlTz5s3NKBF1UEpWntYfTq1wvVWwl/qwGRkAAAAABzMlUEvSNddco+3bt+uaa66pcnS67KOs7dChQ80qD3XQt7uSVGJUvH5bdKScnNiMDAAAAIBjmbKGukz79u21evVq7d27V999951++eUXpaeXHocUHBysHj16aPjw4erSpYuZZaGOWvxLYoVrFos0pgezFgAAAAA4nqmBukznzp3VuXNnRzwa9cThU9n6NTGrwvU+rYPVLMDTARUBAAAAQHmmTfkGaqKy0WlJuqkno9MAAAAA6gabjlBnZf02ouju7i53d3eb9Jufn6/8/Hzr5xfuGI6Gp6TE0OKdSRWuu7k4aXjXJg6oCAAAAAAqsukIdUBAgAIDAxUYGKinnnrKZv1OnTrV2m9QUJDN+kXdtP3EGSVmnKtwfVincPl5uDqgIgAAAACoyOZrqH9/lrQt+0XjsHR3cqXXxzDdGwAAAEAdYvM11PYI02g8SkoMff/ryQrX/TxcNKh9qAMqAgAAAIDK2W2X74SEBK1bt85mfaFx+CUhQyez8ipcH3ZFE7m5sIceAAAAgLrDLoHaMAwtXLhQCxcutFmfFouFad+NwHd7Kp/uPZLNyAAAAADUMXYbobZ1+GUqecNnGIa+q2S6t4+7iwa0C3FARQAAAABQNbsEasIvauPXxCwlnKm4u/eQjmFyd3F2QEUAAAAAUDW77PIN1Mb3e5nuDQAAAKD+sGmg/vjjj23ZHRqZ1ftTKlzzdHXWoPZhDqgGAAAAAC7OpoF6woQJtuwOjUhixjkdOJld4frV7UPk6cZ0bwAAAAB1D+cQoU5Yc6Di6LRUun4aAAAAAOoiAjXqhKoC9TUdCNQAAAAA6iYCNRwur7BYG46mVbjepbmfwvw8HFARAAAAAFwagRoOt+lYuvIKSypcZ3QaAAAAQF1GoIbDVTndm/XTAAAAAOowAjUc7qcjFad7B3m7qXtEgPnFAAAAAEA1EajhUCcz83QsNbfC9YHtQuTsZHFARQAAAABQPQRqONSGSkanJal/VIjJlQAAAABAzRCo4VCV7e4tEagBAAAA1H0EajiMYRjaeCS9wvVWwV5qHuDpgIoAAAAAoPoI1HCYo6m5OpmVV+F6P0anAQAAANQDdgvUe/fu1ejRozV79uxy1z/44APdcMMN2r17t70ejXri56qme7clUAMAAACo+1zs1fHChQu1ZMkSbdmyRffee688PT2Vl5enadOmKTk5WT169FC3bt3s9XjUA5tjT1d6vW/bYJMrAQAAAICas9sI9d/+9jeFh4crJSVFM2bMkCTNnDlTSUlJCg0N1VNPPWWvR6MeMAxDW+MqBuqOTXwV5O3mgIoAAAAAoGbsFqi9vLz04osvyjAMvfHGGzp27Jhee+01WSwWTZs2TT4+PvZ6NOqBhDPndCorv8L16FZBDqgGAAAAAGrOrpuSTZo0SVdccYUyMjI0cOBAZWRkqFOnTrr//vvt+dgamT9/vgYPHqzAwEB5e3ure/fuev3111VYWFijfnbu3KlXX31VQ4cOVXh4uFxdXRUYGKiBAwdq9uzZNe6vodt2vPLp3r1bBZpcCQAAAADUjs3XUL/44ovlPm/RooX27dun5ORkWSwWtWjRQi+//HK5Ns8//7yty6iWKVOmaObMmXJxcdGQIUPk4+OjH374QU8++aSWLFmiFStWyNPz0sc3FRUVqVevXpIkHx8fRUdHKzw8XAkJCfr555+1fv16zZkzR8uXL1dAQICdv6r6YWvcmUqv92aEGgAAAEA9YTEMw7Blh05OTrJYLDV6T3FxsS1LqJbFixfrpptuko+Pj9auXWsNxGlpaRoyZIj27Nmjxx9/XG+88cYl+yoqKlKfPn305JNPatSoUXJ3d7fe27Nnj66//nolJyfrnnvu0UcffWTTryMhIUGRkZGSpPj4eEVERNi0f3u5/t/rdPBUdrlrzfw9tPGpoQ6qCAAAAEBDZa/cZPNAPXjw4HKB+tSpUzpw4ID1WocOHRQeHl7uPWvWrLFlCdUSExOjrVu36uWXX9YzzzxT7t769es1cOBAubu769SpU/L397+sZ33++ee6++675enpqczMTLm6ul5Wfxeqj4E682yhur+4osL1Ud2b6a1xPR1QEQAAAICGzF65yeZTvn/88cdyn9944406cOCAXF1dVVhYqNatW2vp0qW2fmyNJCYmauvWrZKk8ePHV7g/YMAARUZGKj4+XsuWLdO4ceMu63k9e5aGxHPnziktLU1Nmza9rP7qu10JGZVej2b9NAAAAIB6xK6bkv34449atmyZXF1d9c0338jZ2Vnff/+9Q0akL7Rz505JUlBQkFq3bl1pm969e5drezkOHz4sSXJzc1NQEGuEd1cRqHu2IFADAAAAqD9sPkJ9oSeeeEIWi0UTJ07U9ddfr0mTJum9997T3/72N23fvt2ej76o2NhYSaUbplWlbDpAWdvaMgxDr7/+uqTS0foL11dXR0JCwkXvJycn17o2R9mdkFnhmpuLk9qH+zqgGgAAAACoHbsF6i+++ELbt2+Xh4eHdRfv559/XnPmzNEvv/yiTz/9VBMmTLDX4y8qO7t0Myxvb+8q25Sdk52VlXVZz3rhhRf0888/y8fHR9OnT6/x+8uCfUOyJ7FioO7U1E9uLnadMAEAAAAANmW3BFNcXKzQ0FA98MADat68uSSpadOmmjx5sgIDA2XjvdDqpDlz5ujFF1+Uk5OTPvroI7Vr187RJTlcSnaekjPzKlzv1vzyNn4DAAAAALPZbYT6zjvv1OjRoyscifXss8/qmWeekZ+fn70efUm+vqVTi3Nzc6tsk5OTI0m1rnP+/Pm69957JUnvv/++xo4dW6t+4uPjL3o/OTlZMTExterbEfZUMt1bkrpFEKgBAAAA1C92XUNdNm36QmVh1pFatWol6eJhtexeWdua+PrrrzV+/HiVlJTovffeswbr2qgPx2DVRGXrpyWpW0SAuYUAAAAAwGWya6CuypEjR/TRRx/pxx9/VFJSkgoLCxUaGqro6GjddNNNGjlypF2fX3aMVXp6umJjYyvd6Xvbtm2SpF69etWo78WLF+uOO+5QcXGx3n33Xd13332XX3ADUtn6aU9XZ7UNrXo9OwAAAADURabvAvX666+rS5cueu2117R582adOHFCycnJ2r17tz766CP94Q9/UP/+/S851flyREREKDo6WpI0b968CvfXr1+v+Ph4ubu71yjcL1myRLfddpuKior07rvv6oEHHrBZzQ1FZYG6czM/uTizIRkAAACA+sWmKebMmTMaPXq0Ro0apVGjRmndunXl7v/rX//S1KlTVVBQIMMwZBiGLBaLLBaLJFmv/fzzz+rTp88lj4y6HE8//bQkafr06dqxY4f1enp6uh566CFJ0uTJk+Xv/9va3kWLFqljx44aOnRohf6WLVumW2+9VUVFRfrPf/5DmK5Eek6+UrPzK1zvwoZkAAAAAOohm075njt3rpYsWSJJcnZ21ueff269d/ToUT399NPW8Px7F143DEPJyckaP358hVBuK2PGjNEjjzyit956S3369NHQoUPl7e2t1atXKyMjQ/3799dLL71U7j2ZmZk6ePCg8vLK71KdkpKim2++WQUFBYqIiNDGjRu1cePGSp/7xhtvKCQkxC5fU1138FR2pdc7NXX8unoAAAAAqCmbBurVq1dbX3fs2LHcDtlvvPGGCgoKyo1GV6ZsxNowDG3YsEGrVq3Stddea8syrWbOnKn+/ftr9uzZ2rhxowoLC9W2bVtNnTpVjz32mNzc3KrVz9mzZ5WfXzrympCQoE8//bTKttOmTWu8gfpk5YG6fTiBGgAAAED9Y9NAfeDAAUmlofjC3bGLi4s1f/58a1B2cnLSpEmTdPvtt6tFixbKyspSXFycPv30Uy1durRcn19++aXdArUk3Xbbbbrtttuq1XbixImaOHFiheutWrVqFOdqX65DVYxQE6gBAAAA1Ec2DdTJycnWEejw8HDr9d27d+v06dPW0efKdr++8sordcstt+ibb77RzTffbA3fVU2dRv1zoJIR6hZBXvJ2d8hm8wAAAABwWWy6KVlubq71tYeHh/V12RFUUmlwvthRUqNHj9Z1111nHfFNTk62ZYlwkJISQ4cqCdSMTgMAAACor2waqF1cfhtpvHCTsQsD9YgRIy7ZT5s2bayvLwzpqL8SM84pt6C4wvWOTQjUAAAAAOonmwbqCzchO3bsmCSpsLBQ3377rfV68+bNL9nPzp07ra8vPLYK9VdVG5J1IFADAAAAqKdsGqjbtGljPUt65cqVmjZtmm6//XadOnXKuib6xRdf1J49e6rs45///Kc2bdpkHeG+cHMz1F9HU3MqvU6gBgAAAFBf2XQ3qL59+2rz5s2yWCwqKiqqcI6zxWJRUlKSevbsqRtvvFEDBw5URESEzp49q7i4OH355Zc6fPiwNXxbLBZdffXVtiwRDhKbVnHqvpNFahns5YBqAAAAAODy2TRQjx8/XjNmzJAkayiu7HVJSYmWLFmiJUuWlHv/hW3KVHZMFeqfygJ1RKCX3F2cHVANAAAAAFw+m0757t27tyZOnFhpMH766ac1cOBA68hz2dTwCz/KjtUqe+9dd92lLl262LJEOEhlgbpViLcDKgEAAAAA27D5AcDvv/++oqKi9PHHHys+Pl4RERGaPHmypkyZoqSkJA0aNEhHjx4tF7Z/zzAMxcTE6N1337V1eXCAnPwipWTnV7jehkANAAAAoB6z6Qi1JDk7O+vpp5/W4cOHlZeXpyNHjmjKlCmSpGbNmmnTpk268cYbKx2hNgxDzs7OevDBB7VmzRp5ebG+tiGIq2R0WpJaE6gBAAAA1GM2H6G+lODgYH377bfatGmTFi5cqIMHD6q4uFihoaGKjo7WqFGjFBkZaXZZsKPKpntLTPkGAAAAUL+ZHqjL9OnTR3369HHU42GiqgI1U74BAAAA1Gc2n/IN/F5cesVA7ebspGYBng6oBgAAAABsg0ANu0s4c67CtYhATzk7Vb0xHQAAAADUdQRq2F1iJYG6eSCj0wAAAADqNwI17KqouEQns/IqXI8gUAMAAACo5wjUsKuTWXkqLjEqXG/O+mkAAAAA9RyBGnZV2XRviSnfAAAAAOo/AjXsKjGj8kAdEehlciUAAAAAYFsEathVZTt8S0z5BgAAAFD/EahhV5VN+XZxsijcz8MB1QAAAACA7RCoYVeV7fAd7ufBGdQAAAAA6j0CNewqNTu/wrVwP3cHVAIAAAAAtkWghl2lVBKow3yZ7g0AAACg/iNQw26KikuUnlsxUIf6MkINAAAAoP4jUMNuTucWyDAqXg8jUAMAAABoAAjUsJvKpntLUhhrqAEAAAA0AARq2E1KdsUdviWmfAMAAABoGAjUsJuUrCpGqNmUDAAAAEADQKCG3VR2ZJbEGmoAAAAADQOBGnaTmlMxUDtZpGAfAjUAAACA+o9ADbtJzy2ocC3Qy03OThYHVAMAAAAAtkWght1kni2scC3Ay9UBlQAAAACA7RGoYTcZ5yofoQYAAACAhoBADbs5k8sINQAAAICGi0ANu8k8VzFQ+3syQg0AAACgYSBQwy4KikqUk19U4XogI9QAAAAAGggCNeyistFpiSnfAAAAABoOAjXsIuNsxQ3JJCmATckAAAAANBAEathFBiPUAAAAABo4AjXsIqOSM6glKYBNyQAAAAA0EARq2EVOfuWB2s/TxeRKAAAAAMA+CNSwi5z84kqve7sTqAEAAAA0DARq2EVuJUdmSZIPgRoAAABAA0Gghl1UFagZoQYAAADQUBCoYRc5VQRqL1dnkysBAAAAAPsgUMMuKhuh9nJzlpOTxQHVAAAAAIDtEahhF7mVbErGdG8AAAAADQmBGnZR2ZRvNiQDAAAA0JAQqGEXlU359nZn/TQAAACAhoNADbvILahkyrcbI9QAAAAAGg4CNewiv6hioPZgh28AAAAADQiBGnaRX1hS4Zq7C3/dAAAAADQcJBzYRUFxxUDtRqAGAAAA0ICQcGAX+YUVp3y7uzDlGwAAAEDDQaCGXeQXVTLl25W/bgAAAAAaDhIObM4wjMqnfDvz1w0AAABAw0HCgc0VFhsyjIrXGaEGAAAA0JCQcGBzlR2ZJUnujFADAAAAaEBIOLC5gkrWT0uSO+dQAwAAAGhACNSwuco2JJM4hxoAAABAw0LCgc1VNULNOdQAAAAAGhISDmyuqKSSHckkuTjx1w0AAABAw0HCgc2VVLbFtyQni8mFAAAAAIAdEahhc1UGahI1AAAAgAaEQA2bK65iyreThUANAAAAoOFo9IF6/vz5Gjx4sAIDA+Xt7a3u3bvr9ddfV2FhYa362759u8aOHavw8HB5eHiodevWevjhh5WSkmLjyuuuKgaoxTHUAAAAABqSRh1xpkyZottuu00bNmxQTEyMhg8frhMnTujJJ5/UkCFDdO7cuRr1t2DBAvXp00cLFixQy5YtNXr0aDk5OWnWrFnq1q2bjhw5YqevpG5hhBoAAABAY9BoA/XixYs1c+ZM+fj4aPPmzVq+fLkWLlyow4cPq2vXrlq/fr2ee+65aveXlJSkCRMmqKioSO+99562bNmiL7/8UocOHdJdd92lU6dOafz48TKqGr5tQKrelIxADQAAAKDhaLSB+pVXXpEkTZ06Vb169bJeDwkJ0TvvvCNJmjVrljIzM6vV34wZM3T27Flde+21uv/++63XnZ2d9e6778rf319bt27VihUrbPhV1E0EagAAAACNQaMM1ImJidq6daskafz48RXuDxgwQJGRkcrPz9eyZcuq1eeiRYuq7M/Hx0ejRo2SJH399de1LbveqGLGN2uoAQAAADQojTLi7Ny5U5IUFBSk1q1bV9qmd+/e5dpeTHZ2tnV9dNn7Lqe/+q6qNdQWRqgBAAAANCAuji7AEWJjYyVJLVq0qLJNZGRkubYXExcXZ31dVZ816e9CCQkJF72fnJxco/7MwJRvAAAAAI1BowzU2dnZkiRvb+8q2/j4+EiSsrKyqt3fxfqsSX8XKgvi9UlJSeXXmfINAAAAoCEh4sDmqhqhZso3AAAAgIakUY5Q+/r6SpJyc3OrbJOTkyNJ8vPzq3Z/ZX36+/tfVn8Xio+Pv+j95ORkxcTE1KhPe6sqUDsTqAEAAAA0II0yULdq1UrSxcNq2b2ythfTsmVL6+sTJ06oa9eul9XfhSIiImrUvi5gDTUAAACAxqBRBuqePXtKktLT0xUbG1vpTt/btm2TpHJnVFfFz89PUVFROnLkiLZt21ZpoK5Jf/XdlS2CtPDPfVVilO74XWIYKimRujSv2eg8AAAAANRljXINdUREhKKjoyVJ8+bNq3B//fr1io+Pl7u7u0aOHFmtPm+66aYq+8vJydGSJUskSTfffHNty643/L1cdWXLIEW3ClKfNsHq1zZEA9qFKMDLzdGlAQAAAIDNNMpALUlPP/20JGn69OnasWOH9Xp6eroeeughSdLkyZPLrYdetGiROnbsqKFDh1bob8qUKfLy8tKqVav0/vvvW68XFxfroYceUkZGhqKjo3XdddfZ60sCAAAAAJio0QbqMWPG6JFHHlFOTo769OmjESNG6NZbb1VUVJT27Nmj/v3766WXXir3nszMTB08eFBHjx6t0F+zZs30ySefyNnZWffff7/69OmjO+64Q+3bt9dnn32m8PBwzZs3j52uAQAAAKCBaLSBWpJmzpypL7/8Un379tXGjRu1bNkyRUREaPr06frhhx/k6elZo/7Gjh2rzZs36+abb9axY8e0aNEiFRcX6y9/+Yt27dqlqKgoO30lAAAAAACzWQyjii2ZUS8kJCQoMjJSUulO4vVxV3AAAAAAsCd75aZGPUINAAAAAEBtEagBAAAAAKgFAjUAAAAAALVAoAYAAAAAoBYI1AAAAAAA1AKBGgAAAACAWiBQAwAAAABQCwRqAAAAAABqgUANAAAAAEAtEKgBAAAAAKgFF0cXgMtTVFRkfZ2cnOzASgAAAACgbrowK12YoS4XgbqeS01Ntb6OiYlxYCUAAAAAUPelpqaqVatWNumLKd8AAAAAANSCxTAMw9FFoPby8vK0Z88eSVJoaKhcXOrOpIPk5GTrqPmWLVvUtGlTB1fUuPD773j8GTgefwaOxe+/4/Fn4Hj8GTgWv/+OV1f+DIqKiqyze7t27SoPDw+b9Ft30hdqxcPDQ9HR0Y4u45KaNm2qiIgIR5fRaPH773j8GTgefwaOxe+/4/Fn4Hj8GTgWv/+O5+g/A1tN874QU74BAAAAAKgFAjUAAAAAALVAoAYAAAAAoBYI1AAAAAAA1AKBGgAAAACAWiBQAwAAAABQCwRqAAAAAABqwWIYhuHoIgAAAAAAqG8YoQYAAAAAoBYI1AAAAAAA1AKBGgAAAACAWiBQAwAAAABQCwRqAAAAAABqgUANAAAAAEAtEKgBAAAAAKgFAjUAAAAAALVAoAYAAAAAoBYI1LCL+fPna/DgwQoMDJS3t7e6d++u119/XYWFhY4urcE7ePCg3n77bU2cOFFdu3aVi4uLLBaLXn75ZUeX1uAVFhZq9erVeuKJJxQdHa2AgAC5urqqSZMmGjVqlJYuXeroEhuFuXPn6o9//KO6d++usLAwubq6yt/fXzExMXr11VeVk5Pj6BIbnb///e+yWCz8v8gkEydOtP5+V/WRl5fn6DIbhYKCAr311lsaMGCAgoKC5OHhoYiICI0YMUJffvmlo8trsOLi4i7530DZx7p16xxdboN14sQJTZ48WR06dJCnp6c8PDzUunVrTZgwQbt27XJ0eTbj4ugC0PBMmTJFM2fOlIuLi4YMGSIfHx/98MMPevLJJ7VkyRKtWLFCnp6eji6zwXr33Xc1c+ZMR5fRKK1du1bDhg2TJDVp0kQDBgyQt7e39u3bpyVLlmjJkiW6//779Z///EcWi8XB1TZc7777rjZu3KhOnTqpV69eCgoK0qlTp/Tzzz9r69at+uijj7R27Vo1a9bM0aU2Chs3btSbb74pi8UiwzAcXU6j0r9/f0VFRVV6z9nZ2eRqGp+EhARdf/312rdvn0JCQtS/f395e3srPj5e69atk7e3t26//XZHl9kg+fj4aMKECVXe37dvn7Zu3SpfX19deeWVJlbWeGzevFnDhg1Tdna2mjdvruuuu07Ozs765ZdfNGfOHM2bN0/z5s3T2LFjHV3q5TMAG1q0aJEhyfDx8TG2b99uvZ6ammp07drVkGQ8/vjjDqyw4Xv//feNv/3tb8bcuXON/fv3G3fffbchyXjppZccXVqDt3r1auOWW24x1q1bV+HeF198YTg7OxuSjE8//dQB1TUemzZtMtLT0ytcT0tLMwYMGGBIMu644w4HVNb45ObmGu3atTOaN29ujBkzhv8XmWTChAmGJOPjjz92dCmN1tmzZ42OHTsakoxp06YZBQUF5e7n5uYaO3fudExxMEaMGGFIMu677z5Hl9JgdevWzZBk3H///eX+/hcXFxvPPvusIckICAgwzp0758AqbYMp37CpV155RZI0depU9erVy3o9JCRE77zzjiRp1qxZyszMdEh9jcGf/vQn/fOf/9T48ePVsWNHOTnxn7lZhgwZogULFmjgwIEV7t1+++2aOHGiJGnOnDkmV9a4XHXVVQoKCqpwPTg42Pr/qBUrVphdVqP01FNP6fDhw/rvf/8rf39/R5cDmObVV1/VgQMHdP/99+sf//iHXF1dy9338vJSjx49HFNcI5eYmKjly5dLkiZNmuTgahqm9PR07d69W5L08ssvl/v77+TkpGnTpsnT01MZGRnav3+/o8q0Gb7Ths0kJiZq69atkqTx48dXuD9gwABFRkYqPz9fy5YtM7s8wOF69uwpSYqPj3dwJY2Xi0vpSid3d3cHV9Lw/fjjj3r77bf1xz/+USNHjnR0OYBpCgsL9e6770qSnnjiCQdXg9/75JNPVFJSos6dO+uqq65ydDkNUk3+jQ0JCbFjJeZgDTVsZufOnZKkoKAgtW7dutI2vXv3Vnx8vHbu3Klx48aZWR7gcIcPH5YkNW3a1MGVNE7Z2dmaNm2aJGnUqFGOLaaBy8nJ0b333qvw8HDNmDHD0eU0WmvWrNGePXuUnZ2t4OBgxcTEaOTIkfxAyc527NihtLQ0NWvWTFFRUdqzZ4++/vprJSUlKTAwUAMHDtSIESOYQeYgn3zyiSRGp+3Jx8dHAwcO1E8//aRnn31Ws2bNso5Sl5SUaNq0aTp37pxGjBihyMhIB1d7+QjUsJnY2FhJUosWLapsU/YfTVlboLE4efKk9R/xW265xbHFNBIrVqzQvHnzVFJSYt2ULDs7W8OHD9drr73m6PIatL/97W+KjY3VokWLFBgY6OhyGq3Klpc0bdpUH330kYYPH+6AihqHsqmuERERmjp1ql5//fVyG/K99tpr6tmzpxYvXnzR75lge2vXrtWRI0fk5uamu+++29HlNGjvv/++Ro4cqf/+979aunSpevfuLWdnZ+3cuVOJiYm6++67NWvWLEeXaRP8aAw2k52dLUny9vauso2Pj48kKSsry5SagLqgqKhId911lzIzM9W1a1c98MADji6pUdi3b58+/fRTffbZZ1qxYoWys7M1fvx4ffLJJ6zntaMVK1bovffe0x133KExY8Y4upxGqXv37po5c6Z+/fVXZWVl6dSpU1qxYoX69eun5ORkjRo1Sj/++KOjy2yw0tPTJZXO3Hvttdf00EMP6eDBg8rMzNTKlSvVvn177dy5UzfccAPHiZrso48+klQ6S6khTDWuyzp06KCff/5Z1113nRITE/XNN9/o66+/VmxsrKKiojR48GD5+fk5ukybIFADgJ09+OCDWr16tYKDg7VgwQK5ubk5uqRGYcqUKTIMQwUFBTpy5IjefPNNfffdd7riiis4d9ROMjMzNWnSJIWGhurtt992dDmN1mOPPaZHHnlEnTt3lq+vr8LCwjRs2DCtX79eo0ePVmFhoaZMmeLoMhusstHowsJCjRs3TrNmzVL79u3l5+ena6+9VitXrpSHh4d+/fVXffHFFw6utvHIysrSggULJEn33nuvg6tp+DZs2KCuXbvq119/1bx583Ty5EmdPn1aS5YsUWFhoSZNmtRgpt0TqGEzvr6+kqTc3Nwq2+Tk5EhSg/mJFHApjz76qD788EMFBgZaRyZgLldXV7Vt21Z//etf9d133+nMmTO66667dO7cOUeX1uBMmTJFCQkJmjVrFqM/dZDFYtELL7wgSdq1axcbJNpJ2fdDkiqdkdSiRQvdcMMNkqRVq1aZVldj98UXX+js2bOKiIjQ9ddf7+hyGrSMjAzddNNNSk1N1ddff61x48YpPDxcgYGBuvHGG/X999/Ly8tLH330kdasWePoci8bgRo206pVK0kX38G47F5ZW6Ahe/zxx/XWW28pICBAK1assO7yDce56qqrdMUVVyg+Pl7btm1zdDkNzqJFi+Ti4qJ33nlHgwcPLvfx/fffS5I+/PBDDR48WHfccYeDq22cOnXqZH2dkJDgwEoarjZt2lT6urI2ycnJptSE36Z7T5w4kQ3h7Gzp0qVKTU1VmzZtKt1J/cLrDeGHSmxKBpspCwvp6emKjY2tdKfvsm9gLzyjGmiI/v73v+tf//qX/P39tWLFCvXu3dvRJeG8sn0eUlJSHFxJw1RUVKS1a9dWeT8uLk5xcXFq2bKliVWhTNn6Xqn8SCpsp1evXrJYLDIMQ2lpaZXuYpyWlibpt71lYF/79u3T5s2bZbFYdM899zi6nAbvxIkTki4+I7VsL5PTp0+bUpM98eMZ2ExERISio6MlSfPmzatwf/369YqPj5e7uztnkqJBmzp1qv75z3/K399fK1eutP53AcdLS0vTrl27JInp93aQkZEhwzAq/ZgwYYIk6aWXXpJhGIqLi3NssY1U2ZpdPz8/dejQwcHVNExNmjTRgAEDJFU++lZYWGj9oVNMTIyptTVWH374oSTpmmuuqXLWAGynefPmkqQDBw4oMzOzwv3CwkLt2LFDkqo8arc+IVDDpp5++mlJ0vTp063/oUilPxF/6KGHJEmTJ09mh100WM8++6xee+01BQQEEKYdYN++fZo7d67y8vIq3Dt06JDGjh2r/Px89enTR127dnVAhYB9/fLLL/r2229VVFRU7npJSYk+/PBD67/TjzzyiPVcWNjeP/7xD0nSq6++qk2bNlmvFxUV6fHHH9exY8fk6+vLaKkJCgsL9fnnn0vi7GmzjBgxQt7e3jp37pzuu+8+6x5KklRQUKDHHntMJ06ckKurq2699VYHVmobFuPCg/EAG3j00Uf11ltvydXVVUOHDpW3t7dWr16tjIwM9e/fXytXrpSnp6ejy2ywduzYYf3hhSQdPXpUaWlpioiIsP7EUCpd69i0aVNHlNhgffvttxo9erQkqXfv3urcuXOl7UJCQvTGG2+YWVqj8eOPP+qaa66Rt7e3evbsqYiICBUUFOjEiRPasWOHSkpK1KlTJ33//fec/2qyiRMn6tNPP9VLL72kZ5991tHlNFiLFy/WTTfdpMDAQPXq1Uvh4eHKyMjQr7/+ap2GOW7cOM2ZM0cuLqz8s6eXX35Zzz33nFxcXBQTE6MmTZpox44diouLk6enp+bPn2/dnAz2s2jRIt18880KCAhQcnKyPDw8HF1So/D555/rnnvuUVFRkUJDQxUdHS1XV1dt27ZNiYmJcnJy0uzZs/Xggw86utTLxv9JYXMzZ85U//79NXv2bG3cuFGFhYVq27atpk6dqscee4wjg+wsKytLmzdvrnA9ISGh3AY0+fn5ZpbVKFy4Dmjbtm1VbnrVsmVLArWddO7cWf/v//0//fTTTzpw4IB27typwsJCBQUFaejQobr55pt1zz33yN3d3dGlAnbRvXt3TZkyRdu2bdOBAwe0YcMGGYah8PBw3XrrrbrnnntYdmWSZ599VjExMZoxY4Y2b96srVu3qkmTJpo4caKefPJJdezY0dElNgplm5GNHz+eMG2iu+66S127dtWMGTO0bt06rV69WoZhqGnTprrzzjv1yCOPNJglD4xQAwAAAABQC6yhBgAAAACgFgjUAAAAAADUAoEaAAAAAIBaIFADAAAAAFALBGoAAAAAAGqBQA0AAAAAQC0QqAEAAAAAqAUCNQAAAAAAtUCgBgAAAACgFgjUAAAAAADUAoEaAAAAAIBaIFADAAAAAFALBGoAAAAAwCWlpKTof//7n55//nmNGDFCISEhslgsslgsmjhxosPqWrVqlSZOnKioqCh5e3vL399f7du316233qp3331XOTk5dnu2i916BgAAAAA0GOHh4Y4uoZwzZ87onnvu0TfffFPhXlZWlg4fPqyFCxeqb9++6tGjh11qYIQaAIBq+PHHH60/ha/q45dffrFZ35X9pH/ixIkV2v3444+X9XXh0n7/e96qVStHl1Qj06ZNq/A1fPLJJ44uy65mzJhxyf9eAVyeFi1a6LrrrnPY8zMzMzVs2DBrmL7ppps0d+5cbdq0SVu3btXXX3+tRx99VBEREXatgxFqAEA5Zd9orlmzRoMHD67Re8eNG6cvvvhCkjRnzhzdfffd5fqsipubm3x9fdWiRQt1795dY8aM0R/+8Ac5OfFzXwAA6ornn39e0dHRio6OVnh4uOLi4tS6dWuH1PLwww9r+/btcnd311dffaVRo0aVu9+7d2/ddNNN+ve//63i4mK71UGgBgDYRFFRkb7//ntJkrOzs2644YZqv7egoEDp6elKT0/Xzp079cknn6hnz55avHixWrRoYa+SAQBADbzwwguOLkGStH79en322WeSpJdffrlCmL6QxWKRi4v9Yi+BGgAasWnTpmnEiBG66qqrLtruxIkTevPNN/X666/L3d290jbr1q1TRkaGJKl///4KCgq6rNp27typ66+/Xrt27ZKbm9tl9WUvw4YN0xVXXGH9PDQ01K7Pu+666xQQEFDumr2nskF69NFHy31+uX+3YX89e/Ys9+e2YsUK7d+/34EVAfi9vLw8ffDBB1q0aJH27t2r06dPKyAgQN26ddO4ceM0YcKEKoPwrFmzJEn+/v6aPHmymWVXQKAGgEZq06ZNeuGFF/TCCy9o7NixevXVV9W2bdtybTIzM/Xqq69q5syZysvLU4sWLfT4449X2t+3335rfX2xnxSXueWWWxQREaHCwkLFx8dr5cqVysvLK9fmwIED+vLLL61Tx+ua8ePHm7qr6fjx4zV+/HjTnodSM2bMcHQJqKFBgwZp0KBB1s8nTpxIoAbqkF27dmn06NE6fvx4ueupqalavXq1Vq9erffee09LliypsBFaQUGBdd30sGHD5OHhIUkqLi5WUlKSiouL1aRJE+t1e2NxGgA0UgEBAfrDH/4gSZo/f746deqkRx55xHr/k08+Udu2bfXaa68pLy9P3bp1U9euXavsb8mSJdbX1QnUkydP1owZMzR79mx9++232rNnj3x8fCq0++GHH2ryZQEAgDrsyJEjGjRokI4fPy4/Pz899dRTWrRokbZt26bly5frL3/5i1xcXLR161aNHj1ahYWF5d6/a9cu6w/gu3btqqysLE2ZMkUhISFq0aKFWrduLX9/fw0bNsyUjTsJ1ABQz5w5c0YRERHldqt1c3PTnj17KrRds2aNnJycyrXt1q2b8vPz1bFjR3377bfatGmThg4dqsLCQr399tvW93766adKT09X27ZtNXfuXP3yyy9V7ua5d+9eHTt2TJLUoUMHtWvXrsZfV1RUlG666aYK15OTky/53s2bN+vhhx9Wz549FRoaKjc3N4WGhqpPnz56/vnnlZSUVON6bOnMmTN6+umn1alTJ3l6eio0NFTDhg3T/Pnza9RPdXb5jouLq9CmbHO5HTt2aNy4cWrWrJm8vLzUqVMnTZs2TVlZWdb3l5SU6IMPPlCfPn3k7+8vPz8/9enTR++99161NnUpKCjQJ598ottuu01t2rSRn5+fPDw8FBkZqTFjxmjOnDkqKiqq8v0X2/H8wIEDeuCBB9S6dWt5eHgoODhYI0aM0IoVKy5a06lTp/Tyyy9r8ODBatasmTw9PeXu7q5mzZqpW7duGjNmjKZNm6bVq1eroKCgwvtrusv3yZMn9fLLL2vIkCFq1qyZPDw85OPjo1atWunWW2/VRx99pPz8fFN/D2pqxYoVuu+++9SlSxcFBQXJzc1NTZo00eDBg/Xaa69Zl3dczNKlS/XHP/5RXbp0kb+/v1xdXRUQEKCoqCj1799fDzzwgD766KMKI1RlLvfPDUDdNGHCBGVmZqpnz546evSoXnnlFY0ZM0ZXXnmlrrvuOs2aNUtLliyRk5OTNm/eXOFUgn379llfl5SUqHfv3po5c2a5/y8VFBRo1apVGjJkiF577TX7fkEGAKDeWblypWGxWAxJ1o/evXsbRUVF1jY5OTlG69aty7Vxd3c3du/eXWmfzz33XLm2koyBAwcaZ8+evWQ9r7zyivU9TzzxRIX7v+9XkrFmzZoK7Z588skK7W6//fYqn5uammrceOONlfZ/4Yenp6fx9ttvX/LruJg1a9ZU6Pfjjz++5Pv27NljNG3atMrabr31VmPFihUVrk+YMKFCXxMmTLjk72NsbGyFNoMGDTLeffddw8XFpdIaunTpYpw8edLI+v/t3XtQVOfdB/Dv7kqIKAoKJKJIY1gBSTTGiANJhgKKJlbjdakS5WKqthqx3tPE0jEVpZmYpGDQxowRTTqaeGlRwiXUyOqIYtQI5RKJRow1IiAiBixln/cPX7Z7OGfZCwuW9vuZ2Rn2Oc8+59nn7LLnd57LaWgQEyZM6LCuBoPB7HvNz88XgwcPtng8/P39RUlJidXtHBsbK7Zu3Soeeughs2W+8847iuVlZWWJvn37WqxT20Ov18vKaJ/H19dXcV8Gg0Fs2rRJODs7W9yPt7e3yM/P75Y2SEpKsvqze/nyZRESEmKx/m5ubuLTTz9VLKOpqUlMnjzZ6jaPjIzskuNmSum7Q0SdZ/qbo/S71V5BQYExv7nzkTY6nU4AEKGhoZL0LVu2GMt4+OGHBQAxadIkcfr0adHc3Cyqq6tFenq66N+/vzHfoUOHOvM2O8T/JkREPVRiYqLsBDElJcW4fenSpbLtb7/9tqycM2fOiKioKLMnqlqtVuzbt6/DQMr0BNyagARQDqhjYmJk+d544w3FfdbU1Ag/Pz+rT7gBiA0bNljRssrsCahv3rwpHn30UYv1CgoKUgyg2rM3oHZ3d5ddgGn/mD17tpgxY4bFun7wwQeK73X//v1CrVZbfSz69eunGFQrtbOnp6fF8nr16iUrr7a2Vri5udn0GelMQL148WKb9qXRaERmZmaXtoEQ1gfUFy9eFB4eHlbXX6VSiV27dsnK+e1vf2tTO7QPqB113EwxoCbqGrYG1KtWrRLA/QurlqSlpQkAwsnJSbS0tBjT33zzTcl3ecKECZIOhTZ6vd74uxQYGNjheUxncMg3EVEPtXnzZgQFBUnSkpKS8M0336CgoABbt26VbIuMjMSvf/1r4/PKykrMnj0bY8eORW5uLpycnCQrZc6fPx8DBgzAxYsXodPpEBwcrDgXqbq6GqdOnQIAeHh4IDQ01K73U1FRgYMHD0rSNBoN4uPjFfPHxcWhsrJSkta7d2+89NJLWLRoESIjI2X3v05KSoJer7erfvZYu3YtfvjhB1l6aGgoFi9ejBdeeAFqtRp///vfu7Qet27dghAC/v7+WLhwIYKDg2V5Pv30Uxw4cAAAEBERgQULFiiuIG46LaBNVVUV5s2bB4PBIEkfNmwYXn75ZcTFxcHPz0+yraGhAbNmzepw+HebmzdvAgB8fHzwyiuvYPr06bJj+69//Qvbt2+XpGVlZcmGJg8ePBgxMTFYsmQJYmNj8fzzz6N///4W62DJn//8Z2zbtk2W3tbmMTExcHd3l2xrbW3F3LlzcePGDYvl29sG1jIYDJg5cyZqamok6W5ubpg1axZ+8YtfICQkRLJNCIHFixfLvocff/yx5LlGo0FkZCQWLVqERYsWYcaMGQgICDB7f/ruPG5E1L3OnDkD4P5vfvupLe0fbeckLS0tqKurM5bRfrGxlJQUaDQa2b6ee+45zJgxAwBQVlamODXOIbokTCciom5x7tw52RDQ0NBQWc+tu7u7+P777yWv1ev1xu3Tpk0T33zzjRDi371xR48eFXV1dWLFihXGfWzevFlWhw8//NDi1Wko9CjNnDlTJCYmiiVLlogpU6YoDpNNTk5WLK+wsFCWNygoSPzwww+SfDk5ObJhzuHh4Xa0tO091DU1NYrvyXQUgRD3h7Yq9ew6socauD8c7p///KcQQojW1lazw3o3bdpkLOvatWuK76Gurk6yz1/+8peyPGvWrBGtra3GPC0tLSI+Pl6Wr30Pp1I74/97MU2nH6SmpsryjBo1SlLWxo0bJduHDh0q7t69K2vX1tZWUVRUJNatWyeKi4tl29vvR6mHevjw4bJ8CQkJkl6TGzduKOZrP03CkW0ghHU91Hv37pXlCQ8PFw0NDZJ8pt/3tkd8fLwkj5OTk2R7WlqarE5C3B/BsWfPHvH73/9eku6o42aKPdREXcPWHuoRI0Yo/n+z9Lh8+bKxjG3bthnTPT09O9zfBx98YMy7Y8eOTr5bZfxvQkTUw6WkpFj8Idq7d6/ia9euXSsKCgokaUqB2rfffisWLlyoOJ962rRpxtd89tlnivux9YfTx8enw2B19erVstdkZWUp5m0/J1ilUomamhqzZZtja0C9b98+WX5/f3/FIWezZ8+W5XV0QN1+KLDSsFxvb2/JsDohhAgPD5flO3v2rHG7wWAQXl5eku2DBg2SBNNtrl27JitrypQpFtsZkM+1a25uFhqNRpKnX79+kjx//OMfJdu9vLxEVVWVrF6WtK9L+4C6uLhYlsfV1VXcuXNHVtahQ4dkebVabZe1gRDWBdRKn8HS0lLF9tBqtZJ8bm5ukuM9YMAAyfbXX39d8fNgjqOOmykG1ERdw9aA2t/fXwD3L/4VFxdb/Wi7ICyEEEeOHDHuc/To0R3uLzs725jX9IKxI/E+1EREPdyqVauQlZWFY8eOKW6fN28edDqd4rbNmzdbtY9hw4YpDiVtbm5GXl4eAMDZ2RkTJ060stbmqdVqxMTEIDo62myetiHmpl588UWryhdCoLCwEJMnT7a7jtY4f/68LC0qKkpxmOukSZNsXvHbFt7e3rLpAY8++qgs309/+lP06tXLYr47d+4Y//7uu+9QXV0t2X79+nXF4XdKTp48aTHPk08+Kbtlm7OzM9zd3SVDlE3rBdwfum6quroajz32GAIDA+Hv7w9/f38EBgYiJCREdg92WxQVFcnSwsLCFG8DN3HiRGg0GsmK6RcvXkR9fT3c3NzM7sPeNrCW0ndqxIgRVr22vr4eZWVlxs9YZGSk5PO8ceNGbN++HU888QSGDx+OgIAAPPXUUxg3bhxcXFxk5XXXcSOi7jdw4EAAQGNjI5544gm7yjD9PbN09wnT7e1/3xyFc6iJiHo4tVqNjIwMxRPTRx55BGlpaV227/z8fNy9excAEB4erhhA2MpgMGDz5s0ICwtDU1OTYp62+aT2UprX7Gi1tbWyNKU5yR2lO4qPj48srf0cNHP5HnroIVma6Vzpzh6L2tpai/OofX19FdPbvwchhOR5UFAQEhMTJWmtra0oKSnB/v37kZycjHnz5sHPzw9BQUHIyMiw4x0ot4FSW7bV2dPT06oyTNnbBtZy5Hdq48aN8PDwkGyvqanBl19+iT/96U9YsWIFIiIi4OHhgdjYWFy7dk2St7uOGxF1v9GjRwMALl26ZPdvsa+vL4YOHQrg/kXdjv7vffvtt8a/Bw8ebNf+LGFATUT0X+Drr7/Gjz/+KEu/efOmYk9pR8T96UDGexd3JDMz0/j31KlTbdrP0aNHYTAY8I9//AMpKSlwcnKSbC8qKsLy5cttKtNajY2NXVLufyql4Fmpp1wpX1cTQhgvypjT1qPRnjW94O+++y727t2L0NBQqNXmT3tKS0sRGxuLt956y2KZD0Jn2qA7mH6ntFotLly4gCVLlihePGjT1NSEjIwMhISESBYcAv57jhsRSbWdKwgh8N5779ldzsyZMwHcX+AyPz/fbL62xTaB+4uUdQUO+SYi6uFu3LiBBQsWKG4zGAyYP38+Lly4gH79+jl0v0IIHD582Ph8ypQpNpehUqkwaNAgrFmzBs7OzrIAeseOHViyZAlGjhwpSffy8kJZWZkkLSEhAa6urlbt96mnnrK5rrZSCoC+//57xbzm0nsCLy8vWdqQIUOMJzvWUOoFdySdTgedTof6+np8/fXXqKioQGVlJYqKinDs2DFJ78aGDRuQmJhoU52UgsarV68q5r13755ib3BHgWd38PLywpUrV4zP1Wo1li5danYl7vaGDRsmeT5o0CCkpaUhNTUV5eXlKC0tRWVlJcrKypCdnS1Z2fzq1avYvn07XnvtNUkZXX3ciKj7RUVFITg4GKdPn8Zbb72F0aNHm52WBgDFxcX47rvvZOcYy5cvR3p6Opqbm7FixQocP35cdp6zZ88e491JJk+ebHbkUGcxoCYi6uESEhI6HK555coVLF261OHDIs+ePWscqjl69OhOD1t+9dVXsX37dkmgbDAYsH79evzlL3+R5B07dqxsznhERARiYmIs7qe1tbVbevWUgva8vDwIIWRBSk5OTpfXp6v4+vrC09NT8hm8ffs2Nm3ahN69e1t8fXcdD+D+LaDCwsIQFhZmTHvjjTewceNG4/PGxkaUlpbadNFl7NixsrSCggLcvXsXffr0kaTn5OTI5vxptdoO5093h7Fjx0oCaoPBAJ1Oh2effdbiazs6hiqVCoGBgQgMDDSm1dfXY8iQIZKRCUpzuNt01XEjItsdP35ccqs80zUcKisr8dFHH0nyx8XFycr45JNPEBwcjLq6OkRHR2PPnj2Ijo6GVquFRqNBdXU1zp07h8zMTBQWFmLlypWygHro0KHYsGED1qxZg+LiYgQHB2Pt2rUYOXIkGhoacODAAaSnpwMA+vXrh3feecdxjdAOh3wTEfVg77//PrKysiRpy5cvx7Rp0yRpu3fvdviiV3/961+Nf9s63FuJWq3GunXrZOmZmZkoKSmRpLXdV9JUYmKi2QWuWlpacPToUSxcuFDWNl0lPDxc1ltWXl6OLVu2SNJyc3Px2WefdUuduoJKpcL06dMlaXfu3IFOp5MN421TU1ODXbt2ISwsDHv27Omyup06dQrLli3DqVOnZPfIbqN0D+h79+7ZtJ+2xbZMNTQ0IDExURI8V1dXY/Xq1bLXd9dnsiNK36n58+ejvLxcMX9TUxOOHDmCOXPm4Fe/+pVk28qVK7Fz506zF/rq6+tlbWz6vLuOGxHZbseOHYiPjzc+TP+nnThxQrItPj5esYzHH38cJ0+eNC5KlpmZiZdffhnjxo3DM888gxdffBGvv/46CgsLAcDsCLvVq1dj3bp1UKlUqKioQEJCAp555hlEREQgLS0Nra2t8PLyQnZ2NrRarYNb4t/YQ01E1ENVVFTITs79/PyQnJyMhoYG6PV6ycJYixcvxrPPPgtvb2+H7N/RATUAzJ07F+vXr0dVVZUxTQiB5ORkfPLJJ8a0kJAQvPDCC/j888+NabW1tQgNDcWYMWMQEBAANzc33L59G5cuXcKFCxeMczxNe7m6koeHB2JiYrBz505J+qpVq3Dw4EGMHDkSV65cQXZ2ttmgoaf4zW9+g927d0sWkTt8+DCGDBmCsLAw+Pj4QKVSoba2FqWlpaioqDC+Z3MnXI5w584dpKamIjU1FW5ubnjyySfx2GOPwdXVFU1NTTh79qxsjQG1Wm3XytG/+93vMHfuXEnahx9+iOPHjyMsLAw//vgjjhw5glu3bknyuLq6YuXKlTbvz9Gio6ORnJwsuXh16dIljBgxAqGhofDz80OfPn1w69YtXLx4ESUlJWhubgYAxMbGSso6deoUtmzZApVKZVyR28PDA05OTrh+/Tq++OIL2UJ0phckuvO4EdGDMXz4cJw/fx779u3D/v37UVRUhJs3b6K1tRUDBw6Ev78/nnvuOUyfPh1PP/202XI2bdqEqVOnIj09HXq9HtevX8fDDz+M4cOHY+rUqXj11VfRv3//Ln0vDKiJiHqglpYWxMTESBYiU6vV2LlzJ3r37o3evXtj69at+PnPf27cXldXh7i4OOTk5Fg9L9Kcq1evGk9ohwwZ0uGPnS169eqFVatWYdmyZZL0ffv2YcOGDfDz8zOm7dq1CyEhIZIVPAHgq6++wldffeWQ+nRWSkoKjhw5Irut1IkTJ3DixAnjcx8fH7NzbnsCX19f7N69GzqdTnJxoKmpCdnZ2Q+wZv9WX18PvV4PvV7fYb7Zs2fLVqi2xpw5c1BQUIBt27ZJ0isqKlBRUaH4Go1Gg48//hiPPPKIzftzNLVajQMHDiAkJERyIU4IIfu8WksIgfLycrO93G2cnJzwyiuvKG7r6uNGRLb56KOPZMO67aXRaDBnzhzMmTOnU+WEhIQgJCTEIXWyB4d8ExH1QElJSbKgcdmyZZIVLKOjozFr1ixJnry8PKSmpnZ6/6are//sZz/rdHmmFixYIDsxbm1tRUpKiiTN09MThYWFeOmll6wu28XFBc8//7xD6mkNT09P5ObmdhgwRUZGyoKwnmjmzJnIy8sz3srEGsOGDevSYXi2Xjjq7LF4//33kZycDGdnZ4t5vb29kZuba9difl1Fq9XizJkzNq2E6+7ujnHjxknSbGn3Pn36ICMjQ3KP7e4+bkREncEeaiKiHub48eOy4LJtqHd76enpKCgokPSQrl27FuPHj8eIESPsrkNnbpdliYuLCxITE7F+/XpJekZGBpKSkiSLn3l4eODQoUM4f/48du/ejRMnTuDy5cuor6+HWq2Gm5sbHn/8cYwaNQqRkZGIiopyyL2ybTFq1CiUlpbiD3/4Aw4ePIiqqiq4uLggKCgIsbGxSEhIkC2w1lNFRESgsrIS+/fvx+HDh1FUVIQbN26gsbERLi4u8PLyQkBAAMaNG4eoqChZIOZokZGRKCkpwRdffIHTp0+jrKwMV69exe3btyGEQN++fTF06FCMGTMGOp0OkyZN6tT+VCoVXnvtNcTHx2PHjh3Iz89HeXk56urq0KtXL3h6emLMmDGYPHkyYmJirAq8u9tPfvIT6PV6FBQUYO/evTh58iSqqqpw+/ZtODk5YcCAAdBqtXj66acxfvx4REREyN7H559/jr/97W/Q6/U4d+4cLl26hOrqajQ1NcHZ2RkDBw5EQEAAxo8fj7i4ONkFp+4+bkREnaESHd0Jm4iIqJ3GxkZ4eHjg3r176Nu3L2pqav4jAwNH+/LLLxEeHi5JmzBhguTCxOrVqzF48ODurhoRtXPs2DEcPHjQ+Dw3N1d2qz2eAhORI7CHmoiIbJKTk2NcTTcqKup/Ipg2Jy8vD3l5ecbncXFxDKiJ/gOcO3cO77333oOuBhH9D2BATURENnF1dUVSUhIAYOLEiQ+4NkREREQPDgNqIiKySVRUFKKioh50NYiIiIgeOM6hJiIiIiIiIrIDb5tFREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZAcG1ERERERERER2YEBNREREREREZIf/A07XosNveTn9AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "source": [ + "### BEGIN SOLUTION ###\n", + "Le = np.array(x[-1])\n", + "### END SOLUTION ###\n", + "\n", + "# Print Value\n", + "print(\"Le (x @ δ*=1) =\",np.round(Le,3)) # we want to know the dimensionless\n", + " # length at which del is 1 since this will give us our entrance length where\n", + " # flow is stil developing" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0BI6oQ8qwhUu", + "outputId": "11bdd4bf-0ca8-4e24-92af-0c5fbc77f5c1" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Le (x @ δ*=1) = 7955615.397\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Activity** Let's reassess the entrance length approximation. For turbulent flow, we initially employed one approximation method. Now, let's verify this by employing the alternative approximation method and compare the 3 different results." + ], + "metadata": { + "id": "vJrY3IfcDXTX" + } + }, + { + "cell_type": "code", + "source": [ + "# Given values\n", + "wind_speed = 100 # m/s\n", + "tube_diameter = 9.4 # meters\n", + "air_viscosity = 1.5e-5 # m^2/s\n", + "\n", + "# Calculate Reynolds number\n", + "Re = (wind_speed * tube_diameter) / air_viscosity\n", + "\n", + "# Determine the flow regime and calculate the entrance length (Le)\n", + "if Re < 2000:\n", + " flow_regime = \"Laminar\"\n", + " Le = 0.005 * Re * tube_diameter\n", + " equation_used = \"Le = 0.005 * Re * D\"\n", + "elif Re > 3500:\n", + " flow_regime = \"Turbulent\"\n", + " Le = 10 * Re * tube_diameter\n", + " equation_used = \"Le = 10 * Re * D\"\n", + "else:\n", + " flow_regime = \"Transition\"\n", + " # For transition, use the average of laminar and turbulent equations\n", + " Le_laminar = 0.005 * Re * tube_diameter\n", + " Le_turbulent = 4.4 * (Re ** (1/6)) * tube_diameter\n", + " Le = (Le_laminar + Le_turbulent) / 2\n", + " equation_used = \"Average of laminar and turbulent equations\"\n", + "\n", + "# Output the results\n", + "print(f\"Reynolds number (Re) is {Re:.0f}, the flow is in the {flow_regime} regime.\")\n", + "print(f\"Entrance Length (Le) is {Le:.2f} meters, calculated using the equation: {equation_used}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zuxr6D8iDwjT", + "outputId": "0f096c97-b289-4f71-a3ea-032743e37a50" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Reynolds number (Re) is 62666667, the flow is in the Turbulent regime.\n", + "Entrance Length (Le) is 5890666666.67 meters, calculated using the equation: Le = 10 * Re * D\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Note:** The demonstration reveals that both the model and one of the approximations yield irrational numbers. This emphasizes the critical importance of thoroughly verifying the limitations of equations and models before their application." + ], + "metadata": { + "id": "tC_agxz2DyUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Discussion** The model's entrance length behaves illogically at high Reynolds numbers, yielding irrational results. Explore reasons behind this anomaly.\n", + "\n", + "The model's entrance length fails at high Reynolds numbers, yielding irrational results. This occurs due to increased turbulence impeding laminar flow, disrupting the boundary layer's development." + ], + "metadata": { + "id": "RRs7UP5rBDYj" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SbcoTuHbtDak" + }, + "source": [ + "### 3-6-Define An Equation For Le Using New Value\n", + "\n", + "Using the obtained value of `Le`, make a general expression for the entrance length similar to the expression derived in part 1.\n", + "\n", + "*Hint*: The value obtained for Le is dimensionless." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z3iuGDfTvYyr" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W_TIpO1s6Mjl" + }, + "source": [ + "### 3-7-Comparing Integration Methods\n", + "\n", + "Compare your previous results using the `RK45` integration method with alternative methods.\n", + "\n", + "Define your equation as `methods`.\n", + "\n", + "For more information on other integration methods for `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html) to go to the relevant section of the class website. Further detail into integration methods for `scipy.integrate`, is also provided in the documentation [here](https://docs.scipy.org/doc/scipy/reference/integrate.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eepM5dJK8emB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6c0366f7-990c-4a7d-af01-ae243c97ffab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using method RK23\n", + "Number of RHS function evaluations: 83\n", + "Le (x @ δ*=1) = 7954490.72986\n", + "\n", + "\n", + "Using method RK45\n", + "Number of RHS function evaluations: 38\n", + "Le (x @ δ*=1) = 7955615.39722\n", + "\n", + "\n", + "Using method DOP853\n", + "Number of RHS function evaluations: 89\n", + "Le (x @ δ*=1) = 7955285.42507\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# make a list of methods\n", + "methods = [\"RK23\", \"RK45\", \"DOP853\"]\n", + "\n", + "# loop through methods for best\n", + "for i in methods:\n", + " print(\"Using method\",i)\n", + "\n", + "### BEGIN SOLUTION ###\n", + " other_methods = integrate.solve_ivp(entrance, dspan, xo, method=i, t_eval= tspan)\n", + " d1 = other_methods.t\n", + " x1 = other_methods.y[0]\n", + " Le = np.array(x1[-1])\n", + "### END SOLUTION ###\n", + "\n", + "# print values for each method within loop\n", + "# some solver statistics\n", + " print(\"Number of RHS function evaluations:\",other_methods.nfev)\n", + "# calculated length from each method\n", + " print(\"Le (x @ δ*=1) =\", np.round(Le,5)) # dimensionless\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Note** All the various numerical methods demonstrated above exhibit consistent accuracy up to the fourth significant digit in solving the integral." + ], + "metadata": { + "id": "_GHddIDwSer0" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_45mKgasR0Y6" + }, + "source": [ + "## 4-Discussion and Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OXqzw7jWR0Y6" + }, + "source": [ + "### 4-1-Explain why the equation derived in Question 3d differs from the one obtained in Question 1.\n", + "**Discuss** in 1-3 sentences.\n", + "\n", + "**Answer**:in that part of the notebook it shifts away from the assumption of a constant and uniform fluid velocity upon entering the channel. Instead, it considers the variable nature of this velocity across the entrance, influencing the way flow is analyzed. As a consequence, the initial flow condition changes over the developing region, leading to an extended entrance length." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N93m2GRF90ci" + }, + "source": [ + "### 4-2-Describe the integration methods used in 3g and how they differ in performance. Was the best method used originally in 3b? Why or why not?\n", + "\n", + "\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:at 3-7 , we compared three numerical integration methods: RK23, RK45, and DOP853, ranked by their error levels. RK45 provides similar precision to DOP853 but with fewer iterations. Thus, our choice to use the default scipy.integrate_ivp method was valid." + ] + }, + { + "cell_type": "markdown", + "source": [ + "### 4-3- A Reynolds number of 1 was used as a starting point to simulate laminar flow. If the Reynolds number were increased, what would happen to the entrance length? Does it get larger or smaller? Why does this occur?\n", + "\n", + "**Explain** your reasoning using the derived equations for `Le` and the nature of turbulence.\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:As the Reynolds number increases, the entrance length also grows due to the increased turbulence in the flow. The relationship between entrance length and Reynolds number is directly proportional, meaning that as one increases, the other follows suit. This relationship is substantiated by the derived expressions in both Question 1 and Question 2e." + ], + "metadata": { + "id": "Dh09_QLSLs7i" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ga1hxJLNs1H0" + }, + "source": [ + "To visualize, plot the curve above with the following values of Re:\n", + "\n", + "1, 10, 100, 500, 1000, 5000.\n", + "\n", + "*Hints*:\n", + "\n", + "1. Use a [lambda function](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions) to allow redefinition of Re.\n", + "\n", + "2. Make a semi-log plot for easier viewing of trend in results.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iMNgZLshYyWg", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 625 + }, + "outputId": "a7ac6dcc-683e-4d68-db06-98490da76e13" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAI8CAYAAACwIh5dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdeXyU1fU/8M/MZN/3fU9IQtjCkoQdxKISkUVwq61QRflqxdJvBX9WS23Vb6vYuoC2UhDQqq2KoiC4sy9ZIOwJIftO9n2dmef3R8yYcO+EGTLPM0+enPfrxesVziSXE81y5s6556oEQRBACCGEEEIIkYTa2gkQQgghhBAyklABTgghhBBCiISoACeEEEIIIURCVIATQgghhBAiISrACSGEEEIIkRAV4IQQQgghhEiICnBCCCGEEEIkRAU4IYQQQgghEqICnBBCCCGEEAlRAU4IIYQQQoiEqAAnhBBCCCFEQlSAE0IIIYQQIiEqwAkhhBBCCJEQFeCEEEIIIYRIiApwQgghhBBCJEQFOCGEEEIIIRKysXYCI1lnZyfOnz8PAPD19YWNDf3vIIQQQgiRE61Wi5qaGgDAuHHj4ODgMOQ1qeKzovPnzyM5OdnaaRBCCCGEEBOkp6cjKSlpyOtQCwohhBBCCCESoh1wK/L19TW8nZ6ejsDAQCtmQwghhBBCrlVZWWnoWOhfuw0FFeBW1L/nOzAwECEhIVbMhhBCCCGEDMZS5/WoBYUQQgghhBAJUQFOCCGEEEKIhKgAJ4QQQgghREJUgBNCCCGEECIhKsAJIYQQQgiREBXghBBCCCGESIgKcEIIIYQQQiREBTghhBBCCCESogKcEEIIIYQQCVEBTgghhBBCiIToKnoF6OzsRGNjI9rb26HT6aydDhnhNBoN7Ozs4ObmBhcXF6jV9DyfEEII6Y8K8GFMEARUVlaiqanJ2qkQYqDVatHV1YWWlhaoVCoEBwfD1dXV2mkRQgghskEF+DBWV1fHFN82NvS/lFiXTqeDIAgAep8klpeXUxFOCCGE9KPIaq21tRUbN25EWloa0tPT0dDQgO3bt2PlypUmfXxjYyPWr1+Pzz77DO3t7UhOTsbf/vY3TJo0SdzEzdDd3Y2amhrD3/38/ODh4QGNRmPFrAjpLbrb29tRX1+P1tZWQxEeGxtL7SiEEEIIFHoIs7a2Fn/+85+RnZ2NCRMmmPWxer0et99+Oz744AM8/vjjePnll1FdXY25c+fiypUrImVsvtbWVsPb3t7e8Pb2puKbyIJKpYKzszNCQkLg4uICoLco7/81S4hS9L3aM2KMsM93OPz/FQTBInlaah2xDYccTaHIHfDAwEBUVlYiICAAmZmZSEpKMvljP/nkExw/fhwff/wxli9fDgC4++67ERsbiz/+8Y/44IMPxErbLG1tbYa33dzcrJgJIXwqlQpeXl6Gwru5uZm+VonibDtaiE9OlWFqlDdSIr2QHOkFbxd7a6clno9XAq3VQMQMIHwGEJoM2DlbOytR6PQ6LPxsIWI8YjDZfzKmBExBvFc8bNTyKp26rlxB6SOr4ZSUBKekKXBKSoJdRARUKpVZ69SVt+LLN88hKNYDwaM8ETTKA+5+jmavI7az3+7H2W++REjCWISM7v3j7OFp7bTMJq+vIguxt7dHQEDADX3sJ598An9/f9x5552GmK+vL+6++278+9//RldXF+ztTfvhWlZWNujjlZWVN5Qj0NuCAvQWOabmQ4jUnJycoFKpIAiC4WuWECU5kV+HnKoW5FS1YMfxIgDA6EA37Hl8Bmw0CnuRWa8DCg4AnU1AyXEAGwG1DZB4P7DoDWtnZ3FXGq+grLUMZa1lOFh2EADgbOuM9UnrceeoOwf/YAm1Z2RAW1WF5j170LxnDwBA4+uD0Lf+AcdxY01epzy3Ea0NXchNu4rctKsAACd3Oyz89QT4hsnnDE/pxXOoLS1GbWkxznz9JQDAKzgUv3zpDdjY2lo5O9MpsgAfiqysLEyaNInpVU1OTsaWLVuQm5uLcePGmbRWaGioGCkC6G2VAXpHvsnt2SkhfVQqFTQaDbRaLY3IJIqj0wtIL6pn4vY2auUV3wBw9WJv8d2fXgs4elglHbFlVmUysbaeNvg4+lghG+PaM9g8dbV1sAszrwapuNLIxDqau+Hm63ijqVmcIAgoy77AxDUazbAqvgGF9oAPRWVlJQIDA5l4X6yiokLqlAghhMhQdmUzWjq1TDwlyssK2Uig+Bg/Hj5T2jwkcurqKSamVqkx0W+iFbLhEwQB7ZlsAW4fFweNu7tZ6/AKcJ9QV9g7ymevtqGyHO1NjUw8JMG0jVE5kc9/VZno6OjgtnQ4ODgYHjdVaWnpoI9XVlYiOTnZvAQJIYTIQlohu/sNAFMjvSXORCJFR9mYSg2ETZU+F5EJgsAtwOM84+BqJ592jO7CIuhqa5m405QpZq3TUNmOztYeJh4U43GjqYmi7BK7+w0AIaPHSJzJ0FEBfg1HR0d0dXUx8c7OTsPjpgoJCbFYXoQQQuQlraCOialVwJSI4Xcg7Lr0eqD4OBsPGA84KO9wdX5jPhq6Gpj4lADzCluxtWdkcONOZgyfAICKK+znCgBBsR7mpiSq0kvnufGQ0ab3ussFtaBco2+CyrX6YkFBQVKnRAghRGb0Rvq/xwS5w9VhePWimqQmB+jg7PiHz5A+FwlkXmXbOgBgiv9wKcDNy7Oc034CyGsH3Fj/t1dwKJzcPaRPaIioAL9GYmIiTp8+bTjk2CctLQ1OTk6IjY21UmaEEELkIre6BY3t7Ev2KZEjrP87QpkFOK/9BAAm+cnnQj5BELgFuF1MNGy8TP86NNb/7R3sDAcX+TyZbKq+itZ69lWn0ITht/sNjPACvLKyEjk5Oejp+emH6PLly3H16lV8+umnhlhtbS0+/vhj3HHHHTTyjxBCCNIK+P3fKVEjqP8bKiBsmuSpiE0QBO4O+CjPUfBw8JA+ISN6ysqgvXqViZvb/91U3YH2JnZMrJx2vwGgzEj7SfAwbD8BFNwDvnnzZjQ2NhqmluzZs8cwl3vNmjVwd3fH008/jZ07d6KwsBAREREAegvwqVOn4le/+hUuXboEHx8fvPXWW9DpdPjTn/5krU+HyEB1dTXS09ORnp6OjIwMZGRkoK6u99n4ihUrsGPHDusmSAiRTFohuxOnUgHJEQrcARcE/g64/xjASXmfb3FzMWo72IONsms/SbdU/3cjNx4UK6+zDLz2EwAIpQJcXl555RUUFxcb/v7pp58adrV/8YtfwN3IeB6NRoN9+/Zh3bp1eOONN9DR0YGkpCTs2LEDcXFxkuRO5Mnf39/aKRBCZEAQBKRzJqDEB7jB3Uk+L9lbTO0VoK2GjY+w/u/J/pMlzmRwljqAWW7sAOYoD3NTElUpZwKKR0AgXLyG56tOim1BKSoqgiAI3D99u907duwY8Pc+np6e2Lp1K2pra9HW1oaDBw9iipkv6RBlCwsLwy233GLtNAghVpBf04raVvYle+r/VgZj/d+yK8A587/twsNh6+dn1jq8HXDPACc4udndaGoW11xbjeYatt0mZPTwm//dR7E74IRY2oYNG5CUlISkpCT4+/ujqKgIkZGR1k6LECKxk0b6v6eOuAt4lFeAG+v/jnSPlNUNmD2Vlej5sa22P0czp58013agtZ4dvRwos93vsuyL3PhwnP/dhwpwQkxEZwAIIYDxC3iSlXgBjyAARZwC3DcecJZPQWop5a3lqGqrYuKy2/020n7ibKH+72C5FeBGDmCGDsMbMPsotgWFEEIIsTRBELgX8MT5u8LLWT4v2VtMQyHQUsHGw6dLn4sEjLWfyO4AZga/T91iBzBHye0AJrsD7ubrBzdf89pt5IQKcEIIIcRERXXtqG5hX7JPUWr7CW/3G1Bk+wkwvA9g2gYHw9bMywJ5F/C4+TrCxVM+I5dbG+rRUFnOxIfj7Zf9UQFOCCGEmIi3+w0AKUpsPwEGOYA5U9o8JJJZxRbgIS4hCHAOsEI2fNqaGnQXFTFxc+d/tzZ0obmmg4nLbfqJsfGDw70Apx5wBft/u87h8tUWa6chmTh/V/x12Xhrp0EIUTDj/d8jaAfcKxpwlU9BailVbVUoa2UPNk4JkFv7iZHxg8nmtp/wxw/Kr//bSAE+TG/A7EMFuIJdvtqCrJJGa6dBCCGKIAgCTnJ2wKN9neHrKp+X7C2msQRoKmHjCh0/mFHFL2zl1v/dlp7OjZs9/zu3kRuX2w54KecApounFzz8A62QjeVQCwohhBBigtL6DlQ2dTJx5V4/b6z/W6HtJ0b6v5MCzCtsxca7AdMmMBC2oaFmrVOey+6Au3o7wM3H8YZzs7S2xgbUl5cy8dAx46FSqayQkeVQAU4IIYSY4CTn+nlAyRfwHOXHR9AOeLBLMIJczDvYKCZtTQ26CwqYuHNyklkFaWtDF5qq2f7v4FiPoaRncUb7v4fx+ME+VIATQgghJkgzegHPCNoB9wgH3EOkz0VkVW1VKG1hd1plt/tttP872ax1jPZ/x8pr/GDpRSPzv8cM/wKcesAVLM7f1dopSGqkfb6EEGmlcXbAI7yd4O/mYIVsRNZc0TsD/FoKHT9orP9bbgV4W5qR/m8zC/Dyy/wCXHb93xfPMTEXL+9h3/8NUAGuaDQRhBBCLKO8sQNlDexL9sodP3icHx9B7SeA/A5gtnMOYNoEBsI2xLxXJXgHMGXZ/13BTqUJTRg37Pu/AWpBIYQQQq7L6PxvxV7Ac4QfH0E74HLr/+6prkZ3IfuqhPn9351o4sz/llv/N2/6CaCM/m+ACnBCCCHkuoz1fyt2AkohpwB3CwY8IyRPRWyVrZXc+d9yaz+xVP+3sfGDcuv/LjNSgCuh/xugApwQQgi5Ll7/d4inI4I95POSvcU0VwD1+Ww8YhaggJf+rzWcxw8CN3AAkzN+EJBj/zdn/rdC+r8B6gEnxGRHjx5FXl6e4e+1tbWGt/Py8rBjx44B779y5UqJMiOEiOlqcyeK6tqZuGL7v4uMjB+MnCVtHhKh/m/q/7YGKsAJMdHWrVuxc+dO7mPHjh3DsWMDR3ZRAU6IMvBuvwRGYP93hDIv4KH+b+r/tgZqQSGEEEIGkVZoZP73SNoBdw+j/m8rov7vXkrp/waoACfEZDt27IAgCCb/IYQoA28CSpC7A0K95POSvcU0lQP17E2LSt39pv7vXtT/LT0qwAkhhBAjqls6kV/TxsRTorwV04s6APV/A6D+b2saCf3fABXghBBCiFEnjY0fjFRq//dhflyhO+DU/03939ZCBTghhBBixIl8/gHMadEjqP/bIxzwCJM+F5FR/3cv6v+2DirACSGEECOM9X+HeTlZIRuRNZYCDUVsPEKZ7SfU/92L+r+tgwpwQgghhONqcycKatn+76nU/60I1P9N/d/WRAU4IYQQwmGs/WSqYttPjMz/Dp8hbR4Sof5v6v+2JirACSGEEA5jF/BMixpBBbhnBOARKnkqYjPW/50cYF5bh9iM93+nmLWO0f7vuOHR/x02ZrzEmYiPCnBCCCGE4wSnAA/2cESoEvu/G4qBxhI2Tv3fVmW0/ztlBPV/e/vA3T/ACtmIiwpwQggh5BoVjR0ormtn4iNq+gmg2AJ8WPd/BwXCNjjYrHV4O+BuPg5w86b+b2uhApwQQgi5xshrPzFWgI+c+d8hLiEIdJHPpA2j/d9JyRbp/w6S2fhBY/3foQrs/waoACeEEEIYI+oApiDw+7+9ogB383ZahwOa/91Lbgcwjc7/pgKcEEIIGRlOFrIFeJiXE4I95POSvcU0FgNNpWxcoe0n1P/di/q/rYsKcEIIIaSfsoZ2lNazL9krtv2k0Mj4QYUW4NT/Tf3fckAFOCGEENKP8fYTL4kzkQj1f1P/t5WNtP5vgApwQgghZICTBfXc+FQl7oALAr8A944B3ORTkFoK9X/3ov5v66MCnBBCCPmRIAjcCSgR3k4IdJfPS/YW01AINLMFqVLbT6j/uxf1f1sfFeCEEELIj0rrO1DeyOn/VuL0E2DEtZ+kV7F91YAM+7/T0pjYjfR/l1H/t2xRAU4IIYT8yNj8b0W2nwB0ABNAsEuwvPq/r15Fd1ERE3dOSjKrIG2p70Qzr/9bZrvfJRfPceMho8dKnIm0qAAnhBBCfsS7fh5Q6AQUY/3fPrGAq7/0+YisrKUM5a3lTDwlMMUK2RjH2/0GAKeUqWatU36Z334SEiezA5gXznLjYWMnSJyJtKgAJ4QQQtDb/82bgBLl6ww/NwcrZCSy+gKgpYKNj7D2k+QA8/qqxdZ2kl+AO5vZ/11mpAAPllkBztsBd/P1g7uf8p4E9kcFOCEmqq6uxt69e7FhwwYsWLAAPj4+UKlUUKlUWLlypdnr7d+/H0uXLkVISAjs7e0REhKCpUuXYv/+/ZZPnhByXcV17ahq7mTiitz9Bvi3XwKKbT9Jq+QXtnIqwAVBQNvJE0zcNizMrP5vQRC4O+Ae/k5w8ZTPk8mm6qtoulrFxEPHjFd0/zcA2Fg7AUKGC39/yzwb1+v1eOSRR7Bt27YB8fLycpSXl2P37t1YtWoV3n77bajV9ByZEKkYaz8Zef3fytsBFwSBuwMe5R4FXydfK2TE11NWBm1FJRN3TjGvTaapugOtDV1MXG6736VG+r+V3n4C0A44ITckLCwMt9xyyw197DPPPGMovidOnIgPP/wQ6enp+PDDDzFx4kQAwNatW/Hss89aLF9CyPUZvYBHiQW4sf5v33jAxU/6fERW2FSI2o5aJi6n3W8AaDt5kht3mmpeAW6s/URu/d/GDmCGjlHu/O8+tANOiIk2bNiApKQkJCUlwd/fH0VFRYiMjDRrjdzcXLzyyisAgClTpuDw4cNwdOwdB5WUlIRFixZhzpw5yMzMxMaNG/Hggw8iJibG4p8LIWQgY/O/R/m5wNfV3goZiawuD2hlX/pX4u43AKRV8dtPZHcA02j/t3l5GjuAKacLeARB4B7A9AwKgauXjxUykhbtgBNioj/96U9YuHDhkFpRXnvtNWi1WgDApk2bDMV3HycnJ2zatAkAoNVq8eqrr954woQQkxXUtqG6hX3JXpG73wBQeJgfV2j/d3ol236igkpW878FQUAbZwKK/agY2PiYXpAKegHlnAt4vINd4OhqN6QcLamhshytDeyts2FjxlshG+lRAU6IRARBwOeffw4AiI+Px9Sp/JFSU6dORVxcHADg888/hyAIkuVIyEhlrP1EsRfwFB7ixxW4A64X9Nz+73iveHg4eEifkBHd+fnQ1bJtMuaOH6yvbENHSw8Tl137yQVj/d9UgBNCLKiwsBAVFb0jv+bMmTPo+/Y9Xl5ejiLOhQyEEMsydgFPSqSXxJlIQK/nH8D0Hwc4K++l/8v1l9Hc3czE5df/baT9xNz+7xwj7Sfx8irAjc3/DklQfv83QAU4IZK5dOmS4e34+PhB37f/49nZ2aLlRAjp6/9mXwqP83eFt4sC+7+vXgA62M8XkbOlz0UCRud/B8qrAG9P4xzAVKnglJRk1jq8A5gqlbxuwBT0epRcOs/EfcMj4eTmboWMpEeHMJXsizVA9Qgq3vxGA4s2WTsLo8rKygxvh4SEDPq+oaGhhrdLS0tFy4kQAuRVt6K2le3/Vm77iZH+b4UW4Lz53xqVBpP9J1shGz5Bp0NbegYTd0hIgMbd9IJUr9OjgtP/7RvuBntH+ZR8NSVF6GxhX5UYKe0nABXgyladDZSx39DEOlpaWgxvu7i4DPq+zs7OhrdbW1tFy4kQMtj8bwW2nwD8AlylAcKnS5+LyHr0PTh19RQTH+szFs62zpyPsI7OnBzom5qYuLnjB2tKW9HdqWPicuv/Njb/O3SM8ud/96EWFEIk0tn50w17dnaDn0S3t//pZe+Ojg7RciKEAMfz2AJcpQJSIhW4A67rAYqPsfHgSYCDm/T5iOxi7UW0a9uZuNz6v0UfPxjnYW5Koirh9H+r1GqEjB5rhWysgwpwQiTi4PDT9b/d3d2Dvm9X108vh187qpAQYjk6vcDdAU8IdIOns3xGtllMRRbQzXlVTaHtJxlV/FeB5Tb/u43X/21jA8dJ5rXJ8Pq/1RoVAqM9bjAzy9PrdCjLvsDEA6JGwd7JyQoZWQcV4IRIxNXV1fD29dpK2traDG9fr12FEHLjLlU0o6mDHdk2XbH930bGD0YOPplpuOJdwGOntsMEX/m0Ogg9PWjPZNtkHMeNg8bF9DYZnVaPyiuNTNw/0g229pqhpGhRVwvy0M15ZTd0BPV/A9QDrmx+o62dgbRk/vn2P3jZ/0AmT/+Dl/0PZBJCLOt4Pjt3GQCmxyhvHB8AoIBTgGvsgVB5tWRYQpeuC2eqzzDxRL9EONg4sB9gJR3nL0BoZ9tkzO3/vlrYDG2PnonLrf+b134CAGEjqP8boAJc2WQ8EWQkSkhIMLydk5Mz6Pv2f3z0aHk/sSBkODvGuYDHRq1CcoQCD2D2dAClnJF8YSmArfJa3c7VnEOXjp1uI7v+b177CQBnMy/g4bWfAECIzOZ/l3AOYGpsbBAUN/h4XqWhFhRCJBIZGYmgoCAAwKFDRl4G/tHhw71TCoKDgxERESF2aoSMSN1aPTIK2XnYiaEecLZX4P5UaTrAKUiV2v/NGz8IyLD/m3MAU2VnB8eJiWatwzuAaWOrhn+EfOZqa3t6UJFziYkHxsbD1l4+r0pIgQpwQiSiUqmwePFiAL073CdP8nc9Tp48adgBX7x4MVQqlWQ5EjKSnCltREcPO7JNse0nI6z/m3cBj6ONI8b4jLFCNnz6zk50ZGUxccdJk6C2N/0SqJ5uHaoK2DGGgTHu0NjKp9SrvJIDbQ87hGCktZ8AVIATIqm1a9dCo+k9DLNmzRpmxGBHRwfWrFkDALCxscHatWulTpGQEeNYHr//e4ZiD2By5n/buQJBk6TPRWTtPe04X8PetDjZfzJs1bZWyIiv48wZCJypWOZeP1+V1wS9TmDiwbLr/zYy/3uEHcAEqAecEJMdPXoUeXl5hr/X1v70yzsvLw87duwY8P4rV65k1oiNjcW6devw17/+FZmZmZgxYwaeeuopREdHIz8/Hy+99BKyftwNWbduHUaNGiXK50II4R/AdLBVIzHMQ/pkxNbZDJSfZuPh0wGN8kqB09WnoRW0TDwlQG7tJ/xXQp3MnP9ttP87Tl5nGUovsgcwbeztERgTa4VsrEt533WEiGTr1q3YuXMn97Fjx47h2LGBl1vwCnAAePHFF1FdXY133nkHWVlZuPfee5n3eeihh/DCCy8MOWdCCF97txZZJY1MPCnCC/Y28hnZZjHFxwGBbbdRav93eiXnsCmA5ECZHcDk9H+rnZzgONa8C2l4Bbidgwa+YfIZY9vT2YnKK5eZeEj8GGhs5POqhFSoBYUQianVamzbtg1ffvklFi9ejKCgINjZ2SEoKAiLFy/Gvn37sHXrVqjV9O1JiFjSC+uh1bMv2c9QbP83p/0EAKKU2f/Nm//tZueGOM84K2TDp2ttQ8d5tk3GMWkKVLamF6RdHVrUFDcz8aBYT6g18vk9Up5zEXod+yQwdMzIaz8BaAecEJPt2LGDaTMZitTUVKSmplpsPUKI6Y5zxg8CI+wCHidvwE8+BxItpamrCdl12Uw8KSAJGrV8Xt3oOJUJcApSc8cPVlxphMA+l5Tf/G/O+EEACBs78g5gArQDTgghZATi9X+7OdhgTJB8RrZZTFstcJW9+hsRswAFvtKWeTUTAtiKVG7zv3njBwHzD2CW5/D7v4fDAUx7J2f4RUZZIRvrU953HiGEEDKIxvZuXKxgX7KfFu0NjVqBYz+LjvDjI6z/W3bzvzkX8Kjd3WEfb96FNLz+bwcXW3gHmX6Nvdg6W1tRXZjPxEMSxkEto1clpEQFOCGEkBHlRH4d9yX76dEK7f/mXT8PjKj5394O3ohyl89Oq7ahAV3Z7I3IzsnJUJnxqkRHSzfqyluZeHCsJ1QyejJZln0BgqBn4mEjcPxgHyrACSGEjCjHOO0nADAjRqn935wDmG7BgHe09LmIrLajFnmNeUw8OTBZVpeatWdkgPcs0Mnc9pPcRm5cftfPs+MHASBshB7ABKgAJ4QQMsLwDmD6udoj2lc+I9sspqkMqGdf+kfkbEBGBamlZFRlcONym//NGz8IAM5TzTuAaXz+t7wK8FJO/7ejmzu8Q8OtkI08UAFOCCFkxKhq6kRBTRsTnx7tLasdUosxNn5Qof3fJypOcOOyO4B5/DgT0/j6wC7KvDaZ0ux6JubsYQ93P8cbzs3S2hobUFtazMRDx4xX5veciagAJ4QQMmIYu35++kib/63AAlwQBJyoZAvwYJdghLqFWiEjvp6KCnQXFTFx52nTzCpIm2s70FzTwcRD4z1lVdgWnz/DjYePS5Q0D7mhApwQQsiIMaLmfwsCvwD3igbcQ6TPR2QlLSWoaqti4lMDzWvrEFvbCf71887Tppu1TpmR8YMho+V1/XwJFeBcVIATQggZEQRB4M7/Dvd2QoinkxUyElldPtBczsYVevvlyQp+YTs1SG4FOL9NxnmaeXmW5rDtJ4C8DmAKgsDdAffwD4S7n7/0CcmIIgvwrq4uPPXUUwgKCoKjoyNSUlLw7bffmvSx3333HW666Sb4+PjAw8MDycnJeO+990TOmBBCiNgKa9tQ2dTJxBU7fpB3+yWgyPYTADhZyS/A5XQAUxAEbgFuFxUF24AA09fRC9wdcK8gZzi72w8pR0uqryhDaz37qlPYuJF5+2V/iizAV65cib///e+4//778frrr0Oj0SA1NRVHjx4d9OO++OIL3HLLLeju7sZzzz2HF198EY6OjnjggQfw6quvSpQ9IYQQMRhrP1Hs+MGCg/x4xCxJ05CCTq9DWhU7WWS012h4OshnR7gr9wp0dezXofO0aWatU1veis7WHiYup91vgNpPBmNj7QQsLT09Hf/5z3+wceNGPPnkkwCABx54AGPHjsX69etxnHPyuM/mzZsRGBiIH374Afb2vc8gV69ejfj4eOzYsQO//e1vJfkcCCGEWB6v/QQApkUpsADX6/j93/7jAGfl7fhn12ejpbuFicuv/5tfgzhPN68AL8vm93+Hxsur/7v4PGf+t0qF0BE8/7uP4grwTz75BBqNBo888ogh5uDggIceegi///3vUVpaitBQ/mno5uZmeHp6GopvALCxsYGPz439sCorKxv08crKyhtalxBCiHn0egEnODvg8QGu8HaRz0v2FlN5BuhsZOPRcyVORBrG2k/kV4Bz+r/VajglmzcmsYzT/61SqxAU63GDmVmeXqdD6UV2/rd/ZDQcXd2skJG8KK4Az8rKQmxsLNzcBv7PTf7xi/vMmTNGC/C5c+fipZdewh/+8AesWLECKpUKH3zwATIzM/HRRx+ZnYuxf4cQQoi0squa0dDOvmQ/Q6njB/MP8ONRcyVNQyq8A5i2altM9J9ohWz4hO5utGdkMnHHceOgcXU1eR1djx4VVxqZeECkG+wc5FPWVeVfQXdHOxMPo/YTAAoswCsrKxEYGMjE+2IVFRVGP/YPf/gDCgsL8eKLL+KFF14AADg5OWHXrl1YvHixOAkTQggRndH530ocPwjw+781dkCYeaPuhoMObQdOV59m4hP9JsLRRj4X0nScOwehnS1InWeY9/+kqqAJ2h49Ex824wfHJkqah1wprgDv6OgY0ELSx8HBwfC4Mfb29oiNjcXy5ctx5513QqfTYcuWLfjFL36Bb7/9FlPNvCK2tLR00McrKysNO/OEEELEc+QKW4Br1CokR8qraLGI7naglHPVeWgKYKe8cYtZ1Vno0bOvbsiu/eS4sfGD5vV/Gxs/GCqzA5jFF84wMY2tLYLiR0ufjAwprgB3dHREV1cXE+/s7DQ8bszjjz+OkydP4vTp01CrewfE3H333RgzZgx+85vfIC2N8wNtECEhyrvogBBChpvOHh3SC9miZWKoB1wdbK2QkciKjwO6bjYefZP0uUjA6Pxv2RXg7AFMlaMjHCeYN5KvlHMA09ZeA79I+fRV93R2ouJyDhMPjkuArZ0Cz1zcAMWNIQwMDOQebuyLBQUFcT+uu7sb27Ztw+23324ovgHA1tYWCxYsQGZmJrq7OT/QCCGEyFpmUQO6tOxL9jNHKbT/u2CE9X9zDmC62roiwTvBCtnw6Vpa0HH+PBN3SpoClZ2dyet0tvWgpriZiQfHekCjkU9JV5ZzEXqdlolT//dP5PN/y0ISExORm5uL5uaBX6B9u9eJiYncj6urq4NWq4VOp2Me6+npgV6v5z5GCCFE3o7k1XDjsxRbgB9kYw4eQGCixImIr6GzAdn12Uw8OTAZGrXGChnxtWdkAJwawtzr5ytyGyEIbDxEduMHz3DjNP/7J4orwJcvX27o3e7T1dWF7du3IyUlxTCZpKSkBDk5P7084ufnBw8PD3z22WcDdrpbW1uxZ88exMfHD9q+QgghRJ6Ocvq/Xe1tMCHEQ/pkxNZaDVy9wMYjZwMyKkgthXf5DiDH9hMj/d9mzv82ev38aHn1f/MOYDo4u8AvMkr6ZGRKcQV4SkoK7rrrLjz99NNYv349tmzZgnnz5qGoqAgvv/yy4f0eeOABjB7900EAjUaDJ598Erm5uZg6dSpee+01/O1vf0NycjLKysrw7LPPWuPTITJSXV2NvXv3YsOGDViwYAF8fHygUqmgUqmwcuVKs9fbv38/li5dipCQENjb2yMkJARLly7F/v37TV5Dq9Xin//8J2bNmgVfX184OjoiOjoaq1evxsWLF83OiRClqWvtwsUK9iX7qdHesJHRS/YWU2Dk+nnq/7Yq3vxvjbc37EeNMmsd3vXzTm528Ap0vuHcLK29qRE1xYVMPHTseKgV+CTwRinuECYAvPvuu/jDH/6A9957Dw0NDRg/fjz27t2L2bNnD/pxzzzzDCIjI/H666/jT3/6E7q6ujB+/Hh88sknWLZsmUTZE7ny9/e3yDp6vR6PPPIItm3bNiBeXl6O8vJy7N69G6tWrcLbb7894DzCtWpra5GamoqMjIwB8YKCAmzZsgU7d+7E5s2bsWrVKovkTchwdMzI9fMjqv0EGFH934HOgQh3C7dCNnw9V6+iOz+fiTtPnQrVID/jr9VS34nGq+wYw5DRnlCpVEPK0ZJKLnBuvwQQPk4+M9nlQIFP/3tHDm7cuBGVlZXo7OxEeno6br311gHvc/DgQQicRqqf//znSEtLQ0NDA9rb23Hy5EkqvgkjLCwMt9xyyw197DPPPGMovidOnIgPP/wQ6enp+PDDDzFxYu8PqK1btw76qotOp8PSpUsNxfedd96J/fv3Iy0tDW+88Qb8/PzQ1dWF1atXm7WjTojSHL3C7/+eqcQLeASBfwDTIxzwUt5L/6UtpShvLWfiUwOnyqog5d5+iRu4ft7o+EG59X8bK8ATpU1E5hS5A06IGDZs2ICkpCQkJSXB398fRUVFiIyMNGuN3NxcvPLKKwCAKVOm4PDhw4azBUlJSVi0aBHmzJmDzMxMbNy4EQ8++CBiYmKYdXbu3ImjR48CAB577DG8+eabhseSk5OxYMECTJ48Gc3NzXjiiSeQnZ0NGxv6dicjiyAI3P7vYA9HRPrI5yV7i6nLA5rZgnQk7X4D8ms/aTdWgJs7/5szfhAAQmQ0/1sQBBSfz2Libr7+cPcPsEJG8qXIHXBCxPCnP/0JCxcuHFIrymuvvQattnc006ZNm5iDvU5OTti0aROA3v7uV199lbtOXxHv5eWFjRs3Mo/HxMTg6aefBgDk5eXhs88+u+GcCRmuCmrbUNHUycRnjfKR1Q6pxRi7fn6E9X8nB8rngjtBELgHMO3Cw2FrZCyysXV4O+CeAU5w8XQYUo6W1Hi1Ei217KtO4eMmKPN7bgioACdEIoIg4PPPPwcAxMfHG71ZderUqYiLiwMAfP7550yrVG5uLrKze8du3X333XBy4t9s1/9gKBXgZCTi7X4DSp7/fZATVAGRc6TORHR6Qc+dgBLrGQsfR/n8/+3Oz4e2hi1Izb1+vr6iDR0t7G2fw+X6eZr/zbL4a9LvvvuuxdaKiIi47sFJQoaLwsJCVFRUAADmzBn8F+KcOXNw+fJllJeXM60ufa0n11snICAAsbGxyM3NxbFjx4aYPSHDD+/6eZUKmBEtnwLNYnRaoOgIGw+cADjJq0izhJz6HDR1NTFxubWfGBs/6GR2+8kwuX7eWAE+1rzbPkcCixfgK1eutNjLDMuWLaMCfAieO/4crjResXYakhnlMQrPTX/O2mkYdenSJcPb8fHxg75v/8ezs7MHFODmrpObm4vS0lK0tbXB2VmBfa+EcPTo9DhZwE5AGRvkDk9n028eHDYqTgNd7LhF6v+2Lu4BTLUazsnmtcnwxg+q1CoExcqnANfrdSi9cI6J+0ZEwcnN3QoZyZtop7J4E0aItK40XsG5GvabgVhHWVmZ4e2QkJBB37fvwigAKC0tHfI6giCgrKzM0NpCiNKdLW1Eaxd7FbZi209GWP/3iQq2sLVR22Cy/2QrZMMn9PSgPT2diTuMHQuNu+kFqU6rR/mVRibuH+EKe0f5HK6vLshHZ1srE6fpJ3yy7QGnZn2iNC0tLYa3XVxcBn3f/jvVra0Df6BZah1ClIzXfgIAs5Q4fhDg93/bOACh8toRtoRObSeyqtlJGxN8J8DJln8mxho6zp+Hvq2NiZs7/eRqYRO0Xew19sPm+nlqP+ES7alTUlISHnvsMbM/ThAEPPjggyJkRIh1dXb+NI3Bzm7wl8Dt7e0Nb3d0dIiyDiFKdjSPLcAdbNWYHCGfl+wtpqsFKGN3WhE2DbCVz4QMSzl99TS6dF1MPCUwxQrZGNfW77xOf87TzHtSVHLRyPXzMuv/Ljp3molpbGwQHD/GCtnIn2gFeHh4OFasWHFDH0sFOFEiB4effhF2d3cP+r5dXT/9crl2VOG16/T/uznrEKJUzZ09OFPayMSTI71hb6PAq7CLjwN6tt1Gqf3fxyuOc+MzgmZInMngWjmH31WOjnCcNMmsdXgHMG3tNQiIkk9fdXdHOyou5zDx4PgE2A7yO2okE6UAt0T/N/WQD90oj1HWTkFScv98XV1dDW9frx2krd/Llte2mVy7zmAF+GDrEKJUJ/ProNOzv0MU234ywvq/j1Wwha2bnRvGeMtnp1XX2IjO8xeYuFNyEtTXeeWyv47WblSXtDDx4DhPaGzk00Vceuk89Dr2SWD4ePOebIwkFi/A+y4OGTXqxoshS6xBIOuJICNR/wOT/Q9S8vQ/eNn/QCZvHR8f40VF3zoqleq6BzYJUQpe+wmg4AOYvOvnnbwB/3HS5yKy6vZq5DXmMfGpgVOhUcvn1Y22kycBvZ6Ju8wwb5e+LLsB4OxHhsps/nfRWbYnHwAiJlABbozFC/Df/OY3sliDELlJSEgwvJ2Tw75U11//x0ePHj3oOomJidddJzQ0lEYQkhGDdwGPj4s94gNcOe89zDWVAzWcnyeRcwC1fHZILcVY+8n0IPMuthFbq7H+75kzzVqn5BI7ShMAwhLkVYAXc/q/ndw94BsWIX0yw4TyvjsJkanIyEgE/Xj18KFDhwZ938OHDwMAgoODERERMeCxmf1+gA+2TlVVFXJzcwEAM8zcdSFkuCpv7EBBLTt5YmaMtzKna+X/wI8rtP1kOBTggiCg7Ribp01gIOz63elgyjqll9j+b1dvB7j7yedMT1N1FRoqK5h4+LhEqBT4JNBSRP8v09bWhkuXLuHSpUuorq42xDdv3oyoqCg4OTlhypQp1y1ICBnuVCoVFi9eDKB3Z/rkSf5FEidPnjTsXC9evJgpGmJjYw274h999BHa29u56+zYscPw9tKlS4eaPiHDwpFc9tpvAJg5ylfiTCSS/z0/Hn2ztHlIQC/ocbKC/bkZ6R6JQJdAK2TE111YCG1lJRN3mTnDrCeB9ZVtaGtiD+yHJXjJ6slk8bkz3Di1nwxO9AJ827ZtGDduHMaNG4c9e/YAAPbu3YsnnngCxcXF6OzsxOnTp3H77bejsLBQ7HQIsaq1a9dCo+ntU1yzZg0zGrCjowNr1qwBANjY2GDt2rXcdZ588kkAQH19PdavX888np+fj7/85S8AgJiYGCrAyYhx+IqRAlyJBzD1Ov4BTN94wD1Y+nxEll2fjYYu9kZIOe1+A4OMHzTzlUje7jcAhMqs/aToLNt+AgDh4ydKnMnwIvoVSpmZmRAEASqVCrfccgsAYMuWLYbHVSoVBEFAR0cH3nzzTbzyyitip0TIDTl69Cjy8n46/FNb+1OfaV5e3oAdZwBYuXIls0ZsbCzWrVuHv/71r8jMzMSMGTPw1FNPITo6Gvn5+XjppZeQldV7mGXdunVGDyKvWLEC77zzDo4dO4Y333wTVVVVePjhh+Hp6Yn09HQ8//zzaG5uhlqtxhtvvAEbG/nclkaIWLQ6PfcCnjh/VwS4K3AUWkUW0NnIxhW4+w3wb78E5FeA88YPQq2G81Tz5n/zCnCVWoWQOPnM/9brdCi5cJaJ+4ZHwtlDPnnKkei/lc+e7f0fExISYpjmcPjwYahUKjg7O8PPzw8FBQUAgAMHjIxSIkQGtm7dip07d3IfO3bsGI5d80OXV4ADwIsvvojq6mq88847yMrKwr333su8z0MPPYQXXnjBaC4ajQa7d+9GamoqMjIysGvXLuzatWvA+9jb22Pz5s1YsGDBdT4zQpThbFkjWjrZUWhz4hTafpJnpP0kZp60eUjkWDlb2NqqbTHFf4oVsuHTd3ejPT2DiTuMGwuNh4fJ62i7dUaun3eDvZPtEDK0rMq8XHS1s2cuaPf7+kRvQamurh4wAq2kpATNzc0AevvAL126hMDAQAiCQC0oZERQq9XYtm0bvvzySyxevBhBQUGws7NDUFAQFi9ejH379mHr1q1QX+fwio+PD44fP4633noLM2fOhLe3NxwcHBAVFYWHH34Yp06dwqpVqyT6rAixvkOX+e0ns0dS/7eNAxCuvEPXbT1tOFNzholP8pskr+vnT5+GwLl12GWGedNPKvOaoOthxxiGjZFX+wlv+glA/d+mEH0HvL6+9yUUPz8/AMCVK1cMj02fPh12dnaYOHEiKisrr3s5CSHWtGPHDqbNZChSU1ORmpo6pDVsbGzw6KOP4tFHH7VQVoQMX4c4BzAdbTWYosTr5zsagbJMNh4+HbCVz4QMS8moyoCWc9vntKBpVsjGOKP93zPNe1JkbPyg/OZ/swW4jZ09guMSOO9N+hN9B7yv97ShoffgRF8PrUqlMrSk9L2Pk5N8nsUSQggZPurbunGuvImJT4v2hoOtfC5osZjCQ4CgY+MK7f82ev18sLx2+1s54wfVLi5wHGfepUi86+ftnWzgFy6fWfadra2oyrvCxEMTxsLGjNs+RyrRC/CAgAAIgoC0tDS8//772L59OwAgLCwM9vb2AIC6ut5net7e3mKnQwghRIGOXKmBwLkxcE6sQttPjPZ/j5wC3MvBC7GesVbIhk9bW4uu7Gwm7jxtKlS2pvdttzV2oa6c7asOifeEWiOfudolF85AENg2Gbp+3jSit6BMmTIFhYWF6O7uxgMPPACgd/e7/2UiOTk5A3bECSGEEHPw2k8AYLYSC3BB4F/A4xrUO4JQYcpaylDcXMzEpwdNh1oln4K07Th/l97s8YOc3W9Ahu0n5+j6+aEQ/Sv3wQcfHPB34cctir54RkaGYQd8qpkjegghhBC9XsDhXHb8YJiXEyK8FdjaWHsFaCpl4zHzABld0GIpw+H2S8CS18/Lf/63IAjc/m8Xbx94BYdYIaPhR/QC/NZbb8XLL78MZ2dnCIIAZ2dn/OUvf8HcuXMBAN999x3c3d3h5uaGWbNmiZ0OIYQQhcmuakZtaxcTnxPrK6sbAy1mBN1+CRif/y2nA5iCXo+242yetuFhsAsxvSAV9AJ3B9zD3wlu3vI5XNtQWY6WWvZVp4jxk5T5PScCSW7nePLJJ7F27VrU1NTAx8cHtv16oZ5++mk8/fTTUqRBCCFEgXi734BC208Afv+3Sg1EzZU8FbFp9VqkVaYx8TjPOPg4yud2067Ll6GrZb8OzR0/WFPags7WHiYeJqPdb8D47ZcRE2j+t6kkux7PxsYGgYGBUv1zhBBCRohDudVMzFajwrRoBR7s7+kEijitDkGTACd5FWmWcKH2Alp6Wpj49GB5tZ+08W6/hPnjB432f8usAC/m9X+rVAgblyh5LsOV1U4vZGZm4sEHH0Rqaip+97vf4erVq9ZKhRBCyDDV2qVFZlEDE58S7gUXe8n2mKRTcgLQshe9IFqht19W8Atb+fV/c/K0sYFTcopZ65RcZAtwtUaF4Fj5zLLX9vSg5OI5Jh4QPQqOLvIZkyh3ohfg77//Pvz8/ODn54d//vOfAIDz589j1qxZ2LlzJ77++mu89tprmDFjBlpa2Ge5hBBCiDEn8uug1bPzBxXbfmKs/3sEjR900Dhgkp98Jm3o29vRceoUE3dKTITGxdnkdbo7tagqYGfZB8a4w9ZePrPsKy5nQ9vFnrmg6SfmEb0AP378OGpra1FXV4dp03oPTLz66qvo6vc/r+8a+r4CnRBCCDEFr/0EUPL8b874QXt3IHiK9LmIrKmrCRdqLzDxKQFTYKeRz0Uv7RkZEHrYvm1z20/Kcxuh17FPJuU3fpDf/x0+nvq/zSF6AX76dO//KC8vL0yYMAEA8M0330ClUkEQBMNYQgDYu3ev2OkQQghRCEEQuPO/fV3tMTpQgS+FN1cC1RfZeNRsQKO8dpsTlSeg51z0MiNIZrdfHjEyftDMA5glF/nXz4clyOssQ9EZdrffztEJgTFxVshm+BK9AC8vL4dKpUJ4eDgAoKamBhUVFQCADRs2IDc3Fy4uLhAEAZcvXxY7HUIIIQpRVNeO0nq2H1q54wc5u9+AYscPHi3jF7ZyO4DZeuQwE9N4esIhYbTJawiCgOILbAHu6GoLnxCXIeVnSS31tagpLmTiYWMnQGOjvCeBYhK9AK/9cSxPUFAQAODKlSuGx+68807ExMQgJaX3kEJDA3uQhhBCCOE5dJnffkL938OfXtDjaDlbgAe7BCPSLdIKGfF1FxWhp7iEiTvPnAmVxvS+7car7Wip62TiYWO8oVLL58lk0Rl++0nkxMkSZzL8iV6A6/W9Lx/1/NgflZ+fb3gsMrL3m8jVtfelQht69kQIIcREvPYTlQqYFSOf+dAWo9fxd8C9RwEeYdLnI7Kc+hzUdbI7wjODZ8rq1Y3Ww0e4cZfZ5l0syNv9BoDwMfJqPyk8k8mNRyYq7wyC2EQvwL28vCAIAjIyMlBeXo59+/YBAHx8fAyFd3NzMwDA21teX2iEEELkqbNHhxMFbNEyIcQDns7yOaBnMeWngA7Oq8QxP5M+Fwnwdr8BYFawvG7Mbj3CKcBVKvOvn+f0f6tU8pr/rdNqUXzuDBP3CYuAq7cCn/SKTPQt57Fjx6KqqgoNDQ0IC+t9lq5SqZCcnGx4n7y8PKhUKgQEBIidDiGEEAU4UVCHzh72gJ5i20+ufMOPj5ovbR4SOVLGFra2alskBSRZIRs+fUcH2tPYWzodxo+Djafpc7u7O7Uov9LIxP0j3eHgbMt+gJVU5Gaju6OdiUcmUvvJjRB9B3z58uWGt/tPPbnrrrsAAIWFhSgp6e2fmjyZ/icSQgi5voM5/P7vefF+EmciEV4BbusEhMtrIoglNHU14Vwte9HLFP8pcLJ1skJGfO3p6RC6u5m4y6zZZq1TntsIvZYdPxg+Vj673wBQyJl+AlABfqNEL8AfeughLFy4cMC4wdtuuw2//OUvAQCff/45gN7ifPp0eZ1sJoQQIj+CIOAHzgFMb2c7jA92t0JGImu5ClSeZeORcwBbB+nzEdmJCv74wZnB5rV1iM1o//cc8wrwEiP932Ey6/8uymL7v+0cHREUl2CFbIY/0VtQNBoNvvjiC5w8eRKFhYUIDw8fUGgvW7YMN910EwBg1KhRYqdDCCFkmMuvaeOPH4zzhVpGEyMsJu87flyp7Sfl/MJ2Voh8+r8FQUDrYc74QS8vOIwZY9Y6xZz+b0c3O/iGymeWfUt9LWpKiph4+LiJNH7wBkn2X23q1KmYOnUqEw8NDUVoaKhUaRBCCBnmDhhpP7kpbgS1nwCKLMAHGz8Y4RYhfUJGdBcVoae0lIk7z5wBldr05oKGKv74wfAEL1mNHyzM4refRFD7yQ0TvQWlP61Wi8OHD2Pnzp146623pPynCRkylUpl0p+5c+ded639+/dj6dKlCAkJgb29PUJCQrB06VLs37/f5Hy0Wi3++c9/YtasWfD19YWjoyOio6OxevVqXLzIuS2PEIX4gVOAa9QqZR7A1GmB/ANs3DdekeMHs+uzUd9Zz8TlNn6wjTf9BIDL7DlmrWP09suxMms/of5vi5NsB3zLli149tlnUVfX+8WmUqnw2GOP4f7778eJEydga2uL9PR0uLsrsH+PkB/p9Xo88sgj2LZt24B4eXk5ysvLsXv3bqxatQpvv/021IPsotTW1iI1NRUZGRkD4gUFBdiyZQt27tyJzZs3Y9WqVaJ8HoRYS0tnDzKK2AJtcrgn3B3lMzHCYsrSga4mNq7A3W/A+O2Xshs/yOv/VqvhPMO8s2y8+d8qFRA6Wj4HMHVaLYrPn2HiNH5waCQpwP/4xz/ihRdeGHAQs8/8+fPx4YcfQqVSYffu3VixYoUUKRFywx599FE89thjRh93dnY2+tgzzzxjKL4nTpyI9evXIzo6Gvn5+Xj55ZeRlZWFrVu3wtfXF//3f//HXUOn02Hp0qWG4vvOO+/Eww8/DC8vL6SlpeGFF15AdXU1Vq9ejeDgYCxYsGAIny0h8nL0Si20evZ3ychrP7lF2jwkwms/sVPbyW/8YHo6E3ccZ/74wYq8RiYeEDVMxg9OpMt3hkL0AjwzMxMvvPACABhePupfiN9xxx1Qq9W9p9p/+IEKcCJ7fn5+GDt2rNkfl5ubi1deeQUAMGXKFBw+fBiOjo4AgKSkJCxatAhz5sxBZmYmNm7ciAcffBAxMTHMOjt37sTRo72/pB577DG8+eabhseSk5OxYMECTJ48Gc3NzXjiiSeQnZ1Nt8wSxeC1nwBKHj/4LRuzcwFC2TNVw53R8YMB8ho/2JaWxh0/6Gzm9JPyyw3c8YNym35SyJl+AlD7yVCJ3gO+efNmQ8EdEhKC4ODgAY97e3sjJiYGgiDgzJkzYqdDiNW89tpr0Gq1AIBNmzYZiu8+Tk5O2LRpE4De/u5XX32Vu05fEe/l5YWNGzcyj8fExODpp58G0HvJ1WeffWaxz4EQa9LrBRzkXD8f5O6AWH8XK2QksqZy4OoFNh41F7BR3m2fxyuOD4vxg23Gxg+aOf+7+CLbSgUA4TLr/+bN/7ZzdEJQ7GgrZKMcohfgh38c0+Pi4oLMzEykpKQw7xMREQEAhgt5CFEaQRAMM+/j4+O5E4GA3mlBcXFxAHpn5F/btpWbm4vs7GwAwN133w0nJ/6u0MqVKw1vUwFOlOJiRTNqWrqY+E3xfrI6oGcxRscPjpz2E0BeBbggCNzr5zXe3nAYY/o8bEEQuPO/Hd3s4BMinyeTLXW1qOWOH0yk8YNDJHoBXllZCZVKhenTp8PXl39C3d7eHgDQ1tYmdjqEWEVhYSEqKioAAHPmDH5Kvu/x8vJyFBUVDXisr/XkeusEBAQgNjYWAHDs2LEbSZkQ2THWfjLy+r+VdwDT2PjBEJcQeY0fLOSPH3SZOdO88YOV7Wip54wfHCOz8YNnjLSfUP/3kIn+9MXGxgbd3d3Q69mXlfr07Xxf+5I8GZrKP/wBXblXrJ2GZOxjRyHw+edF/3c+/vhjfPTRRygqKoJGo0FAQACmT5+OlStXGi6VutalS5cMb8fHxw+6fv/Hs7OzERkZecPr5ObmorS0FG1tbYMeDiVkODjAuf3SzkaN6THyesneIrTdQMFBNu4/FnALkjwdsWXXDZfxg+zlOwDgPNu8KS28y3cAOfZ/G5v/PUniTJRH9AI8MDAQeXl5SEtLQ2trK/N4VlYWzp49C5VKRRfyWFhX7hV0nOVcX0yGpH8RDPT2Wefl5eHdd9/FkiVLsGPHDmacZllZmeHtkJCQQdfv/31Qes1Oy42sIwgCysrKDK0thAxHda1dOFvWyMSnRXnDyU6BL4WXngS62d+ZStz9BobH7ZeA8fGDLjNmmLUOb/63/MYP9qDkwhkm7hsWAVcvGj84VKK3oPRdO9/S0oL58+ejoKDA8NjGjRsHjEibNm2a2OkQcsOcnJxw77334l//+heOHDmCrKwsfPPNN3jmmWfg7d27a7F7924sXrwYPT09Az62paXF8LaLy+D9ff13qq990mqpdQgZbg5ergFnki1uilPg5TvAiBs/yCvAZTd+sL0d7dfcvQAAjuPHQ+PhYfI6RscPRstr/GB5Tja6OzqYOLWfWIbo2warVq3Cu+++CwBI7zc3UxAE/L//9/8GHDJ78MEHxU6HkBtWXl4OD84P2fnz52PNmjVYsGABsrKycOjQIfzjH//AE088YXifzs6fev3s7AafXtB3JgIAOq754WepdQgZbnjtJwAwL95f4kwkwhs/aO8OhCRLn4vI6jrqcL7mPBNPCkiCo418WlPbTpzgjx80s/2kNLt+WIwfLDjNzjoHgMhEKsAtQfQd8JkzZ2LlypUDCu2+K7v73gaABx54gHbAiazxiu8+/v7++OSTT2Br27t70TdOsI+Dg4Ph7W7OD/D+urp+mvJw7bkIS61DyHCi1elxmDN+MMrXGWHe8pkPbTENRUBNDhuPmQdolNduc6T8CASwBans2k8OHuTGXefONWudovP8/u+IcXIrwNndfntnZwTGDn7+iJhGku/kf/3rX3B0dMTbb7/NHMZUqVR4+OGHB1wmQizDPnaUtVOQlLU/36ioKMyfPx/79u1DXl4eKioqEBTUe1jK1dXV8H7XawfpPw3o2jaTa9fpX5Cbsw4hw8mp4gY0d2qZ+DylTj+5/BU/HqPM/u/DZfyDjXNCBp8YJSVBr0cLpwC38feH/WjT52ELegHF52uZuIunPbyD5fNzur6iHA2V5Uw8YsJkGj9oIZL8V9RoNHjzzTexdu1afPHFFygsLAQAREZGYuHChXQ4TCRSTAQhAyUkJGDfvn0AeltW+grw/gcm+x+k5Ol/8PLag8nXruPjY/wgTN86KpXqugc2CZGz77KvcuM3KfX2y9z9nKBKkf3f3bpuHCtnR6XGeMQgxFU+P7c6L16CroZTOM+da9aUlqvFzeho6WHiEeN8ZDXtxVj7SfRk5bVAWYukT2NGjRqF3/3ud1L+k4RIytgP0ISEny5oyMnhvLTcT//HR1+zs3LtOomJidddJzQ0lEYQkmFLEAR8e4ktwF3tbZAUIZ+JERbT2QwUcWb3hyQBLso7cJp5NRPt2nYmPjvEvFslxdZ64AA37jLXvF36onNsEQ8A4XJrPznFFuAqtRoRdP28xYjeA07ISNJ/RGHf7jfQ+2pP398PHTo06Bp9t8cGBwcbbontM3PmTzfCDbZOVVUVcnNzAQAzzByPRYic5Ne0oaiOLdDmxPnCzkaBv8Lyvwf07A4p4m6TPhcJHCrl/xybGzpX2kSug9f/rXJwgLOZZ9d4/d82dmqExHveaGoW19nWirKci0w8OC4Bji6unI8gN8LiO+B//vOfh/TxGzZssFAmhEirsLAQ337bO7kgOjoawcHBhsdUKhUWL16Mf/zjH8jJycHJkye519GfPHnSsHO9ePFiZkc9NjYWo0ePRnZ2Nj766CP87W9/415Hv2PHDsPbS5cutcSnR4hVfG+k/WR+gkKnnxjr/45dwI8PY4Ig4FAZW4C727tjvM94K2TE13P1Kjqvuf8BAJynToV6kHM412qp70RdGXsGKCTeCza2miHlaElFZ05B4FyeGDVJPiMhlcDiBfhzzz03pD4mKsCJHO3ZswcLFiyAjZHDJ1evXsWyZcsMk0kee+wx5n3Wrl2LLVu2QKfTYc2aNTh8+PCA6SQdHR1Ys2YNgN4bZNeuXcv9t5588kk89NBDqK+vx/r167F58+YBj+fn5+Mvf/kLACAmJoYKcDKs8fq/NWoV5sYqsP9br+PP//YIA/xMP+g3XOQ35qO8lT3oNyt4FjRq+RSkrQf5u/QuZk4/4R2+BIDI8fK61IY3/QQAoqj/26Jkc5RVEARZHUAgpL81a9agp6cHy5Ytw7Rp0xAREQFHR0fU1tbi4MGDePvtt1Fb2/vDdebMmfj1r3/NrBEbG4t169bhr3/9KzIzMzFjxgw89dRTiI6ORn5+Pl566SVkZWUBANatW4dRo/hTXVasWIF33nkHx44dw5tvvomqqio8/PDD8PT0RHp6Op5//nk0NzdDrVbjjTfeMPqkgRC5q2vtwqniBiaeHOEFdyf5XFhiMaXpQAd7HTtiF/Rek6gwvN1vAJgTKp/pJ4Dx8YMuN801ax1j4wfDx8qn/1uv06HwDHv9vId/ILyC5HMoVglE+c0s8K4rI2SYq6iowKZNm5gZ3/0tW7YMW7duHXAJTn8vvvgiqqur8c477yArKwv33nsv8z4PPfQQXnjhBaP/hkajwe7du5GamoqMjAzs2rULu3btGvA+9vb22Lx584CbZgkZbg5croGe8+vk5tEK3P0GjEw/gWL7v3njB21UNpgRJJ9zK/rOTrSdOMHE7RNGw9bf9Daoni4dynLYJ5O+Ya5w9uD/vrCGitxsdLa2MPGoSUm0SWphFi/At2/fbuklCbG6nTt34tChQzhx4gQKCgpQW1uL5uZmuLi4IDQ0FNOnT8eKFSuue5mUWq3Gtm3bsGzZMmzZsgUZGRmora2Fj48PkpKSsHr1apOKZh8fHxw/fhz/+te/8MEHHyA7OxttbW0ICgrCzTffjN/85jcYM2aMpT59QqziO870E2CE9X/buQLhM9n4MNfY2YgzNWeY+GT/yXC1k89Bv7aTJyH0u4G4j+vcm8xapyynHjot21cdQe0nI5bFC/AVK1ZYeklCrG7OnDmYM8dyL4umpqYiNTV1SGvY2Njg0UcfxaOPPmqhrAiRj84eHQ5fYW+/HOXngnBvBY7VrC8Aai+z8Zh5gI2d9PmI7Ej5EegFtiCV3/jBg9y42e0nRsYPyu32y3zO+EE7RyeEjKYNHUtT4AwnQgghw93Jgjq0d+uY+M9G0u43AMQqs/3EWP+3nMYPCoLA7f/W+PrAwYxXGAW9gKILbP+3s7sdfMPks9vfWFWJ+vJSJh4xYRI0Ngo8c2FlVIATQgiRHWO3X/5stEIL8BF0+2WPvod7+2WEWwTC3MKskBFfV3Y2tFfZr0OXOXOgUptePtWUtqC9qZuJhw+T2y9p/KA4JCnAS0pK8D//8z+IiYmBo6MjNBoN9w9NayCEECIIAr7Prmbi3s52SAz1kD4hsXU2AcXH2XhoMuAsrx5hSzh99TRae9h52HNC5DX9pMXI9BNXM8cPGm0/kVn/dz6v/1ulQuTEKdInMwKIXvFevnwZ06dPR2NjI01HIYQQcl0XK5pR2cQefJsX7weNWj47hhaT9z2g17LxEdZ+Ir/xg2yeKjs7i9x+qbGV1+2XXe3tKLt0gYkHjYqHk5u7FTJSPtEL8GeffRYNDb2jdwZ7qYWKc0IIIcAg7SdK7f/ONdL/Hae8MaKCIOBg6UEm7mrnikS/RKnTMaqnuhqd584xcaeUFKidTT8E3NrQhZoSdqxfSLwnbO3kc9lQ0dnT0OvYJ4E0/UQ8ohfgBw8eNBTegiDA1dUV7u7u0Gjk84VHCCFEPngFuJ2NGrNGyesle4vQaY3cfhkO+MZLn4/I8hvzUdrCHvSbGTQTtmr5HPQzOv1krnm79EXn2Ek+ABAxTl5fy/mZJ7nxaOr/Fo3oBXhra2+fl4ODA/bt22fRUW6EEEKUpbKpAxfKm5n4zBgfONkp8JxQyQmgg72gBXHKvP3yh9IfuPF5YfMkzmRwLd9/x427zjMvz4KzxsYPyqcA12m13Pnf7v4B8A4Nt0JGI4PohzAjIiIAANOnT6fimxBCyKC+4xy+BBR8+2XOl/y4Qvu/fyhhC3AbtQ1mBsvnsiFdayvaT7A7wg5jxsA2MNDkdbrae1DOuf3SL8INLp7yuf2y7NIFdLW3MfGYKVNlNaVFaUQvwJcvXw5BEFBRUSH2P0UIIWSYM3b75c3xCuz/FgQgZy8bd/AAIuRTkFpKVVsVLtZdZOIpASlwsXOxQkZ8bUeOQOjpYeKuP7vZrHWKL9ZBr2fPt0Ulymf3GwDyMk9w4zFTpkqcycgiegG+fv16REZGIicnB88//zz0evbmK0vr6urCU089haCgIDg6OiIlJQXffvutyR//3//+F9OmTYOzszM8PDwwffp0/PAD/2UzQgghltHc2YPj+exL9uND3BHg7mCFjERWdQ5oYvuhEXsboJFPP7SlHCg9wI3Lrv3ku++5cZebzSvAC8/w208iJ/ianZNYBEFAXga72+/o6oaguNFWyGjkEL2h7je/+Q1CQkJQWFiI5557Dv/6178wceJEeHuz16+qVCps27ZtyP/mypUr8cknn2Dt2rUYNWoUduzYgdTUVBw4cAAzZw6+q/Dcc8/hz3/+M5YvX46VK1eip6cHFy5cQHl5+ZDzIoQQYtyBnGr06Ngdw/lKvXwnm7P7DQDxt0ubh0R47SeAzG6/7O5G6yF2/KBtWBjsR40yeR1djx7FnNsvPfyd4BngNKQcLelqQR5a69k8oyYnQ03DMkQlegG+Y8cOqFQqqFQqCIKAsrIybjErCIJFCvD09HT85z//wcaNG/Hkk08CAB544AGMHTsW69evx/HjnMsOfnTy5En8+c9/xt/+9jf89re/HVIehBBCzPPNRX77ya1jAyTORCK8/m8bByDGvJ3W4aCpqwmZVZlMfLzPePg5yae/vy09A/pW9pIg15tvNqsfuiy3AT1dOiYeOV5et1/ydr8BICbJvFnnxHySHimX4ovuk08+gUajwSOPPGKIOTg44KGHHsLvf/97lJaWIjQ0lPuxr732GgICAvCb3/wGgiCgra0NLi433pdWVlY26OOVlZU3vDYhhChJZ48OBy+zBzAjfZwxyk8+/cEWU18AVLP90IieB9iZPmd6uDhSfgRagZ0zfVPYTVbIxjij00/M7P8uPMMfPxiZKJ/2EwDIy2D7v23s7RE+PlH6ZEYYSa6iFwThun8sJSsrC7GxsXBzcxsQT07uHSZ/5swZox/7/fffIykpCW+88QZ8fX3h6uqKwMBAbN68+YZyCQ0NHfRPX06EEDLSHcurRVs3u2N4yxh/We0YWoyx6SfxC6XNQyLG2k/k1P8t6PVo/Z7NU+PlBcfERDPWEVDIGT/o6GYH/0g3zkdYR0NlOerKSph4xPhJsLWTz5QWpRJ9B/zAAf6hC7FUVlYikDMmqC9mbBpLQ0MDamtrcezYMfzwww/44x//iLCwMGzfvh1r1qyBra0tVq9eLWruhBAyUn19sYobv3WMQttPeP3fKrUixw926bpwtPwoE49wi0CUe5QVMuLrvHAB2mr2VRiXeTdBZUY/9NWiZrQ3dzPxyPE+UKvl82QyLzONG49JouknUhC9AJd69ndHRwfs7dlnbg4ODobHefouDKqrq8N//vMf3HPPPQB6xyiOGzcOL7zwgtkFeGkp53R7P5WVlbQLTggZ8bQ6PXf+t5+rPRJDPKRPSGyt1UApp/gJnwE4swMKhru0yjR0aNnfvXLa/QaMTz9xnWdm+8lZI+0nE2Q2fpDT/61SqxFFt19KQnHXijk6OqKrq4uJd3Z2Gh439nEAYGtri+XLlxviarUa99xzD/74xz+ipKQEYWFhJucSEhJiTuqEEDIiZRY3oL6N3TG8ZYy/rHYMLebyfgCc1ssRNv1EdgX4D2wBrnJ0hPN08w4kFnDGD9raaxAS73nDuVlae1MjKnKzmXhI/Bg4usqnTUbJJCvAtVottm/fjj179qCwsBAAEBkZiTvuuAMrV66Era1lZp4GBgZyp6z0HXgMCgrifpyXlxccHBzg4eEBzTUvNfn59Z7QbmhoMKsAJ4QQcn0jrv2Ed/kOAMSlSpuHBHR6HXf+t4+jD8b5jLNCRnxdhYXozstn4i4zZ0LtYPoM+oaqNjRebWfiYWO8YWMrn7F++afSey+Cuga1n0hHkgK8tLQUqampuHTpEgAYDl1eunQJX375JV5//XXs27fPIsVtYmIiDhw4gObm5gEHMdPS0gyP86jVaiQmJiIjIwPd3d2ws7MzPNbXN+7rK6/Ty4QQMtwJgsAdP+jmYIOpUcprx0BXC1BwkI0HjAc8wyVPR2zna8+jvrOeid8UehPUKknmQJik1chle2ZPP+EcvgRkePslZ/oJAETT7ZeSEf2rv6enB4sWLcLFixcNhXffXHCg94fvpUuXsGjRIvRwrn411/Lly6HT6bBlyxZDrKurC9u3b0dKSophBGFJSQlycnIGfOw999wDnU6HnTt3GmKdnZ14//33kZCQYHT3nBBCyI25WNGM8ka2P/jm0f6w1cinQLOYK98COrbdhqafWBe3/1ujgYuZ59gKOOMH1WoVwsfK58lkd2cHis+fYeK+EVFw91PopVcyJPpPt/fffx9nz54dcBlP/z99hfj58+fx73//e8j/XkpKCu666y48/fTTWL9+PbZs2YJ58+ahqKgIL7/8suH9HnjgAYwePfCa1dWrV2PMmDH49a9/jXXr1mHTpk2YPXs2iouL8corrww5NzK8VVdXY+/evdiwYQMWLFgAHx8fw9f1ypUrzV5v//79WLp0KUJCQmBvb4+QkBAsXboU+/fvN3kNrVaLf/7zn5g1axZ8fX3h6OiI6OhorF69GhcvcmYMG1FbW4sNGzZg/PjxcHNzg5ubG8aPH48NGzagro69JY0QSzHefqLQQsDY+MHRyivABUHAt8XfMnFnW2ckB8hnAEHP1avoyMpi4k5JSdB4eJi8TmtDJ64WNjPx4DgP2DtZps3WEgqzMqHjbHjG0O63pERvQfn4448Nb4eHh2PdunWYMGECAODs2bN45ZVXDD3hH3/8MX71q18N+d9899138Yc//AHvvfceGhoaMH78eOzduxezZ88e9OMcHR3xww8/YP369XjnnXfQ1taGxMREfPnll7j11luHnBcZ3vz9LVMQ6PV6PPLII8ytr+Xl5SgvL8fu3buxatUqvP3221CrjT9Hrq2tRWpqKjIyMgbECwoKsGXLFuzcuRObN2/GqlWrBs0nLS0NS5YsQVXVwELo/PnzOH/+PLZu3Yrdu3fTxB4iCl4Bbm+jxuxYBbb8abuAK9+wcc8IwC9B8nTEllOfg7JW9kK6WcGzYKex43yEdbR8a+TynZvNaz/JzzI2/UReX8u5J49x49T/LS3RC/CsH59Vurq64siRIwgODjY8Nn36dCxatAhjxoxBc3PzoJfkmMPBwQEbN27Exo0bjb7PwYMHuXE/Pz/s2LHDInkQ5QoLC0N8fDy++Ybzy/Q6nnnmGUPxPXHiRKxfvx7R0dHIz8/Hyy+/jKysLGzduhW+vr74v//7P+4aOp0OS5cuNRTfd955Jx5++GF4eXkhLS0NL7zwAqqrq7F69WoEBwdjwYIF3HVKS0txxx13oKamBjY2Nvjf//1fLFzYuxO3d+9e/P3vf0dlZSXuuOMOnDp1iib7EIsqrG1D7lX22u/Zsb5wslPckC4g/wDQxe6QIn4hoMDLhni73wAwP3y+xJkMruXrr7lx11vMyzP/NDtKEyogaqJ8CvCerk4UZGUwcY+AQPiGR1oho5FL9J9wdXV1UKlUSE5OHlB89wkODkZSUhK+//571NezBzUIkYsNGzYgKSkJSUlJ8Pf3R1FRESIjzfuBlZuba2hnmjJlCg4fPmwYgZmUlIRFixZhzpw5yMzMxMaNG/Hggw8iJiaGWWfnzp04erT3YovHHnsMb775puGx5ORkLFiwAJMnT0ZzczOeeOIJZGdnw8aG/XZ/5plnUFPTu2vzwQcf4K677jI8NmvWLEyePBn33HMPqqur8eyzz9KTU2JRI276yaXd/HjCYknTkIIgCPimmN2gcNA4YGbwTCtkxKetrUV7ZiYTd5w4EbZmvOrZ1tSFyvwmJh4Y7Q5nd/ncKll05jS0nFHNsSkzlHnjrIyJ3gPedynOYMV1Q0MDAAyYPEKI3PzpT3/CwoULh9SK8tprr0Gr1QIANm3axMyld3JywqZNmwD09ne/+uqr3HX6ingvLy/uKz0xMTF4+umnAQB5eXn47LPPmPepqqrC+++/DwC49dZbBxTffe6++25D+9V7773HtKkQMhS8AlyjVuFno/2skI3ItN1Azj427hoEBE+RPh+RXWm8guLmYiY+K2QWnGydrJARX8t333PH8bneeotZ6xRk1XBHu0dPlNfXcm4av/0kdqp8nhSNFKIX4MHBwRAEAVlZWfjoo4+Yxz/++GOcPn0aKpWKu0NOiFIIgoDPP/8cABAfH4+pU/n9dlOnTkVcXBwA4PPPPzdMD+qTm5uL7OzeCxTuvvtuODnxf5n1PxjKK8C/+OIL6PV6ABj07EXfOnq9Hl988YXR9yPEHFVNncgqaWTiKZFe8HBS4GZM4SGgi90hRcIiYJCzHsPVd8X8vuqfhf1M4kwG1/INv/3Ebb6Z7SdG+r/l1H6i7e5Gwel0Ju7m6w+/yGgrZDSyif5dP3Nm77MqQRBw3333Yfr06Vi9ejX+53/+BzNmzMC9997LvC8hSlRYWGiYKT/nOqOt+h4vLy9HUVHRgMf6Wk+ut05AQABiY2MBAMeOsbsepq7T/zHeOoTciP0XKrnxkdd+skTKLCTD6/+2U9thdsjgwxCkpG1oQFsaW5A6jBsHWzM2BDtaulGR28DE/SPd4Opl+iU+Yis+n4XuDnbk56iU6dR+YgWi94CvXr0a27ZtM4wgTEtLM1yKA2DA7t7DDz8sdjojyoH3slFX0WbtNCTjHeSMm345+vrvaCV9F1EBvTvgg+n/eHZ29oBec3PXyc3NRWlpKdra2uDs7Mys4+7ujoAA40VPYGAg3Nzc0NzcbNh5J2So9p8fQf3fuh7++EGXACA0Rfp8RFbQWIC8xjwmPj14OlzsXKyQEV/r998DOh0TdzO3/eRMDa+LBdGTZNZ+YmT6SWzKDIkzIYAEBfiUKVOwdu1avPbaa9xnWH2F+eOPP05jziysrqKNO5OUWEdZ2U/juK43TaTvwiigd1LJUNcRBAFlZWWG1pb+65gy2SQ0NBQXL15kciHkRlQ3dyKjmD0XNCXcEwHu8tkxtJjCw0AHu0OK0Xcosv3E2PSTW8LNK2zF1mxkipXrLeblaaz9JFpG7Sc6bQ/yT6UxcRdvHwTGxFohIyLJd/7f//53/PnPf4aDgwNzEY+DgwP++Mc/4vXXX5ciFUKspqWlxfC2i8vgu0D9d6pbWweOabP0Otdbo/86165ByI3Yf6GKu2OYOi5Q+mSkcOlzflyB008AfgFuo7bBnFDzbpUUk66pCW0nTjJx+4TRsAsLM3mdztYelOWwT658w1zh5uPI+QjrKLlwDl1t7CviscnToVLgk8DhQLJBq88++ywef/xxfPfddygqKoIgCIiMjMTNN98MT09PqdIgxGo6OzsNb19v4k/f9CAA6LimZ8/S65gyfahvnWvXIORGfHme3/+9YJwS20+0QM5eNu7sC4RPlz4fkZU0l+Byw2UmPjVwKtzs3KyQEV/LgQMA5zZINzN3vwvP1UDQs88moyfJZ/cbMN5+MipFeV+Dw4WkNx14eHhg+fLlUv6ThMiGg8NPL613d3cP+r5d/ea0Xjuq8Np1+v/d3HXa29uvm0v/da5dgxBzVTd3IqOIbT+ZHO6JQHcFfn0VHwXa69j46DsAtUb6fEQ2XNpPWr421n5i3q3XxttP5NP/rdfpkJfJ7vY7e3giKE6+56aUToFXjZE+3kHO138nBZH75+vq6mp4+3qtHG39Xiq8tkXk2nUGK8Cvt057e7tJbSV965jSrkLIYL6+yG8/WTBWgbvfALWfANCoNLgp9CYrZMOna21FG2eik/2oUbCPMv1yta4OLUovsU8mvYNd4OEvn1nnpZfOo7OFPQ8WkzwdagU+CRwuLF6AP/jggwB6b/V79NFHDX83hUqlMlzRTYZOzhNBRqL+hx37H6Tk6X/Ysf+BTN46Pj4+111HpVIxhy1DQkJw9erV6+bSf51rcyHEXMbaTxTZ/63XAdl72LiTNxCuvLG75a3luFh3kYknByTDw8FD+oSMaD14CALnlT/XW83b/S46Vwu9Tv7tJ1eMXb5D00+syuIF+I4dO6BSqdDa2opHH33U8PfrEQSBCnCiaAkJCYa3c3JyBn3f/o+PHj3widS16yQmJl53ndDQ0AEHMvvWOXXqFJqamlBVVWV0FGFlZSWam5u5uRBijpqWLqQXsjuGE8M8EOShwPaTkhNAG6dFIX4hoFHeC9DGLt+ZH2HepTZia/nayOU7Zo4fzD9dzY3LafygXq/DlfQTTNzRzR0ho8dYISPSh46+EiKRyMhIBAUFAQAOHTo06PsePnwYQO9NshEREQMe639h1WDrVFVVITc3FwAwYwa702HqOv0f461DiKm+ulgFznk13K7E3W8AuLibH1do+8k3RWxftVqlxrzQeVbIhk/X2obWI0eYuF1kJOxiYkxep7tDi5KL7JNJz0BneAXKpx2yPPsi2psamXhM0lSoNdR+Yk2iFODXXp197ehB3h9ClE6lUmHx4t5fvDk5OTh5kj0UAwAnT5407FwvXryYeQUpNjbWsBP90Ucfob29nbvOjh07DG8vXbqUeXzRokVQ/zh+avv27Ubz7ltHrVZj0aJFRt+PkOvZd47ffnKbEvu/jbWfOHoCkfK5DdJSylrKcK72HBOf5DcJ3o7eVsiIr/XAAQj9Jkn1cb3lFrNugyw8WwOdVs/E5TT7GwByjh/mxmOTafqJtVn8NbADBw4AAHx9fQf8nRACrF27Flu2bIFOp8OaNWtw+PDhAZNFOjo6sGbNGgCAjY0N1q5dy13nySefxEMPPYT6+nqsX78emzdvHvB4fn4+/vKXvwAAYmJiuAV4QEAA7r//frz33nv4+uuv8cknnzBTij7++GN8/ePLtb/85S8HvTGTkMHUtnYhrZCdBjIh1AMhnvI5sGYxxceBVs5tn/G3Axpb6fMR2VdFX3HjCyIXSJzJ4Jr37ePG3VJTzVrnSia//SRminzaT3RaLXLTjjNxR1c3hI6dYIWMSH8WL8DnzJkz6N8JGa6OHj2KvLyfrleura01vJ2XlzdgxxkAVq5cyawRGxuLdevW4a9//SsyMzMxY8YMPPXUU4iOjkZ+fj5eeuklZGVlAQDWrVuHUaNGcXNZsWIF3nnnHRw7dgxvvvkmqqqq8PDDD8PT0xPp6el4/vnn0dzcDLVajTfeeAM2Nvxv9RdffBFfffUVampqcN999yEzMxMLFy4EAOzduxd/+9vfAPQ+oX7hhRdM/m9FyLW+Ntp+otAndRd28eMJSyRNQypfFbIFuEalwc/Cf2aFbPh0TU1oPXqUidvFRMM+lv+zlqeztYc7/cQryBneQfKZFFVy4Sx3+kns1BnQGPmdQKRD/wcIMdHWrVuxc+dO7mPHjh3DsWvGWvEKcKC36K2ursY777yDrKws3Hvvvcz7PPTQQ4MWvBqNBrt370ZqaioyMjKwa9cu7No18Be+vb09Nm/ejAULjO9AhYaGYs+ePViyZAmqqqrw0ksv4aWXXhrwPgEBAdi9e7dJV9YTYsw+Y5fvjFVg/7euhz9+0NELiJoreTpiK2gsMHr5jpeDlxUy4mv57jv+5TupqWa1n+RnVUPPeTY5aor/kPKztMtG2k/ipiuvBWo4Ev0QpiAIaG9vR3t7O7RarSH+xRdfYN68eUhISMDy5cuRnZ0tdiqEyIJarca2bdvw5ZdfYvHixQgKCoKdnR2CgoKwePFi7Nu3D1u3bjX0Zxvj4+OD48eP46233sLMmTPh7e0NBwcHREVF4eGHH8apU6ewatWq6+aTkpKC8+fP49lnn8XYsWPh4uICFxcXjBs3Ds8++ywuXLiAlJQUS336ZASqa+3CyQJ2x3BCiDtCvRTYflJwEOhgP18kLB5R7Se3Rd4mcSaDa/7SSPvJIJsUPMOh/UTb3c2dfuLi6YXg+ATORxCpib4DvmXLFjz22GMAgNdffx2PP/44jh49auhJFQQBOTk5OHLkCM6fPw8/P/l8ARPS344dO5g2k6FITU1Fqpl9h9eysbHBo48+ikcffXRI6/j4+OD555/H888/P6R1COHZd6EKOs6O4QKlTj8x1n4ydpm0eUhAEATsL9zPxG3VtpgXJp/pJ9raWrRxDr47JCTAPtL0y3famrpQntvAxP3CXeHhJ58nk4VnMtHdwR7Qj502iy7fkQnRd8AzMzMNU05uuaV3xubmzZsNsb6XfWpra/Hmm2+KnQ4hhBCJ7TlbwY0rcvxgTyeQvZeNuwQA4cqbPHG54TKKmouY+MzgmXCzc5M+ISOav/4a0LNTS9xuN28TJO9UNcA5yxAjs/aTnOPsqEUAiKf2E9kQvQDvO1Dm5+eH2NhYAMAPP/wAlUoFtVoNJ6efnjF+8w07Q5QQQsjwVdnUgYwith0jMdRDme0ned8C3S1sfOydgAJ3Hnm734Acp5/w83S7zbw2mbzMq9x4zGT5vHrf3dmBglPpTNzN1x8BMbFWyIjwiF6AV1ZWQqVSISwszPD3vukRr776KkpLS+Hl5QVBEAZMmCCEEDL87T1bCd5VD4smBEmfjBRGWPsJb/qJo40j5oTIZwJaT2UlOk6dYuKOEyfCNjjY5HWaaztQVcBOFQmMcYerl8OQcrSk/FPp0HZ3MfH46bPMOmxKxCV6AV5X1zv3NTCw96XGK1euGB67+eab4eHhgaSkJAAwXHdNCCFEGfacY9tPVCrg9vEKbD/pagUucw4keoQBwZOlz0dk52rPoaKN/f87J2QOnGzl8+pG837+IVFzZ3/nneIfvqTpJ+RGiF6A9z3bamtrA4ABu9x9V2w7OPQ+c7S3txc7HUIIIRIprG3DubImJj410hv+bvLZMbSYy/sBbQcbH7us91mHwvB2vwEZTj/hXb6jVsPttlvNWucKp/1EpQKiJ8mn/aSztRWFWexuv1dQCHzDTT9sSsQnegHu6+sLQRCQlpaGY8eO4aOPPgLQuyPedwNgY2MjAMDbWz7X1RJCCBkaY4cvFyVS+8lwp9Pr8HXR10zcxdYFM4NnWiEjvu7iYnReuMDEnZKTYeNr+rXxDVVtqC1tZeLBcZ5wcrMbUo6WlJdxAnqdlonHTZ9N7ScyI/oYwsTERJSVlaGtrQ2zZ/e+/KFSqTBt2jTD+1y+fBkqlQpBQQr9oUwIISOMIAj4glOA26hVuG2MAm+/7GgA8r5j4z6xgP9Y6fMR2enq06jpqGHi88LmwV4jn1ezm/cbOXyZat4hUaPtJ0nyaj/JMdp+MkviTMj1iL4D/vOf/9zwtiAIhvGD999/PwDg4sWLqKqqAgBDLzghhJDhLaeqBXnV7I7h7FhfeDrLZ8fQYrL3Anr2lkWltp8Mm+knvMt3bGzgOn++yWsIgoArGWz7iVqjQlSi6bvoYmtvakTJhbNM3DciCt7BoVbIiAxG9AL83nvvNVzE02f16tVYsmQJAODzz3uv6xUEAdOnK29GKiGEjES83W+App8oQY++B98Wf8vEPew9kBIon1tzO3Nz0dVv8EMf5xnTYePpafI6deWtaKhiL7UJS/CCg7N8bjbNPXkMAmfWOc3+lifRW1CA3ot3nnnmGRQVFSE8PHxAq8lvf/tb/PrXvwYAuLq6SpEOIYQQEQmCwO3/trdR42cJ8nrJ3iJaa4DCQ2w8YDzgM0r6fER2vPw4Grsamfj88PmwVcunIG3ew7kQCYC7mdNPctP4s7/l1n6SffQgNx43jdpP5EiSAhzoPXTZN4qwP0dHR8NhTEIIIcNfVmkjyhrYaSA/G+0PF3vJfu1I5+KngMDuPCpx9xsA9hbwC1s5tZ8Iej2a9rJ5quzt4XLzzSavo9cLyOW0n9jYqhEx3mdIOVpS49UqVORmM/HAUXFw95PXEwXSS/QWFEIIISPLF2f47Sd3KLX95Nx/+fExS6XNQwKt3a04UHqAiQc4B2Cyv3xmnbdnZkJbWcnEXebdBI2Li8nrVOQ2oK2RvdQmMtEXdg7yeTKZfZT9fwIAo2fdJHEmxFSSfPU0NzfjrbfewnfffYfy8nJ0dbFfzEDvdJT8/HwpUiKEECICnV7Al+fZwsfV3gZz4+RzYM1i6vKBcnbuMsKmAZ7h0ucjsu9KvkOXjv0dfnvk7VCr5LOn17xnDzfufscis9a5nM5vP4lNls+usiAIyD5ykImrNRpqP5Ex0QvwiooKzJw5E8XFxQBgmILCQzMqCSFkeDuWV4uaFrZAu2VMABxsNVbISGTnPuLHx98tbR4SMdZ+sjBqocSZGKfv6kLzV+yMco2HB1xmzjB5HW23Dvmn2fGDjq62CE3wGlKOlnQ1/woaKsuZeETiZDi5uVshI2IK0QvwZ599FkVFRQB6C2xjRfZghTkhhJDh4bMsthAAFHr5jiDw20/UtkDCEsnTEdvVtqtIr0xn4vFe8YjxjLFCRnytBw9B39LCxN1SF0BlZ/oIzMJztejp1DHxmCn+0Gjks9t/6Qi//SSB2k9kTfQCfP/+/Yaim4psQghRrrYuLb66UMXEfVzsMSNagTcdl2UCDYVsPPZWwEk+O6SWsr9wPwSwv8fltPsNAE17vuDG3e64w6x1co20n8Qly+ciKZ1Wy718x87REVGTk62QETGV6E/hGhoaAAAajQbbt29HXV0dtFot9Ho980enY59pEkIIGR6+uVSFjh725/jixCDYyGjH0GKMHb4cd5e0eUiE136igkpW0090jY1oPcQWpLZhYXBMTDR5nY7WbpRcqGPiHv5O8IuQz8jk4vNZ6GhuYuKjUmbA1k4+N5ISlug/Eftmfk+fPh0rVqyAp6cn1GoF/iAmhJAR7tPT/PaTpRODJc5EAroe/uU79m5A7G3S5yOy3IZcXG64zMRTAlPg5+RnhYz4mr/6GuhhbyR1v+MOs86Z5WVWQ69nd/tjk/1ldV6Nd/gSoPaT4UD0SviOO+6AIAhobWWvJCaEEKIM1c2dOJZXy8Rj/V0wJsjNChmJLO97oKOejScsBmwdpM9HZF8WfMmNy6/9xNj0E/PyzE1nW6kAIFZG7SfdHe3IyzjJxF28vBGSMNYKGRFziF6A//73v4e3tzeysrLw3nvvif3PESKavkPE1/szd+7c6661f/9+LF26FCEhIbC3t0dISAiWLl2K/fv3m5yPVqvFP//5T8yaNQu+vr5wdHREdHQ0Vq9ejYsXL5q8Tm1tLTZs2IDx48fDzc0Nbm5uGD9+PDZs2IC6OvYlWEJ4Pj9TAc6GIZZODJHVjqHFnDc2/eQeafOQgF7QcwtwB40Dbg4z/VIbsXWXlaHjFDsS0mHCeNhFRJi8TlNNO6oKmpl4QJQ73H3lc3HglfQT0HazE4fiZ8yBWq3AiUMKI/ohzLfffhspKSnYt28fVq5ciX/84x9ISkqCtzf/QM6GDRvETokQq9Hr9XjkkUewbdu2AfHy8nKUl5dj9+7dWLVqFd5+++1BW7Vqa2uRmpqKjIyMAfGCggJs2bIFO3fuxObNm7Fq1apB80lLS8OSJUtQVTVwt+f8+fM4f/48tm7dit27dyM5mQ7zkMF9ypl+olIBSyYqcPpJZzOQw9kRdgsGwk0fczdcZFZl4mo7eyDxptCb4GJn+qU2YrPY7G8jV8/Hpchn9jdg/Op5aj8ZHkQvwJ977jnDzqAgCEhLS0NaWprR96cCnMjdo48+iscee8zo487OzkYfe+aZZwzF98SJE7F+/XpER0cjPz8fL7/8MrKysrB161b4+vri//7v/7hr6HQ6LF261FB833nnnXj44Yfh5eWFtLQ0vPDCC6iursbq1asRHByMBQv4B6RKS0txxx13oKamBjY2Nvjf//1fLFzY+zLt3r178fe//x2VlZW44447cOrUKYSEhJj034eMPDlVzciuZHcMp0V5I9BdPjuGFpOzF9B2svFxdwEKPONkdPZ3tHzaTwRBQNMXnAJco4FbqumHRAVBQG4a236iVqsQM1k+BXhrfR1Kzp9l4r5hEfANj7RCRsRckt6jOtjLkIIgKPNlSqI4fn5+GDvW/P663NxcvPLKKwCAKVOm4PDhw3B07C1OkpKSsGjRIsyZMweZmZnYuHEjHnzwQcTEsLN1d+7ciaNHjwIAHnvsMbz55puGx5KTk7FgwQJMnjwZzc3NeOKJJ5CdnQ0bG/Zb/ZlnnkFNTQ0A4IMPPsBdd/00uWHWrFmYPHky7rnnHlRXV+PZZ5/Fjh07zP6cycjwmZHDl0uUePgSMD79RIHtJ53aTnxb/C0T97T3xLSgaVbIiK/zwkV0F7IjIV1mzoSNl+kjIa8WNaOppoOJh431hoOL7ZBytKScY4cgCHomTlfPDx+SPFUXBOG6fwhRutdeew1arRYAsGnTJkPx3cfJyQmbNm0C0Nvf/eqrr3LX6Svivby8sHHjRubxmJgYPP300wCAvLw8fPbZZ8z7VFVV4f333wcA3HrrrQOK7z533303br31VgDAe++9x7SpEAL0Xj2/+wxbgNvbqLFgrHwOrFlMcyVQcIiN+48F/BOkz0dkh8oOobWHHaJwW+RtsFXLpyA1Ovt7kZmzv422n8jra/kSr/1EpUL8jDmS50JujOg74Nu3bxf7nyBE9gRBwOeffw4AiI+Px9SpU7nvN3XqVMTFxeHy5cv4/PPPsXnz5gGvDOXm5iI7OxtAb4Hs5OTEXWflypWGIvyzzz5jCuwvvvgCen3v7smvfvUro3mvXLkSX3/9NfR6Pb744gs88sgjJn7GZKQ4kV+Hq838q+ddHeRToFnM+Y8AzmU0Sr16fk8+v69aTtNPhJ4eNO9le/LVTk5wnTfP5HV0Wj2uZLAFuJ2DBhHj5HORVE1xIWqKCph42JhxcPX2sUJG5EaIXoCvWLFC7H+CENkrLCxERUUFAGDOnMF3KObMmYPLly+jvLwcRUVFiIz8qZ+vr/XkeusEBAQgNjYWubm5OHbsGPO4qev0f+zYsWNUgBOGsavn71Ri+4kgAFnvcx5QAWOXS56O2Go7anG0/CgTD3MNwzifcVbIiK/18GHo6tmRkK7z50PtaPoZhKLztehsY2eIR03yg42dfKaKXDz0HTceP3OutImQIVHeaRFCRPbxxx8jISEBTk5OcHV1xahRo7BixQocOHDA6MdcunTJ8HZ8fPyg6/d/vG+3eyjrlJaWoq2tjbuOu7s7AgKMv7QaGBgINzc3bi6EtHdr8dWFSibu42KHWaMUuBNXfhqoZS+jQdRcwF15Tzj25u+FTmBvNl0UvUhWZ7YaOW12AOC+dKlZ6+Sc4LfZjZ4mn/YTnVaLS0cOMnEbe3vETZ0peT7kxkl6CDMrKwt79uxBYWEh2tvb8d///hcVFRXQarXQaDQIDlbeDzBr+ubtN1BbWmztNCTjExqOW1Y/Ifq/078IBnr7rPPy8vDuu+9iyZIl2LFjB9zd3Qe8T1lZmeHt600TCQ0NNbxdWlo65HUEQUBZWRni4uKYdUyZbBIaGoqLFy8yuRDy1YUqtHWzBdodExR69fwZ3u43gMT7pc1DAoIg4PP8z5m4CiosijZvrJ+YtPX1aD3I9uTbBgfDKTnJ5HXam7tRzLl63s3HAYExHkNJ0aIKz5ziXj0fmzwddo78lkQiT5IU4J2dnXjwwQfx3//2nhzvP/Hkt7/9LT755BOoVCrk5+cjPDxcipRGhNrSYlRe4ezWkBvi5OSERYsW4eabb0Z8fDxcXFxQU1ODQ4cO4Z///Cfq6uqwe/duLF68GN9++y1sbX/qf21paTG87eIy+Nzc/mMMr71B1tLrXG+N/uvQbbbkWh9l8p+U3TlRgSMrezqBC5+wcXs3YLR8+qEt5WLdReQ15jHxlMAUBLoEWiEjvuY9e4AfD7f3575kCVRmjIS8nFYFgXOTVPy0QFnt9l88yG8/GTP3ZxJnQoZKki2KZcuW4b///S934smKFSsM8U8//VSKdAi5IeXl5fjwww+xatUqzJw5E4mJiZg/fz5eeOEFXLx4ERMnTgQAHDp0CP/4xz8GfGxn508zg+3s7Ab9d+zt7Q1vd3QMHIdl6XWut0b/da5dg4xsJXXtOFnA9t3G+btibLACr56//CXQye48YuydgK3yZp3vztvNjS+OWSxtItfR+Nlubtx9iel5CoKAnBNsKxUAxE2VT/tJe3MTCk6nM3E3Xz+EJsinJ5+YRvQCfNeuXYNer33zzTcbfsEfPnxY7HQIuWEeHh5GH/P398cnn3xi2PXuGyfYx8HBwfB2d3f3oP9OV9dPEyWuHVVo6XWut0b/da5dg4xsn5wu48bvmqLQq+e5hy+hyPaTLl0X9heyv7ddbF1kdfV8Z3Y2unJymLhTUhLs+rXyXU9NSQvqK9qYeHCcJ9y85fNzL+foQeh1bMtXwuybzdrtJ/Ig+v+x/pd33H777YZdwj729vYYPXo0BEHAxYsXxU6HENFERUVh/vz5AHr7wvumngCAq6ur4e3rtXL0PzB5bYuIpdcxpa2kbx1T2lXIyKDXC9h1ii3AbdQqLFXi9JPmCqCAc8jaexQQYnqf8XBxoPQAmrvZm01vjbgVjjbyKUgbPzVy+PLOO81aJ+c4f/d79HT5tNoAwIVD33PjY+bI50kRMZ3oPeCZmZkAgODgYOzevRv33nsvsrKyBrxPUFAQzpw5g8pK/jcBuTE+oSOrn14On29CQgL27dsHoLdlJSgoCMDAw479D1Ly9D/sGHrNLs616/j4GJ800beOSqViDluGhITg6tWr182l/zrX5kJGruP5dShvZFuS5sX7wdvFnvMRw9zZ/wCcWweR+HNAgbv9n+exhy8BYEnMEmkTGYTQ3d3b/30NlZMT3G6Zb/I6uh49cjmzv20dNIhK9B1SjpZUXVTAnf0dkjAWHv7yaZMhphO9AK+vr4dKpUJiYiI0Gv4czb4LQfq/ZE6GToqJIGQgYy+9JyT8dENeDucl0/76Pz569OhB10lMTLzuOqGhoQMOZPatc+rUKTQ1NaGqqsroKMLKyko0NzdzcyEj18en+Icv756iwCdpgsCffqJSAxPulT4fkVW3V+N4xXEmHuEWgQm+E6yQEV/LoUPQNTYycbdbb4X6mp93gyk8V4uudvYQZ8xkP9jay2j2t7HDl3Po8OVwJXoLSt9NfQ0NDUbfp69Q6Js3TMhw1X9EYd/uNwBERkYa/n7oEOca6376zkIEBwcjIiJiwGMzZ/4053WwdaqqqpCbmwsAmDFjBvO4qev0f4y3Dhl5mjp68NUFdl6yj4s95sbJZ8fQYsoygDp2Ggii5wFuQWx8mNuTvwd6zm7/4pjFsurtbzLSfuJxp7mzv420n0yTT/uJTtuDbM7V87b2DoidSj+XhyvRC/DIyEgIgoC0tDRcvsyOxHvvvfdQVFQElUqFmJgYsdMhRDSFhYX49ttvAQDR0dED5tqrVCosXtx7Kj8nJwcnT57krnHy5EnDE9LFi9lfeLGxsYad6I8++gjt7e3cdfqfvVjKuYxi0aJFUP94aGf79u1GP6e+ddRqNRYtks/sX2I9e85WoEvLFmjLJgWPsNnfP5c2DwkMNvtbTlfPa2tr0coZ2mAbGgrHyZNNXqetqQslF9nZ3+6+jgiIdud8hHUUZGWio4XtyY+dOgN2DvLpySfmEf2n5c039x4O0Ol0mDFjBtLS0gyP3X777XjwwQcNf583b57Y6RByQ/bs2QMtZ9Zsn6tXr2LZsmWGqSKPPfYY8z5r1641tGGtWbOGGevX0dGBNWvWAABsbGywdu1a7r/15JNPAuht71q/fj3zeH5+Pv7yl78AAGJiYrgFeEBAAO6/v3d6w9dff41PPmHnG3/88cf4+uuvAQC//OUvB70xk4wcH3MOXwK9008Up7sduMAZj+vgDsTdLn0+IjtXew6FTYVMfFrQNAQ4y+f7v+mLPQBnGoj7ksXmzf4+WQWBHf1Ns7+JJETvAX/00UexadMm9PT0oL6+3tCKIggCvvrqK8NccDs7OzzyyCNip0PIDVmzZg16enqwbNkyTJs2DREREXB0dERtbS0OHjyIt99+G7W1tQB62zt+/etfM2vExsZi3bp1+Otf/4rMzEzMmDEDTz31FKKjo5Gfn4+XXnrJcEB53bp1GDVqFDeXFStW4J133sGxY8fw5ptvoqqqCg8//DA8PT2Rnp6O559/Hs3NzVCr1XjjjTdgY8P/Nn/xxRfx1VdfoaamBvfddx8yMzOxcGHvLtfevXvxt7/9DQDg6+uLF154Ycj/Dcnwl3u1BWdLG5l4YqgHYvxc2Q8Y7i7tBrrYnUeMXQ7YOrDxYW5X7i5uXFaHLwUBjR9/zH3MY8kSs9a5dKyCfUAlr9nfrfV1KDidwcTd/fwREj/GChkRSxG9AI+KisLf//53PP7444ZnlLxnlq+88grT70qInFRUVGDTpk3MjO/+li1bhq1btw64BKe/F198EdXV1XjnnXeQlZWFe+9lD3E99NBDgxa8Go0Gu3fvRmpqKjIyMrBr1y7s2jXwF6e9vT02b96MBQsWGF0nNDQUe/bswZIlS1BVVYWXXnoJL7300oD3CQgIwO7du026sp4o38dGbr5U5OFLADi1kx9X4Ozv1u5WfFX0FRN3tXXFTaE3WSEjvo5Tp9BdyO7SO02dCttg00dgVuQ2oqmaneQTGu8JVy/5PLm6cPA7CHq25Ytmfw9/klxF/9hjj8HX1xfr1q1DSUnJgMeCg4Px8ssv47777pMiFUJuyM6dO3Ho0CGcOHECBQUFqK2tRXNzM1xcXBAaGorp06djxYoVmDZt2qDrqNVqbNu2DcuWLcOWLVuQkZGB2tpa+Pj4ICkpCatXrx60aO7j4+OD48eP41//+hc++OADZGdno62tDUFBQbj55pvxm9/8BmPGXH93JCUlBefPn8frr7+O3bt3o6ioCEDv2Y3Fixdj7dq18Pb2Num/EVG2bq0en2WVM3EHWzUWTpDPgTWLqc4GSjlnNfzHAsGTpM9HZPsK96FDyxakC6MXwsFGPgWp0d3vu5abtc7Fo5zdbwAJM+Uzx17Q63H+h2+YuEqlxtibTB+1SORJkgIcAO666y4sX74cp0+fRuGPz14jIyMxadIkWfVaEcIzZ84czJkzx2LrpaamIjU1dUhr2NjY4NFHH8Wjjz46pHV8fHzw/PPP4/nnnx/SOkTZvsu+itpW9ubU28YEwM3B1goZiez0u/z4pBWKnP296wq//WTZqGUSZ2KcrqkJzV99zcQ1Hh5wnW96QdrZ2oOCrBom7uhqi8gJxu9WkFrx+TNormFnlEckToKbjwInDo0wkhXgQG/ryeTJkzHZjFPKhBBCrO/D9BJuXJHtJz2dwNkP2biNAzD+bunzEdmluku4VHeJiY/zGYc4rzgrZMTX9MUeCJz7QtwXL4bazs7kdS6nVUHHmeQTNzUQGhv5tHWc/559sgEA42++TeJMiBjk85VGCCFElkrq2nHkSi0Tj/B2wrRoBbYo5ewFOjh3V4xZCjh6SJ6O2Iwdvlwea15bh5gGPXx5911mrWOs/WTMTPnMdW9rbEBeJtsC5ezphahJSVbIiFiaJDvgLS0teOutt/Dtt9+ivLzc6I2XKpUK+fn5UqRECCHERB9m8He/70sOU2YL4akd/PikFZKmIYX2nnZ8WfglE3eyccJtEfLZae08dw5dP14u1p/j5Mmwj442eZ2qgmY0VLYx8aBRHvDwdxpSjpZ08dD30HNGLY6d+zOojdwqToYX0QvwqqoqzJo1CwUFBQBgGDvIo8gf5IQQMox1a/Xc6Se2GhWWTVbgdJy6fKDoCBv3iQPCpkqfj8i+LvoabT1sQZoalQonW/kUpA0WOnx56Sh7kBgAEmS0+y0IAi4cYA9fAsC4ebdInA0Ri+gF+DPPPGPY1VapVEaL7MEKc0IIIdbxvZHDl7eMCYCPC3/c5rB22sjowckj6/Dl8lHyaT/Rtbaied9+Jq52dYXbrbeavE5XhxZ5mdVM3N7JBtGT5HOosezSeTRUsm0y4eMnwt1PPjPKydCIXoDv37/fUHRTkU0IIcPLB0YOX96fHCZxJhLQdgNnPmDjGjtgPDuzf7i70nAFZ2vOMvHRXqOR4J1ghYz4mvd+CaG9nYm7L1oEtaPpV7HnplVB28M7fBkAG1v5tHWcM3L4ctw8059sEPkT/RBm382XTk5O+Oyzz9Dc3Ay9Xs/9o+P0OxFCCLGOwQ5fTo1S4OHLy/uANnY8HUYvApyV9/kONnpQTi2hljp8yb35EvJqP+loacaVtGNM3NHNHTFJKVbIiIhF9AK873bLGTNmYPHixXBxcRH7nySEEGIB/zFy+PLe5DCo1fIp0CxmsPYThenSdWFP/h4m7mjjiNSood1RYEmdly6h8+JFJu4wfjwc4kwfkVhT0oLa0lYmHhDlBu8g+dQllw4fgE6rZeJj5twMjY0C5+2PYKIX4L/85S8hCAJycnLQ09Mj9j9HCCHEAnp0enyUWcbEbTUqLFfi4cv6QiD/ABv3igIiZkmfj8i+KfoGzd3NTPyW8FvgaudqhYz4Gv77ETdu9s2Xh4fH4ctz33/FfYzaT5RH9AJ83bp1mDZtGkpLS7Fo0SIcO3YMTU1NYv+zhBBChqD38CU7MvaWBIUevszcBoBzTkmhN1/+J+c/3LicZn/rWlrQtIfdpVc7OcHdjJuEO9t6kJvO3ihp56BBzGT/IeVoSaUXz6G+nJ04FJowDl5BwVbIiIhJ9ALc1tYW27dvh6OjI7755hvMnj0bXl5e0Gg0zB8bG8ucCe3q6sJTTz2FoKAgODo6IiUlBd9++63Z68yfPx8qlQqPP/64RfIihJDh4v0047O/FaenA8j6NxtX2wKJP5c+H5FdrLuIc7XnmHiMRwwm+E6wQkZ8Tbs/5x6+dLvjDqidnU1e5/JJ/uHL2JQA2NrL5/DlmW/YeewAMO5n8pnHTixH9AK8sLAQM2fOREdHBwRBuO4fS1i5ciX+/ve/4/7778frr78OjUaD1NRUHD161OQ1Pv30U5w4ccIi+YhBre79X6fT6Wi6DJEtQRAMh6s1dHnEsFFU28Y9fBnm5YTpSrz58sKnRm6+XAK4+Emejtj+m/Nfbvy++Ptkc/hSEAQ0fPgh9zHPn99n+jp6AecPsa1UADB2jnx2lVvqapGXwd586eTugdiU6VbIiIhN9AL82WefRW1t7w/yvjngvD+Wkp6ejv/85z/4y1/+go0bN+KRRx7BDz/8gPDwcKxfv96kNTo7O/G73/0OTz31lMXysjQ7OzsAvT+kjN0sSoi1tbe3G54g9n3NEvn798libvw+pR6+zNjKjyetkjYPCTR1NWFf4T4m7mzrjNujbrdCRnztaWno/vECv/4cJ0826/BlWU4Dmqo7mHjQKA9ZHb489/3XEPTsLv24ebfS4UuFEn0O+LfffguVSmX4Jezh4QFXV1fDDq6lffLJJ9BoNHjkkUcMMQcHBzz00EP4/e9/j9LSUoSGhg66xssvvwy9Xo8nn3wSGzZsuOFcysr4z7r7VFZW3vDazs7OaG3tPdHd3NwMBweHG16LEDEIgoD6+nrD393c3KyYDTFVR7cOH3FuvrTTqHHXFAUeviw/BVScZuP+44BQ5Y192523G106dtNmUfQiONua3tYhtob3OfPYYd7uNwCju9/j5srna1mn7cF5zuFLlUqN8dR+oliiF+DtP/Zv+fj44NChQxg9erSo/15WVhZiY2OZX/bJyckAgDNnzgxagJeUlOCvf/0r3nnnHTiaMeCf53qF/lC4uLjg6tXeQyV1dXXQaDTw8PCgl/mJ1QmCgPb2dtTX1xueJKpUKhpBOkx8fqYczZ3sGLTbxwcq8/BlxjZ+POkhxR2+1At6fHSZP1Xknrh7JM7GuJ6qKrT88AMT1/j4wG3+fJPXaanvRNE5tpXKyd0OkYk+Q8rRkvIyTqKtkW2Bip6SDDcf+dzQSSxL9AJ87NixyMjIwOTJk0UvvoHeXeXAwEAm3herqOAP4u/zu9/9DhMnTsS998r71jM7Ozv4+vqipqb30ojq6mpUV1dDo9HIpoePjEzXnktQqVQIDg4W7VUvYjmCIGDnCX77yS+nhUucjQTa64ELnMto7N2B8XdLn4/ITlScQEkLe7g2OSAZ0R7RVsiIr/GjjwDOxXwedy2HyoxWtouHy8E7IjVmZhA0Gvn8PDrzNf/wZeItCyXOhEhJ9AL88ccfxwMPPICsrCy0tLTA1VXc+aIdHR2wt2d3afpaNDo62F6wPgcOHMCuXbuQlpZmkVxKS9mXcfurrKw07MzfCG9vb3R3dw8Y60i3iRI56Su+xf6+J5ZxqrgB2ZXsbOhxwe6YGOohfUJiy3oP0Hay8cSfA3byacewFGOjB++Nl8+Gk9DdjYaPODdfajTwvMf0XXpdj55786VKrcKYWfI5fFlTUoSy7AtM3DMoBGHj5DORhlie6AX47NmzsWTJEuzevRuzZ8/Gk08+iXHjxsHDw4P7/mFhQxtx5ejoyD2U2NnZaXicR6vV4oknnsAvf/lLJCUlDSmHPiEh4vaYqVQqBAUFwcvLC42NjWhvb6cCnFidRqOBnZ0d3Nzc4OLiQjvfw8i7g+x+K+6VNb1+8PYThSlvLcehskNM3M/RD3ND50qfkBEt330HXS3bNuI67ybYBgSYvE5+VjU6WtjL/6ISfeDsIZ9WqrPfsAdiASBx/gLlfc+RAUQvwCMiIgxfRGfPnsUDDzxg9H1VKhW0nCtYzREYGIjycvbGq74Dj0FB/Fuv3n33XVy+fBlvv/02ioqKBjzW0tKCoqIi+Pn5wcnJaUj5icHBwQEBZvxgIoSQa1W3dGL/BfZguIeTLRZNkM9tgRaT9x3QyHnCETUX8BkleTpi+/jyxxA4Fw0tj1sOW7V8pmzUf2Ds8KV589jPH+TffDlujnwOX3a1t+PSEfb2VRt7eyTMudkKGREpSbY11TduUOw54ImJicjNzUVz88CXUfvaShITE7kfV1JSgp6eHsyYMQORkZGGP0BvcR4ZGYlvvvlmyPkRQogc/Se9FD069mfwPVNC4WCrwMPd6Vv4cQWOHuzSdeHTK58ycRuVDZaPks/Nl52XL6Mj8xQTt4uMhNPUqSavU1PSgqoC9sZtz0BnBMV6DCVFi7p46Hv0dLJtsaNnzoWDMx1aVzrRd8D7DFZc9x9TOFTLly/HK6+8gi1btuDJJ58E0Hsz5vbt25GSkmKYTFJSUoL29nbEx8cDAO69915ucb506VKkpqbi4YcfRkqK8kZSEUJIj06P99PY3WCVCvjFVAUevqy9AuRxbkd2CwZiF0ifj8j2FexDQxc7ZePm8Jvh6ySfKRv1777LjXveZ94FQed+4J+/GjcnWDZtHYJej6yvvuA+lniLfOaxE/FI0gMu5Rd8SkoK7rrrLjz99NOorq5GTEwMdu7ciaKiImzb9lO/3wMPPIBDhw4ZCv/4+HhDMX6tyMhILFmyRIr0CSFEct9euoqrzezZmXlxfgj1kl/b3ZCl/ZMfn/wrQCPZvpQkBEHAe9nvcR+T0+hBbV0dmvfsZeIqJye4L1ls8jptTV3IzbzKxG3tNYhLkU+rZkFWJhqr2JavoNjR8IuIskJGRGqi/6Q5ePCg2P8E491338Uf/vAHvPfee2hoaMD48eOxd+9ezJ49W/JcCCFE7nYcK+LGH5geIWkekuhoAM5w+ow19sCUX0mfj8jSq9JxpeEKE4/3iscU/ylWyIiv4T//gdDdzcQ9li6FxoxLvC4cLodey76iPnpGIOwc5fPk6vS+z7nxSammP9kgw5t8vhotyMHBARs3bsTGjRuNvo+pTwws1RpDCCFydL6sCelF9Uw8wtsJs2Lkc1mJxZx+F+hpZ+MT7gGclff5vneJv/v9y4RfyqYdQ9/djYYP+SMSvX75C5PX0fbocPEw5/ClChh/k3wOX9YUF6Lkwlkm7urji1HJ06yQEbEGmg9GCCEj2LajBdz4A9MioFbLo0CzGJ0WSDNy+DLlUWlzkUBxczF39KC3gzdui5DPFefN+/ZxRw+6zJ0Lu4gIk9e5knGVO3owcrwP3H3l00p1ej+/93vibXdATbdZjxgW3wH/85//DABISEjA8uXLDX831YYNGyydEiGEEI6qpk7sPcf2obra2+DupFArZCSynD1Acxkbj5oL+CdIno7Y3s9+nxu/J/4e2GlMv1FSTIIgGD186bXC+Nhi3jpnv+f8vwUwYZ58vpbbmxqRffQgE7e1d8C4m26RPiFiNRYvwJ977jmoVCosW7YMy5cvN/zdVFSAE0KINN49UQStnjN6MCkULvYK7FA8+Q9+fOpj0uYhgebuZuzO283EbdW2uDv2bukTMqI9IwNdl7KZuH1srFmjB8svN6CuvJWJ+4S6yGr04Nnv9kPXw+7Sj5l7MxxcaPTgSCKbFhTqtSaEEOm0d2vxQXoJE1ergBVKPHxZdgooTWPjXtFAzHzp8xHZZ1c+Q4eWnTF9e9Tt8Hb0tkJGfIPtfpuzeXf2B+O733Lpddf29Bi9+XLibYskzoZYmyhbHNcW01RcE0KIvOw6XY7GdnYn7raxAQodPWhs9/tRQC2bvSiL0Oq1+CCbf6PkL0abfqhRbN2lpWj9/gcmrvH0hNvChSav03i1HUXn2R5yR1dbjJriP6QcLSn3xBG0NbLz2KMmJcErKNgKGRFrsngBvn37dgC9V9D3/zshhBB50OsFbD9ayH3soZmREmcjgeYK4OJnbNzeHZhwn/T5iOxA6QFUtFUw8ZSAFMR5xVkhI76Gf/8b4GzQed53L9T29iavc+5gGcDZ5xs7JwQaW3k8uRIEAae+pNGD5CcWL8BXrFgx6N8JIYRY18HcahTUtjHxCaEemBTmaYWMRJb+L0CvZeOTHwDsldd3a2z04C8S5LP7rWtpQeMnu9gHbG3heZ/pT4o623qQfZw9SKy2UWHsbPnsKpdnX0R1UT4T9wkNR9jYCVbIiFibPJ4aEkIIkcy2QXa/5dIvazFdLUDGNjauUgPJj0ifj8iyqrOQVZ3FxENdQzE7RD6X0TX+97/Qt7FPAt1TU2Hj62vyOhePlEPbpWPisckBcHKTx6QXAMjYw3mygd7db8V9zxGTUAFOCCEjSHZlM47l1THxQHcHLBgrn6u6LebUTqCriY2PvgPwCJM+H5Ftv8Bv+7x/9P1Qq+TxK1/f3Y36nfzDl54P/NLkdbQ9ukEOX8rn4p3akiIUnM5g4o6uboifOccKGRE5sHgLSlRU1A1/rEqlQn4++xINIYQQy9h6hL/7vWJ6BGw18ijQLEbbDZx4k//Y9CekzUUCBY0FOFB6gIm727tjacxSK2TE17xnD7Q1NUzcadpUOI4ZY/I6l09WoaOZvb4+NMELPiGuQ8rRkjL2fMqNT7ztDtjamd7rTpTF4gV4UVERVCrVDU0+oZdhCCFEPBWNHfj8DHtVt6OtBvclKW83GBc+AVrYw4gInwmETJE+H5HtuLiDG7837l442cpjso2g16Nu2zvcx7wfWmXyOnq9gDPflXIfm3iLfL6Wm2trkHOMvY3Uxt4eibfeboWMiFyIdtOCucU0jSokhBBxbTtayL14564pIXB3srVCRiLS64Fjb/Afm/EbaXORQHV7NfYU7GHi9hp73Bcvn0kvrQcOoLuggInbjx4N5xnTTV6n8GwNGq+2M3HfMFeExMnnIPHpfZ9Dr2N71MfddAscXd2skBGRC0nmgAMYdFe8r1inIpwQQsTR2N6NDzkX72jUKjw868ZbB2Ur71ughr1hEX4JwCjlXbzz7+x/Q8uZ9LIkZomsLt6p28o5EAvA+6GHTN64EwQBp79mv5aB3t1vubya3tnainPff83EVWo1Jt++RPqEiKxYvOFPr9czf5588kkIgoB58+bh6NGjaGxsRGNjI44dO4abb74ZAPDQQw9Br9dbOh1CCCEA3jtRjPZudifu9nGByrx45+hr/PiM3wAyKdAspaW7BR9f/piJq1VqrEiQzyjg9tOn0ZHFTmixDQqC2223mrxOZV4jqouambibjwOiJ5o+QUVsZ7/dh55O9jbSuGmz4O4nnwuCiHWI1oLS59NPP8Urr7yCoKAg7N27Fw4ODobHpk2bhj179iAmJgbvvPMO5syZg1/8Qj5zSgkhRAk6unXYfryI+9jqOQrc/S5NB0qOs3G3EGDsMunzEdnHuR+jtaeVic8Pn49Qt1ArZMRnbPfb61e/gsrG9HLk9Df83e/En4VBLZODxNrubpze/wX3saRFyvsaJOYT/Sv1tddeAwCMHz9+QPHdx8HBAePGjYMgCHjrrbfETocQQkacj0+Vor6NnRYxJ9YXY4LcrZCRyI69zo9P+zWgUVave7euG/++9G/uY78a+yuJszGuKz8frT9wrp338IDHsjtNXqeuvBXF59kxmg4utoifHjikHC3p0uEf0N7UyMTDx0+EX4QCn/QSs4legJ89exYqlQqXLl2CjnMQQavVIju7t0/vwoULYqdDCCEjilanx5bD7KE3APifOdESZyOBmlwg50s27uABTHpA8nTEtid/D2o62JF+KYEpGONt+kg/sRnb/fa8/36onUxvgcoysvs9/qYQ2Nppbig3S9PrdEYv3klevFzibIhciV6A9x2sLC0txX333YcrV64YHsvLy8P999+PkhL+NxQhhJCh+fJ8Jcoa2D7UCaEemBrlZYWMRHbkFQCcA/1JqxR37bxWr8XW81u5jz045kGJszGuu6wMTV+w7RgqBwd43v9zk9dpqmlHbsZVJm5jp8a4OfK5eOfy8cNorKpk4v5RMQgdM94KGRE5Er0HfPLkyTh8+DAAYNeuXdi1axfs7Hqvh+3u/uklUZVKhUmTJomdDiGEjBiCIOCfh/i734/OiZbNtAiLqS8AzrOHEWHjAKSslj4fke0r3IeyVvYmyDjPOEwLmmaFjPjqtvwL4LwC7nHnnbDxMv1J4KmviiFwxmgmzAiCg4s8WosEvR4nP/uI+1jSomXK+54jN0z0HfDf/e53A8YLCoKArq4udHV1MWMHn3zySbHTIYSQEePg5RpkV7LTIqJ8nXFLggKnMBz5OyBwpmlNWgG4+Emfj4h0eh3+de5f3MceHv+wbAq9nspKNH72GfuAjQ28HzJ9l765rgOXT1QxcbVGhcT58rl4JzftOOrL2QuCPINCMCrF9DnnRPlEL8AXLlyIF198EUBv8a1SqQb86Yv96U9/wsKFC8VOhxBCRgRBEPD691e4j62eHQW1Wh4FmsU0lgBnP2TjaltghvKunf+2+FsUNRcx8Sj3KMwPl8+c87qt24CeHibuvmQxbIODTV4n6+sS6Dm73/HTA+HqxQ54sAZBEJD26X+4j6UsuQtqtTx61Ik8SDKv5+mnn8bBgwdx++23w9HREYIgQBAEODo6IjU1FQcOHMCzzz4rRSqEEDIiHLlSizOljUzc380eSyaaXvgMG8deBzgX0WDi/YC7fPqDLUEv6PH2ube5jz08/mGoVfIYxddTXY3GjzktQRoNfB55xOR1Whu6cOl4BRNXqVWYfGv4UFK0qPxT6agpKWLi7v4BGD1zruT5EHkTvQe8z6xZszBr1izo9XrU1tYCAHx8fKBWy+MHBSGEKMVgu9+PzomGvY3CduKaK4HT77FxlQaY+Vvp8xHZgZIDyGvMY+JhrmG4LeI2K2TEV//Odgjd7PhL94W3wy7M9LaRrG+Lodeyu99xKf5w83EcUo6WIggCTu7i734nL74Lao3CvufIkElWgPdRq9Xw81NWLx4hhMjJifw6nCpuYOK+rva4N1k+/bIWc3wToOti4+PvATwjJE9HTIIgGN39XjVuFWzUkv9a59LW16Phv/9lH1Cp4L3a9AOx7c3duHSEs/utAibfFjGEDC2r6OxpXC1gn/S6+vhizJx5VsiIyJ3Fv1PfffddAEBERARmz55ttTUIIWSkGqz328FWYTtxrTVA5jtsXKUGZv1O+nxEdqT8CLLrs5l4sEswFkbL5xxV/Y6dEDrY8Zeut90K+yjTL6I5810JtD3swdqYKf7w8Dd9friYBt39XrQcGht5TGgh8mLxAnzlypVQqVRYtmzZDRfPlliDEEJGopMFdUgrrGfiPi52uD9FPv2yFnNiM6BlCz2MuRPwiZE+HxENtvv94NgHYauWR6Gna2xEw/vvcx/z+Z9HTV6ns7UH5w+Vcx+bvEA+X8ulF8+jIpd9UuTs6YWxN8nnQCyRF2rAJoQQBdn0A3/3++FZUXCUyU2BFtNWC2TwL6JR4u738YrjOFdzjon7OflhScwS6RMyom7nTujb2pi4y89uhkNcrMnrZH1XAm0XOz88eqIvvIPkcamSIAg48ckH3MeS7rgTNj/ee0LItURrFisuLja0khBCCBFfZlE9juXVMXFPJ1v8Yqp8dgwt5thrQHcrGx99B+CfIHk6YhIEAZuzNnMfe3Dsg7DTyKPQ0zY0oGEn/3e/Obvf7c3dOHeAvWQIACanRtxIaqIoOX8WZdkXmLijmzvG/0w+B2KJ/IhWgGdmZuJXv/qVWMsTQgi5xhs/sJMxAGDVrCg428vjcJ7FtFQB6fyLaDBLeZe6HSw9iAt1bKHn7eCNZaOWSZ+QEXVbt0Lf3s7EnefMhuPYMSavc/qbYu7ud8R4H/iGug4pR0sRBAHH/suZvgNgysKlsLWXx3xyIk+i/kS+9qZLU8nlBi9CCBkuMovqcTi3hom7O9rigWkK3P0+8ndA28nGR98BBCVKno6Y9IIem8/wd78fHv8wHGzkUej1VFej4X1+O4bvGtMvQ2pt6MIFI73fyQsjbyg3MRSczkBl3mUm7uTugYm3yudALJEnUQrwGy28LfXxhBAykgiCgJe/ZgsBAHhoZiRcHeRxOM9iGkuBU9s5D6iAub+XPB2xfVP8DXIbcpm4v5M/lscut0JGfHVb/gWhk31S5Dr/Z2btfp/6qgg6zuST6Em+8A2Tye63Xo9jH/2b+1jy4rtg6yCPJ0VEvixegG/fzvuheGMiIiIsthYhhCjVkSu1SOdMPnFzsMGK6RHSJyS2I68AOvaCF4xdprjeb51eh7fOvMV9bPWE1bDX2EucEV9PZSUajcz99nl8zf9v777jm6j/B46/krRN9y5dFFqg7I0s2VMZggPFhQjixIXiFvf6yVcQB27BLYiiggMF2Ruh7A2lG7p30zS53x+FSsmltJDRhvfz8Qhp7nN3eSfX0HfuPp/3p9b7KcguZd86y7rfaKDH6NqXL7S3w1s3kpl4zGK5b3AInYaNcEJEoqGxeQI+ceJEW+9SCCGEFYqi8L+/1M9+3z2gOQFeLnb2O+cY7FA586jRwsCnHB+Pnf1+/HeO5x+3WN7Yt3G9qnyS9cGHKEajxXL/ESPqVPlk2++JmE2WV8Fbdg8nOMrnomK0FbPZxIaF6mUWe107XiqfiFqRMoRCCNGA/bXvJLtS8i2Wh/p6MKlPrOMDsrfVb4K5wnJ5p5tcru630Wy0evb7nk731Ju63+XJyeT99JNlg1ZL6P3313o/eadKOLAxw2K5Rquh+6j60/f74Po1ZKckWSz3DwuXut+i1iQBF0KIBspkVpj1l2XfYID7BrbA28PFKp9kHoRdKt0ctG4w4HHHx2NnPx/5mZQiy1J8sf6xjGo2ygkRqct67z2osPxSFDB2LPpmtU+ctyw5jmK2PPvdundEvZn10lRRwQYrdb97X3ejzHopak0ScCGEaKCW7krj4MlCi+VRAZ7c3LOJEyKys+UvgmI5OI+ut0FQrMPDsacSYwkfJHyg2ja181TctPXjy1XZgQPk/7rEssHNjdCp99V6P5lJhRzeetJiuVan4bJ6VPd794pl5GWkWywPioyibf/BTohINFSSgAshRANkNJmZ9bf62e8Hh8Tj6e5is14mbYKDv1ku1+ldsu731/u/JrPUsqxkfFA8w2OHOyEidafemgUqlcsCr7sOj8aNa72fjYvVa9i37RuFf4jXBcdnS+WlJWz88TvVtt7jbkarc7HPnLArScCFEKIBWrgtmRPZlhOexIZ4c1232ic+DYKiwF8z1Nt63AkB0Y6Nx85yynL4fM/nqm0PdnkQraZ+/Oku3rSJ4rVrLZZrPD0Jva/2s14m78sheX+uxXI3D229Ovu9dcliSvLzLJaHNYml1eX9HB+QaNDqx6dYCCFErRUZKpj992HVtmnDWuKuc7H/2g8shZQtlsv1AdDvUcfHY2cf7fyIYmOxxfKujboyoPEAJ0RkSTGbOTXzf6ptwbfdhnt4eC33o7DBytnvzkOb4BNQP8osFufl8u/Sxapt/W6ZhFYrZ79F3bjY/9JCCOH6Pl5zjKwig8XyVuF+XNUxygkR2ZHJCMtfUG/rNw28gx0ajr0lFySz8NBC1bZHL3u03swUXfDHH5Tt3WuxXBcYSMidU2q9n0NbT5KVXGSx3NPXnS7D6s84ho2LvsVosJxkqEn7TsR26uqEiERDJwm4EEI0ICcLyvhkjeUEIABPjGiFVls/EjSb2f4lZKucIfWPhp73OD4eO3tnxztUqJRZHNZ0GB3DOjohIkvm8nIyZ7+t2hZ67z3o/Go3W2WF0cTmX9R/l7uPisXDq34MNM1JS2HXimWqbf1vmVRvvhSJhsVuCfiuXbvYe9a34/3795OQkGCvpxNCiEvC7L8PUWo0WSzv3SyEQa0aOSEiOzIUwao31NsGPQPu9WNwnq3sydrDn4l/Wix307jxUNeHnBCRurzvv8eYYlke0T06msCbbqr1fvasTqUwx/Kssn+YF+361Z9+/eu++xLFbFl9p3WfAYQ3c63a88Jx7JKAp6WlcdlllzF9+n8j06dPn06PHj1IUfnQCiGEOL9DJwtZuC1Zte3pkW1c70zcxveh+JTl8kbtoNONjo/HjhRFYda/s1Tbrmt5HU39mzo4InWmwkKy5qqXRwx7+GG0tZwF0lBiZNsfiaptvcY2Q+dWPy7Qpx3az+EtGyyWa3Vu9L1xghMiEq7CLtd3oqKiuPHGG/nmm2/YtGkTAH/88Qe33HILjetQlkgIIcR/Xv99PyrzlHBNl2g6NA5wfED2VJAG6+eotw19AVxs0NvK5JVszdhqsdzbzZt7OtWfrjZZH36IKS/PYrln27b4jxpZ6/1s/T0RQ7FlV5tGTf1o0bV+XMlRzGZWffGpalvn4SMJaBTh4IiEK7FbB6uXXnqJhQsXMmPGDDQaDR4eHrz88sv2ejohhHBpG45ksfKgZV1oDzctjw5v6YSI7Gz5i6BSCYTYfhDvWtN9l5vKmbl1pmrb7e1uJ9Qr1MERqStPTCTny69U2xpNfxSNtnZnrXMzitn9j/rV8N7XtkBTT8Yx7F+3ivQjBy2We3h50/Pa8U6ISLgSmyfgSUlJAGi1Wq655hoWLFiARqNh/PjxaLXaqvYmTerP6GYhhKjPzGaF1/7Yr9o2qU8sjYPqxzTdNpOyDXZ9r9427EVwsa42X+37SnXK+VCvUCa2m+iEiNSd/L83wWi0WO7Tty8+l19e6/2sX3QEs8qlnKbtQ2jcKuiiYrSV8rJS1nw7X7Wtx9hxePu72BUn4XA2T8BjY2Mt+iEqisKCBQtYsGABABqNhooKy0tPQgghLP3wbzJ7Ugsslgd5u3PfQBcbBGY2wx9PqLd1ugmiuzk2HjvLKs3i410fq7Y91PUhvN3rx5erorXrKFq50rJBpyP8SSvHS0Xi7ixO7Mm2WK7Vaugzrv78Lm/5eRHFuTkWy/3Dwuk26mrHByRcjs0T8P79+1cl4CkpKRw9ehSNRkOzZs2k/7cQQtRRQZmRmcssL4MDPDA4ngAvdwdHZGe7F0LqNsvl7j4w5HnHx2Nnc7bPoaTCckbTdiHtGNN8jBMisqQYjZx8Q70aTdDNN6NvUbvE2WQys36R+qQ7HQY1JijC54JjtKX8UxlsW/qTatvACXfgVsuBpkLUxOYJ+KpVq6p+7tevHxkZGQCEh4ezUu3bsxBCCKveWX6YrKJyi+WxId7c2qt+VMawGUNRDZPuPAL+kQ4Nx972Zu3l5yM/q7Y92ePJejPlfO73Cyg/etRiuS4wkLD7p9Z6P3tWpZJ30vLLhqevO91HxV5MiDa1+uvPMal0tYlp24EWPXo7ISLhiuz26V66dCkbNmzgvvvu4/7772fjxo0sXbrUXk8nhBAu58ipQuZvSFRtmzG6LR71pFSbzaybDYXplssDm0Dv+x0fjx0pisIbW9TPKo+MG0nnRp0dG5AVFbm5ZL77rmpb6IMPoAuoXV/o0sJytiw9rtrWc0wz9N7140pO8t5dHN5sWXZQo9EycOKdrlfqUziNXf73VhSFZ555Bh8fHx5//HGmT5+Oj48PTz/9NIqiUkNLCCFENYqi8NLS/VSoDFYb2CqMwa3rR6k2m8k9ARvUEz2GvwLuno6Nx87+OP4HCZkJFsu93LyY1m2a4wOyIuvddzEXWI4/0MfHE3TDDbXez+Zfj1Feajn2KyTal7Z9oy4qRlsxm02snK/eH7/j0CtoFNvMwREJV2aXBPzkyZNotVruu+8+QkJCCAkJ4f7770er1VZ1SRFCCGHdiv2nWHPIsuygm1bDjNFtXe9M3LKnwWSwXN60L7SpH32hbaXYWMxb/76l2jap/SQifOpHfemy/fvJ/X6Balv400+hcatdL9bMpEL2rUtTbet3QzzaelJ2cNfff5KZlGixXO/tw+U33Or4gIRLs0sd8IiICLZv347B8N9/ps899xyvvvqq6/3REEIIGyszmnj5t32qbZP6xNI8zNfBEdnZoWVwQKWLokYLV77ucmUH5ybM5VSJ5QyfkT6R3N7udscHpEIxm8l44cXKqjTn8Bs2FJ/etesLbTYrrPrmAGoXv5t3DSO6npQdLM7LZd33X6q29R53s5QdFDZnt4l4NBoNnp7/XTI883NWVhZbtmyhqKiIqKgoevbsibt7/ej7JYQQ9cEHq45yIttysFqorwcPDIl3QkR2VF4Cvz+m3tb1Nojs6Nh47OxgzkG+2f+Natsj3R7By83LwRGpy1u0iNKdOy2Wa9zdafT447Xez751aZw6UWixXOem5fJr60/ZwdVff46hxHLip6CoxnS+YpQTIhKuzm4J+LmMRiP3338/n3/+OeazvlEHBgby0ksvMXVq7UdSCyGEqzqWWcQHqywrTgA8fmVr/D1d7ITF2rcg74Tlcq8gGPyc4+OxI7Ni5pVNr2BSTBZtPSJ6cEXsFU6IylJFTg6n3pql2hY85Q48YmJqtZ+SgnI2/az+u9z1iib4h9aPLxtJe3axf616lbbBk+5GV8uuNkLUhc1/qxISEvj8888BmDZtGnFxcQBMnDiRBQsWWAzCzM3N5cEHHyQzM5MXXnjB1uEIIUSDoSgKM37ZQ7nJ8rJ/p5hAxnV1sbkUsg7D+jnqbUNfBJ8Qx8ZjZz8f+Vl14KWb1o1nej1Tb7ponvrfW5jz8y2Wu8fEEHr33bXez4afjmAosRx4GRDmRdcr60cJTVOFkRWfzVVta9W7H7Eduzg4InGpsPkgzLlz5/Lee+/x6aefEnP6W/KqVav4/vvKaYXP/g9Go9Gg0WhQFIVXX32V3bt32zocIYRoMH7dmcb6IyqzBGrg1avb15vBajahKPDbI2C2rLdM4x7QZYLjY7Kj3LJcZv2rflZ5UrtJNAuoHxU2Sv79l/yf1CehiZjxLFrP2lWjST2Uy8FN6kUX+t/UEjd33QXHaEvbliwmJy3FYrmHlxcDb5vihIjEpcLmCfimTZsAaNmyJW6nL9t8/HFlWR9FUQgPD2fYsGEMGDCA4ODgqjPiZrOZDz/80NbhCCFEg5BfYuTlpeoDL2+/PI720S42CGzPj3B8jeVyjQ5GzwKta9U4f3v72+QbLM8qR/tGc2fHO50QkSXFaKwceKnCb9gwfPv3r9V+TBVmVn93SLWteddGNGlbP65s5J/KYNOP36u29Rk/Ad/g+hGncE02/x8uOTkZjUZDRMR/ZZT+/vtvNBoNDz30ECdOnGDZsmWsXLmS5ORkHn744ar11qxR+c9YCCEuATP/OqA642WEvyePDG/phIjsqCQH/nxKva3nPRDRwbHx2Nm2jG38dFj9rPJTPZ6qNwMvs+fPx3D4sMVyjbc34U9bOV4qdvydRG665YBGd72OvtfXj0HEiqKw4rMPqDBafubCYpvRebgMvBT2ZfMEvKioCAAvr8r/UFJTU8nOzqZZs2bMnj27WsUTT09PZs2aRXx8PIqikJSUZOtwhBCi3tuelMs3m9X//3vuqrb46l1sENiyZ6DYsgwffpEwqPaJXkNQVlHGCxtfUG0bHDOYATEDHBuQFYZjx8l69z3VtrD778c9MrJW+8lJL2brb9ZnvPQN0l9wjLa0f+1Kjif8a9mg0TBsylS0uvrRRUa4Lpsn4Ge6nZypdLJt2zYABg8ebHWb2NhYAMrKymwdjhBC1GuGChOPL9qlWid5YKswRrSvH5Oy2MyR5bDzW/W2K18HvZ9j47GzuTvncqLAssqLl5sXT/Z40gkRWVLMZtJnzEAptzwbrI+PJ3hC7SahMZsVVn61H3OF5S9zSGNfOgyMvuhYbaE4L5eVX3yi2tZxyBVExrdycETiUmTzBDwkJARFUdi2bRsnT56s6v+dnW05sAggMzOTrVu3ApUlCYUQ4lLy3j9HOHKqyGK53k3LS2Pa15vKGDZhKIQlD6u3xQ+Htlc7Mhq725u1ly/2fqHaNrXzVCJ9a3dW2d5yv/+e0n/VzwZHvPQimlrO1bFndQoZxyynrddoYOAtrdDq6ke//n/mf0xZkWVtcp/AIPrddLvjAxKXJJt/Gtq1awdARkYGUVFR/Pnnn2g0GhYvXsy4ceNYt24dmZmZJCcns3jxYoYOHUpeXh4ajYb27dvbOhwhhKi39qTmM9dKze8Hh8TTJMTbwRHZ2YqXID/ZcrmHH4ye7VIzXhrNRp7b8BxmxbKkZIfQDtzapn5MbW5MTSXzf2+ptgVNuBXvLrUrw1eQVcrGn4+ptnUcEkNEXP0YRHx460YObVyr2jbkjnvx9HWxWWZFvWXzjoVjxozh77//BioHOZw5e6MoCosXL2bx4sU1biuEEJcCo8nM44t2YTJbXq5vF+XPXf3rR1k6mzmxEbaoX/Zn2IsQ4Fo1zuftmcehXMtKIG5aN168/EV0Wuf3MVYUhfQXXsRcYjnrqnt0NI0eeqjW+1n1zQEqDJYTDPmHetJzTP34XS4rKmLFp+o1v1v27EN8j8sdHJG4lNn8DPiUKVPo3r17VXlBjUbDxx9/TPv27VEUxeJ2RuPGjbnjjjtsHY4QQtRLH60+yr50y8v1bloNb47riHs9uVxvE8Yy+PUBQKWje9O+0G2Sw0Oyp2N5x/hwp3pZ3bs63EV8UP2oBFLw668Ur1U/Gxz58ktofXxqtZ8DGzNI3p+r2jZoQhvcPZz/ZQMqp5svzrOM09PHl8GT73FCROJSZvMz4Hq9njVr1rBo0SJSU1MZOHAgPXr0oHfv3gwePJhTp05V69OoKApBQUH8+OOP+MqlHyHEJeDQyULeWXFEte2+gc1pF1U/LtfbzMpXIduyvB1unjDmHZeq+V1hruDZ9c9iVJlgqEVgC6Z0qB+TuxhPniTjtddV2wKuuxafy2t3Nrgwp4z1i1SOLdC2bxSNWwVdcIy2dDzhX/as/Eu1beDEO/EJrB9xikuHXWpb6fV6brnllmrL2rZtS0JCAs8++yxLly4lPz+f6OhoRo0axRNPPEFUVJQ9QhFCiHqlwmTmsUW7VKebbxnuy9TBLZwQlR0lrocN76q3DXoaQpo7Nh47+2T3J+zOspzVWavR8tLlL+Guq92ARntSFIX0p59RnW5eFxZK+OOP124/ZoV/vtyvOt28T4AHl19XP36XSwsLWPbB26ptsZ270ba/9SptQtiLQ4vLRkRE8OmnnzryKYUQol55f+VRdibnWSzXauDNcZ3Qu9WPy/U2UVYAi+9BtetJVBfoNdXhIdnT3qy9fLTzI9W2CW0m0CGsfkwwlPvttxSvX6/aFvn88+gCancFZteqFFIOqHc9GXBLa/Rezq9frygKyz+dq9r1xN3Ti2FTprpWpSHRYLjOdT8hhKjnEpLzeOcf9cv1d/ZrRueYQMcGZG9/PgX5KhMM6Txg7Pugc36CZiulFaU8te4pTIrlQMRY/1imdqkfXzYMx45zaub/VNv8R47Eb+jQWu0nJ72YjYvVK/i07BFOXMfQC47Rlg6sW8WhTetU2wbcOgn/sEYOjkiISpKACyGEA5SUVzBtQYJq1ZNmoT5MG+Zi080f+A0SvlZvG/IchLdzbDx29va/b3M833IGSJ1Gx2t9X6sX080rRiNpTzyBojLpnVt4OBHPzajVfkwmM8vn7cNktOxG5Rukp/+N9eN3uSArkxWfqw+GjevcjY5DRzg4IiH+45IJuMFgqOpX7uXlRc+ePatKI9bkp59+Yvz48TRr1gxvb29atWrFo48+Sl5env2DFkK4tNd+38/xrGKL5TqthlnjO+Pp7kJdT4pOwa8Pqrc17etyXU82pG3g2wPqs3ve3fHuetP1JOujjynbbdk/HSDytVfR1XIyvG2/JZKZZDmRDcDgiW3Qe9eDfu5mM8s+mI2hxPIz5+nnz/B7HpKuJ8KpXDIBv/3225k1axa33HILc+bMQafTMXLkSNatU78MdcZdd93F/v37ufXWW3nnnXe48soree+99+jduzelpaUOil4I4WpWHjjF15tUumIADw6Od62uJ4pSmXyXZFm2efjBNR+4VNWTfEM+M9arnzluH9KeKR3rR9WT0l27yPrgA9W2oFtvxbdPn1rtJ+NYPv/+kaja1mlwDDGtgy80RJva/scSkvbsUm0bdudUfIPqR5zi0uU6HfBO27JlC99//z0zZ85k+vTpANx22220b9+exx9/nA0bNljddtGiRQwcOLDasm7dujFx4kS++eYbpkypH/+RCiEajlOFZTy2aKdqW+eYQKYOcq0qIGz7HA79od428k0IbOLYeOxIURRe3Pgip0pOWbR56jx5rd9ruGudfzbYVFRM6mOPgcmyf7pHXByNHn2kVvsxlFbw9+d7UVTG1AZFeNPr6vox4c6pxGOs/W6+alvbfoNo2bN2XzaEsCeXS8AXLVqETqfjrrvuqlrm6enJHXfcwdNPP01ycjIxMTGq256bfANcc801TJw4kf3799c5lpSUlBrb09PT67xPIUTDYTIrTFuQQFZRuUWbl7uO2eM74+ZKE+5k7K4ceKmmzVXQ6SbHxmNnCw8u5O8T6t0bH7nsEeIC4hwckSVFUch44QWMJ1SuwLi5EfXmm2i9zt8//cxslwVZlv3HtVoNwya3w60eTLhTXlbK0jlvYjJa1mH3Cw2TCXdEveFyCfiOHTto2bIl/v7+1Zb36NEDgISEBKsJuJqMjAwAQkPrPqK7Ls8jhHA9H6w6wvoj2aptM0a3JS60djMNNgiGIvhhEpgMlm0+jWD0HHChPrcHcw7y5tY3Vdv6RPXhxlY3Ojgidfk//UTB0qWqbaH33oNXh/a12s++dWkc2WZ5ph+g++g4wpr4XXCMtvTP5x+Sm6Z+8uvKe6eh93ahz5xo0Fzo1Eul9PR0IiMjLZafWZaWllan/f3f//0fOp2OcePG2SQ+IcSlYWtiDrP+PqTaNrRNODf1cLEv6L8/pj7bJcDVc8EnxLHx2FGJsYTpq6dTbra8shGkD+KlPi/ViwF+hiNHyHj5FdU2r86dCb377lrtJzu1iLUL1Y9tZPMAul5RP7oV7VvzD3tXr1Btu+yqa2nSvqODIxLCOpc7A15aWoper7dY7unpWdVeW99++y2fffYZjz/+OPHx8XWOJTk5ucb29PT0qjPzQgjXkVtczoPf7UCl4iBRAZ787/qO9SJBs5md38NO9SogXP4AxA9zbDx29urmV0ksSFRv6/sqjbydX1vaXFZG6rRHVEsOav39iX7rf2jczp8CGMtNLPt0r2rJQb2PG8PuaIe2HnSjyklLYfmnc1XbIlq0pO+NExwckRA1c7kE3MvLC4PB8hJo2en/hLxq0dcNYO3atdxxxx1cccUVvPrqqxcUS+PGjS9oOyFEw2U2K0z/YSfp+ZaJj06r4Z2buhDo7eGEyOwk8xAstTKIL7obDH7OsfHY2a9Hf+XXo7+qtt3e7nb6Ne7n4IjUnXz1NQyH1c9aR732Ku7R0bXaz9rvD5GbblnKD2DIbW3wC/a84BhtxVhuYOnb/4fRYPmZ03v7MPqhx9G5OX8wrBBnc/7XVhuLjIxUHdx4ZllUVNR597Fz507GjBlD+/btWbRoEW61OEsghBAAc1cdYcUB9b6yjwxryWWxLlT+zFAIC24Fo0qCpveH6z4DN9f5snEw5yAvb3xZta1DaAce7GKl9rmD5f34E3k//KDaFnTLLbWe7XLfujT2b1AvFtBxcGPiOoVdcIy2oigKKz79gMwTlpMgAQy/+wECGkU4OCohzs/lEvDOnTtz6NAhCgoKqi3fvHlzVXtNjh49ypVXXkmjRo34/fff8fX1tVeoQggXs+rgKd6y0u+7X3wo9w5woZKDigK/TIWsg+rtY96BYOdXAbGVfEM+D698mDKT5VlWX3df/q///+Guc/5Z1tI9e8l48UXVNn2bNjR6/LFa7edkYgGrv1c/tmFN/Lj8mhYXHKMt7Vr+B3tXL1dt6zRsBC179XVwRELUjssl4OPGjcNkMvHxxx9XLTMYDMybN4+ePXtWVSZJSkriwIED1bbNyMhg+PDhaLVali1bRliY87/dCyEahqTsEh76PkG1RnKor55ZN3RGq3Whft8b3oV9v6i3dZsE7a5xbDx2ZFbMPLX2KVKK1KtrvHD5C8T4OX9QbUVuLqkPPohSbjk4VOPtTfSst9CqjJE6V2lhOX9+tBtzheUvs7tex/Ap7dC5Oz99SDt0gH/mfazaFtoklgG3ydwdov5yub4VPXv25Prrr+epp57i1KlTtGjRgi+++ILExEQ+++yzqvVuu+02Vq9ejXLWX8srr7ySY8eO8fjjj7Nu3bpqM2eGh4czbJhrDSQSQthGabmJu7/+l/xSy9rDOq2G927uQpjf+ROfBuP4Glj+vHpbZCe48nXHxmNnH+78kLWpa1Xbbm59M1fEXuHgiCwpJhNpj07HaKXSV9Srr6CPO/8VCbPJzF+f7aUoV6WcJDD4tjYENvK+qFhtoTgvlyWzX8dsqrBo8/Dy5qppT+Hu4UKfOeFyXC4BB/jyyy+ZMWMGX331Fbm5uXTs2JGlS5fSv3//GrfbubNytro337Ss7TpgwABJwIUQFhRF4ZnFu9mfXqDa/tSI1vRq5jol+MhPqaz3rVhWxcArGMZ/De61G+zeEKxJWcMHO9WncO/SqAvTL5vu4IjUZb7zLsVWZnoOvv12/EeMqNV+Nv96jJQDuaptXYY1oUW3elDhxWTitzlvUpSjXmN/xNRHCI6q3SBTIZzFJRNwT09PZs6cycyZM62us2rVKotlitq1YyGEqMFn647z045U1barOkVxR1/X6QdNeUnloMuSLMs2jRbGfeZSU80fyz/Gk2ueVG0L9QrlrQFv1Yt+3wV/LiP7o49U27y7d6fR9EdrtZ/D206yfZnKjJlAdKvAejPV/KqvPiV5327Vtp7X3ECL7r0cHJEQdef8TlxCCNFALd93kld/36/a1ircj/+7roPr1Ps2m+HneyFth3r74Geh+WDHxmRHeWV53L/ifgqNhRZtbho33hrwFmHezh8nVLp7D2lPqn9JcAsPJ3r2rFrV+z55vIAVX6j/LvsG6Rl+R/t6Ue9759+/s+OPJaptTTt24fIbbnFwREJcGOd/moQQogHal1bAg9/vUB106efpxocTuuHt4UIXGVe9Dvt+Vm9rPRr6WqkF3gAZTUamrZpGcqH6ZGrTu0+na3hXB0dlyZiRQcp996lOtoO7O43nvI1baOh591OYU8ZvH+xSnWxH66bhyrs64O3v/HKSJ3YlsOLzD1Xb/MMaMerBx9BqdQ6OSogLIwm4EELU0anCMqZ8sZWScpNFm0YDb4/vTFyojxMis5NdP8Aay7ExAITEw9UfVL5wF6AoCq9sfoVtJ7epto9qNoqbW9/s4KgsmUtKSLlvKhWZmartEc88jdd5yu4ClJdV8NvcXZQWWFZOAeg/viXhcf4XE6pN5KSlsOTt11HMll8S3Nw9GPPI03j5OT9OIWpLEnAhhKiDMqOJO7/8lzSVmS6hctDlkDbhDo7KjpK3VNb7VuMZCDcvAE/XSXy+3PclPx3+SbWtY2hHXuj9gtO7FSlmM2lPPEnZvn2q7UE330zQjTfWYj8Ky+ftIzulSLW946DGtOvn/MGMpYUFLP6/FzEUq8/IeeXUaYQ3qx91yYWoLUnAhRCilsxmhUd/2MnO5DzV9vGXxXBnv/oxUM0m8pLg+5vBpFKSTutWWfEkxHUmF1qVvIq3tr2l2hbhE8GcwXPwdHP+1OuZc96h8O+/Vdt8+vQh/OmnarWfTb8c5fhOlQG1QJN2wfQZ5/yk1lRhZMms18nLUJ+R8/Lrb6FV734OjkqIiycJuBBC1IKiKLzy235+26WeCPSMC+blq9s7/eyozRRnw1fXQrF6FwdGzYI410l8Ek4l8Njqx1Cw7NTv5ebFe4PfI9Tr/P2p7S33u++sVjzxaNas1oMud61MtlrxJCjSh+FTnD/oUjGb+XPu21YrnrTuM4Be153/TL8Q9ZEk4EIIUQsfrD7K5+uPq7bFhnjz4a3d8HBzkf9Sy4vh2xsg+7B6e+/7odtEx8ZkR8fyjnH/P/erTjOvQcOb/d+kVXArJ0RWXcGyv8h46WXVNl1gIDEffoDO//zdgQ5vO8naherH1tPXndFTO6L3cu4AYkVRWPXVZxxYv1q1PbJFK4bf86DrfOEVlxwX+WshhBD2s3BbMm/+eVC1zd/Tjc9u706Qj/OrRNiEyQgLJ0Kq+iBEWl4Jw15ybEx2dLL4JHcvv5t8Q75q+yPdHmFgzEDHBqWieMsW0qZPR7Xsjrs7jd99B48m56/BnnIwl+Xz96Fyoh+tm4YR93TAP9T5Eylt/fVHtv/+i2qbX0gYYx97Vma6FA2aJOBCCFGD5ftO8tRP6pfAPXRaPpzQjeZhvg6Oyk4UBX59AI6o9y8mogNc9ym4SKm3fEM+9yy/h4ziDNX2cS3HMbGd88/0lx08SMp9U1GMRtX2yJdfwrt79/PuJzO5kN8/2IW5Qn3SucET2hDVIvBiQrWJvatXsPbb+aptHl7eXP34DHwCgxwblBA2Jgm4EEJYsTUxh6nfbsdktkxYNBp4+8bOXN7c+f2CbWb587DzO/W2oFi45UfQ+zk0JHspqyjjwX8e5EjeEdX2QTGDeKbnM07v4lCekkrylDsxF6lXKgl79BECr776vPspyCpl6bs7MZZZls4EuPzaFrTqGXExodrE8R3bWPbhHNU2nZsbVz/2LI1iXWigs7hkSQIuhBAq9qTmc8f8rRgqLOsOA7w0tj0jO0Q6OCo7Wj+n8qbGJwxu/Qn8XKO8otFs5LE1j7H91HbV9q6NuvJm/zdx0zq3H3RFZibJd9xhtdZ30G0TCJky5bz7Kc438OucBEqs1PruNDSGLsPP333F3lIO7OXX2eq1vtFoGPnAdGLadXR8YELYgSTgQghxjgMZBUz4bDMFZRWq7Q8NiWdCr6YOjsqONn8Efz+n3ubhC7f84DLlBivMFTy55klWJa9SbW8R2IJ3Br/j9HKDFTk5nJg0ifITJ1Tb/UeOJPzJJ897hr6koJxfZu8gP7NUtb1lj3D6XOv8coPpRw6y+I0XqDColLwEhky6h5a9+jo4KiHsRxJwIYQ4y5FThdzyyWZyS9T7297SswkPD413cFR2tG0e/PG4epvWHcZ/BVFdHBuTnZjMJp5d/yx/nfhLtT3CJ4IPhn5AgD7AwZFVZ8rLI2nyHZQfOara7t27F5FvvI5GW/Of8LIiI7/O2UFuRolqe0zbYAbf1gaN1rndbE4eP8qPrz1Hean6l4Re146n8xWjHByVEPYlCbgQQpx2LLOImz7ZTHax+qX6Ee0jeGmsC9X6TvgWlk6z3n7Nh9B8sOPisSOzYualTS/x27HfVNv9Pfz5aOhHRPg4tx+0qbCQpCl3YjhwQLVd37YNjd99F61HzVV3DCVGfn0ngexU9dkjw5r4ceVd7dE5uXRmVlIii16dYXWWyw6Dh3P5Dbc6OCoh7E8ScCGEAI5nFXPzJ5vJLFS/BD6gZRhv39gZnZPPFtrMrh9OTzGvXhGDUW9Bh3EODclezIqZVze9anWKeR93Hz4c+iHNAp07uM9UWEjynXdRtmePartHs2Y0+eQTdL41V90xlBhZ8u5OMpMKVduDIn246oFOeHg6t497dkoSP7zyLGWFBartLXv1ZeiUqa7zhVeIszj30yeEEPXAoZOF3PKp9eS7T4sQPprQDb2ba5TfY/tXleUGrSXfV7wO3c8/uK8hMJlNvLTpJavJt5ebF3OHzKVDWAcHR1adKT+fpCl3UrZbveSle9MmNJk3D7eQkBr3U1Zs5Nc5CVaT78Bwb8Y+3BkvP+fWrT+VeIxFrzxLqZXku/llvRj5wHS0Ohf5zAlxDknAhRCXtD2p+dz2+RZyrHQ76REXzKe3dcfT3UUSga2fwW+PWG8f8jz0vs9x8dhRhbmCGetnsPTYUtV2vU7Pu4PfpWt4VwdHVl1Fbi5Jk+/AsH+/art7dDRN58/HPbxRjfspLSznl7cTyE5VL1noH+rJ2Ic74xPg3AlsMo4e5sdXZ1BWrB5nbOdujH74CXRukqII1yW/3UKIS9aOpFwmfr7FarWTbk2D+Pz27nh5uEjyvXEuLHvKevuAJ6FfDcl5A2I0G3lyzZNWB1y6a915e9Db9Izs6eDIqqvIyiJp0iQMh9XrkbuFh9Pki/m4R9Zc8rI438AvbyeQm67el9o3SM/Yh7vgG+Tc6i5ph/bz42vPU16qPjC0SfuOjHn0adzc3R0cmRCOJQm4EOKStPFoNlO+2EpxufrEJF2bBDJvUnd89S7w36SiwLpZsKKGKeT7PQoDn3RcTHZkMBmYvnq61VKD7lp3Zg+cTd9o55a1M6anV1Y7OX5ctd0tPJwm8+fh0bhxjfspzCnj1zkJ5J1UT2p9g/SMndbF6VPMJ+/dxeI3X8ZYpl7tpHHb9lz92HMyxby4JLjAXxYhhKib33en8/D3CZSb1CfZ6dUsmM8mdsfHFZJvsxmWPQ2bP7C+zqBnYICVUoQNTEF5AQ+seMDqJDt6nZ45g+bQJ7qPgyOrznDkCElT7qQiI0O13T0qiiZfzMcjJqbG/WSnFrHk3Z0U56mPX/AL8eTqepB8H9q8nt/fmYmpQv1qU9OOXRg7/Rnc9c49Qy+Eo7jAXxchhKi9Lzcm8vyve1GsjD8c0DKMjyZ0c40+3xXl8PO9sGeR9XWGvgh9H3ZYSPZ0quQU9yy/h8O5h1Xbvdy8eG/we/SI7OHgyKor2b6D5HvvxZyfr9ru3qQJTed9jnt0dI37STuSx+9zd2EoUU9qA8K8GDutC37Bzk1qd/79O8s/+wBrH7pmXbtz1bSncDtPaUUhXIkk4EKIS4KiKLz11yHeW6ne1xZgWNtw3ru5i2tUOzEUwoJb4dgq6+tc+X/Q6x6HhWRPx/OPc8/f95BWnKba7uPuw9whc50+4LLwn5WkPvIISlmZartHs2Y0mfc57uHhNe7n+M5Mln26F5NR/SpOUIQ3Y6d1ceqAS0VR2LjoWzYu+s7qOi2692b0w4+jc5M+3+LSIgm4EMLlGU1mnlm8m4XbUqyuM6ZTFG/d0Al3nQtMj1B0Cr65HtITrKyggdGz4bJJjozKbnZl7mLqiqnkGfJU2/09/Plg6Ad0DOvo2MDOkffjj6Q/9zyY1Mcd6Fu2pMnnn+EWGlrjfvauTWX1twetXsUJaezLmAc74+3vvDPKZpOJFZ9/wK7lf1pdp3WfAVx53zSpdiIuSfJbL4RwaXkl5dz3zXY2HM22us7kPnE8O6oNWleYZCdjD3w7HgqsfNnQecB1n0LbsY6Ny07+PP4nz65/FoNJvQ90uHc4Hw37iOaBzR0c2X8Us5nM2bPJ/uRTq+t4X3YZjee+j87f3+o6ZrPCxsVHSfg7yeo60S0DGXFvR/RezvvzbigpZsnsNzixa4fVdbqMuIpBt92JRusCX3iFuACSgAshXNaxzCLu+GIbx7PUS7MBPDWiNXf1b+Yas+0d/AMW3QFGK69X7w83fgtx/Rwblx0oisKHOz9k7s65VtdpHtCcD4d96NTp5c3FxaQ+8QRFy1dYXcdv2FCi/vc/tHrr3UXKyyr4+/N9JO7KsrpO865hDJ3UFjcnjl/Iy0hn8ZsvkZOabHWdvjdNpMfYca7xmRPiAkkCLoRwSeuPZHHv1/9arfHtptXw5riOXNu15hJvDYKiwMb34K8ZWJ3d0jccbv0RIpw746MtlFWU8dyG5/jj+B9W1+kc1pn3hrxHgD7AgZFVZ8zIIPne+6xOsAMQeMMNRDz/HJoaZnwszCnjt7m7yE5Rn7gGoH3/aPrd2NKpV3FS9u/hl7deszq1vEarZfhdD9B+0DAHRyZE/SMJuBDC5Xyz+QTP/bIXk1k9GfVy1/HBrV0Z2KrmmQUbhIryypktd3xlfZ3g5jDhJwiKdVhY9pJVmsVD/zzErqxdVtcZ0HgAMwfMxMvNeaX3SnfvJuW+qVRkZlpdJ/S++wh94P4azwRnHM/n9w92U1qgPlMrQI+r4rhsZKxTzyjvWbWcvz9+D7PJyhdeDz2jH36C5t2cW4FGiPpCEnAhhMsoM5p4/pe9LNhm/fJ3ZIAnn068jHZRzjszajP5KfDD7ZCy1fo6TfvC+K/AO9hhYdnL9pPbmb56Opml1pPaW9vcyqOXPYqb1jl/3hRFIe+HHzj58isoRqP6Su7uRL70EoHXXF3jfvauTWPtwkOYK9S/SGrdNAy+tTWtetU8S6Y9VRiNrPryU3b+9ZvVdXyCgrn6sRlENI93YGRC1G+SgAshXEJSdgn3fvMve9PUL38DdIoJ5JMJ3Wjk7wKTfRxbBYsmQ4n1waV0mQCjZoFbw66vrCgKX+37iln/zsKkqFcQ0Wl0PN3zaW5odYODo/uPuayMjBdfIn/xYqvr6AIDafzeu3hfdpnVdYzlJlZ/e5CDm9Qn6QHw8nNnxN0diGwReDEhX5SCrFMsmf0GGUcOWV2nUWxzrn58Bn4hNVd2EeJSIwm4EKLB++fASR7+PsFqf2+A0R0j+d/1nRr+BDtmc+W08itfBUW9BjRoYPjL0Pt+aOAD3YqNxTy/4XmWJS6zuo6fhx+zBs6iV2QvB0ZWXXlSEikPPoThwAGr63i0aE7MBx/UOLtl3qkS/vxoD9mp1vt7B0f5MOq+jk6d3TJx1w5+e2em1f7eAPE9LmfE1Edw93SBL7xC2Jgk4EKIBstkVpiz/BDv/GN9ch2Ah4fG89CQ+IZfdaE0DxbfA4esDz7E3QfGfQatRjgsLHs5mneUaaumcTz/uNV1mvg14b0h7xEXEOfAyKor/GclaU88gbmw0Oo6Pn37Ej17Fjo/P6vrHEvIZMX8fZSXqZ/lB2jSLoQrprTDw0llBhWzmc0//8D6hV9bndkSoMfV19N3/AQpMyiEFZKACyEapNS8Uh5ZkMDm4zlW1/HVuzFzXEdGdHBeH1mbSVwPi++GfOv92wluXtnfO7yd4+KyA0VRWHR4ETO3zqS0otTqen2j+/JGvzecVunEXFbGqbdmkftVDQNggeA7JtNo2jQ0ViacqSg3seGno+xeZX2iKICuVzSh55hmaJ00WVRhThZ/zn2bpN0JVtdx0+sZftcDtOk70GFxCdEQSQIuhGhwfklI5dmf91BYQ5eTluG+fHBrN5qH+TowMjuoKIdVr8O62VgtMQjQejRcPRc8G/bg0pyyHJ7f8DyrkldZXUeDhvs638ddHe9Cq3FOMlp28CBp06djOGz96ovWx4fIN17Hf5j1snuZyYX8/fk+ctOt16r38NQx5Pa2NOscdlExX4xDm9fz98fvUVZk/Sx/UGQ0Yx59mtCYpg6MTIiGSRJwIUSDkV9q5Llf9vBLQlqN643tHMXr13bA26OB/xeXdRh+nFLDlPKARgtDX4DLH2zw/b3XpqxlxvoZZJdZH1gaoA/g//r9H32i+zgwsv8oZjM5X3xJ5qxZ1qucAPr4eKLfmYM+Tr1rjGJWSFiezKZfjmI2Wf9iFRLty5V3tyewkfdFx34hyktL+Gfex+xdvbzG9eJ7Xs4V9zyM3ts5cQrR0DTwv05CiEvF5mPZPLJwJ6l51rskuOs0zBjdlgm9mjbs/t6KAts+h2XPQA1dMPBpBOM+b/AzW5ZVlDHr31l8d+C7GtdrH9Ketwa+RZRvlIMiq8548iRpTz5JycZNNa7nP+YqIl94Aa2VZLQwp4wVX+wj9WBejftp1SuCATe3wt3DOQOH0w7t5/f33iL/pPVqLBqtlv63TKLbqKsb9mdOCAeTBFwIUa+VlFfw1l+H+Hz98ZrGfNE4yIt3bupC1yZBjgvOHvKSYek0OPJ3zevF9oNrPwH/ht2/fcepHTy3/jkSCxJrXO/GVjfyWPfH8NA5vqSioijk//wLJ994A3N+vtX1NHo94U89SeD48arJqKIoHNiYzvpFRzCUWO8+5eaupe8N8bTtG+WUpNZYbmDjou/YtuQnFLO1SjvgGxLKqAem07hNewdGJ4RrkARcCFFvbTiSxZM/7SYpp6TG9a7tGs2LY9rh5+nuoMjswGyGbZ/B8heg3HoJOrTuMGQG9H4AGnCFiRJjCXO2z+G7A9+h1NC3PcQzhJf6vET/xv0dGN1/ylNSyXj+eYrXr69xPX3bNkTPnIm+eXPV9oKsUlZ+fYCUA7k17iesiR/DJrclKMLngmO+GCn79/DXR++Sm55a43qtLu/P0Dvuw9O3gY+xEMJJJAEXQtQ7+aVGXv99P99vraHiB+Dv6cZr13ZgdEfndEmwmawj8OsDkLSh5vVCW8F1n0BkJ8fEZScbUjfw4sYXSSuuuS//wMYDeeHyFwjxCnFQZP9RTCZyv/ueU7NmoZTU8AVQoyFkyh2EPfAAGg/Ls/Nms8LuVSls+vkoFeXWzyajga5XNKXH6Dh0bo7/YlVeWsKab7+ocUZLAA8vb4bccS9t+g6ULidCXARJwIUQ9YaiKCzekcprvx8gq8hQ47q9m4Xw1g2diAp03mQkF628pHJSnfVzwFRe87rd74RhL4FHwx3kdrL4JDO3zaxxUh0AT50nj3V/jOtbXu+UJK90924yXnyJsj17alzPLSKCqP/7P3x69lBtP3m8gNXfHSQzyXrlEADfYD3DJrUlKt7x3acUReHghjWs/uozinKtl/QEiG7dlhFTHyWgUbiDohPCdUkCLoSoFw5kFDDj5z1sTaz5Er2HTsujw1tyZ79maLUN9AycosDB3+GPJyE/qeZ1fRrB2Peh5XDHxGYHRrORb/Z9w9ydc2us6w3QLqQdr/d73SkT61Tk5pL59hzyFi6scZIZAP+RI4l4/jl0AZZlH8uKjGz8+Sj71qfVWDkSIL57OANuaone2/Hdp7JTkvln3gck7dlV43panRu9x91Ej6vHodU28JlkhagnJAEXQjhVfqmRd1YcZv6GREzmmrOVbk2D+L/rOtKiUQPud5p9FP58Cg7XfBYYgM63whWvgFfDHVi6OX0zr29+naP5R2tcT6/TM7XzVCa0nYCb1rF/mhSTibyffiLzrVmY8vJqXNctLIyI55/Db+hQizazWWH/+jQ2/nwUQ7H1QZYAPgEeDLi5FXGdHF/b21BSwubFC/j3t58xm6zPugkQ0Tye4fc8RFiTWMcEJ8QlQhJwIYRTlFeY+WbzCeasOExeifV6ygDeHjqeuLI1E3o1bbhnvUtyYPWbsPUTMNecnBHYBK6aA80HOyY2OziWd4xZ/85idcrq867bLbwbL17+Ik39HT+BS9G69Zx6800Mhw6dd93A68fR6LHH0Pn7W7Sd2JvNhh+PkJNmfUKdM9r2i+Lya1ugd/B08maTiV0rlrHhh28oLbBezQXAzUNPnxtuoeuosXLWWwg7kARcCOFQiqKwbO9J/u/PAxzPOn+yMqBlGK9c3Z6Y4Aba97nCAJs/gjX/A0PNSQ8aLfS4GwY/C/qGeZY/uzSbuQlz+fHwj5iUms+u+rn78XC3hxnXcpzDZ7QsO3SIU2/OpHjduvOu6960CZEvvIBP794WbVkpRWz46QjJ+2ruPw0Q0MiLgbe0pnErx17RUBSFY9u3subrz8lJq3m6e4Am7Tsx9M6pBEU08MHNQtRjkoALIRxmy/EcZi47cN5+3gDRgV48d1VbhrcNb5jVFswm2P0DrHwV8s7TzxsgpieMegsiOtg/NjsoKi/i6/1fM3/vfIqN5/9iNab5GB7p9ojDK5wYU1PJ/OAD8n9aXFn6sQYavZ7Qe+4mePJktHp9tbaCrFK2/p7IgY3p5+3n7eaupdvIWLoMbYLO3bFfNNIO7Wfd91+RvLfmft4AvkHBDJx4Jy179W2YnzkhGhBJwIUQdvfviVxm/32IdUeyzruuu07DXf2bMXVQi4Y5lbzZBHsXw6o3IPvw+df3Dq2sbtLppgZZ17vEWMK3B75l/t755J/vDD/QMqglz/R8hq7hXR0Q3X+MGRlkffQReYt+hBqmkD/Dd/Bgwp9+Go/G0dWWF+aU8e8fiexfn475PGMWAOI6hdL3hnj8QxxbrSfjyCE2/PANxxP+Pe+6Wp2OriPH0vu6G/HwaqBXmoRoYBrgXzchREORkJzH7L8PsfpQZq3WH9QqjGdHt6V5WAPsfmE2w/5fKhPvzAPnX1/rBpfdAYOeapCDLEsrSllwYAGf7/mcXMP5r2gE6AO4t9O9jG813qGDLI0nT5H9ySfkLViAUovE2yMujkaPP4bfoEHVlhflGtj+ZyJ716dhrjh/4h0U4c3l17UgtkPoBcd+IU4eP8qGH77h2L9barV+kw6dGXTbFEJlkKUQDiUJuBDCphRFYeOxbD5afazWiXebSH+eHdWGPi0cm6zYREU57PkRNrwDp/bVbpvWo2HoixDawr6x2UG+IZ+FBxfy9f6vySk7f79nd607N7e+mTs73kmA3rJkn72UJyWRM38+eT/+hGKouaY8gC4oiND7pxJ0ww1o3P8rCZh3qoSdy5PZvyEdU0XNXVYAvPzc6TE6jrZ9o9DqHHNFQ1EUUg/uY+uvP9Y68Q5p3IQBE+4gtlNX6W4ihBNIAi6EsAmTWeHPPRl8tOYou1LO3xUBIMLfk+lXtOKaLtHoGlp1E0Mh/PsFbJoLBTVP210lqgsMfxVi+9g3NjtIL0rny31f8uPhH89by/uMK2Ov5MGuDxLjF2Pn6P5Tuns32Z99TuFff523jzeAxsOD4Im3EXLXXej8/KqWnzxewI6/T3B0R+Z5+3gD6Ny1dBoSQ7crmuLhoOomZrOJo9s2s/XXH0k/fLBW23gHBNJn/K20HzgMrU6qmwjhLJKACyEuSmm5iUX/JvPJ2uMk5dQwZfdZAr3dubNfMyb3icPLo4ElAYUZlVVNtn52/qomZ4TEw8Anod21Da6f98Gcg8zfO58/jv9x3qomZ/SK7MX9Xe6nU1gnO0dXSTGbKV63juzPPqdk8+babaTTEXD1WMLuuw/36OjT+1E4sTebHX8lkXY4r1a70Wg1tOkdwWWj4vAL9rzAV1A3FeXl7FvzD9uWLiY3vXZf/vTePnQbfTXdRl2Nh2cDnj1WCBchCbgQ4oIczSzim01JLPo3mYKy89S1Ps3f0407+zXj9j6x+Hk6fua/C6YocGJ9ZdK9/9fz1/E+I7gZDHgSOoyDBlRLudxUzvITy1lwcAHbT22v9XbdI7oztfNUuoV3s2N0/zHl55O3eDF5331P+YkTtdtIqyXgqqsIve9ePJpW1h0vKzZyYGM6e1ankp9Zu7P7Gg206hXBZSNjCQhzzMDFvIx0di7/gz2rllNWWFCrbTy8vOg68mq6jRqLp08DHFshhIuSBFwIUWtGk5nl+07y9eYTrD+SXevt/PRuTO4bx+S+cQR4NaDEuywfdn4P2z6v3cDKMwKbwoAnoON40DWc/2ZTi1JZdGgRPx3+qVb9u8/o2qgrUztPpUdkDztG95/S3bvJ/fY7Cn7/vVb9uwHQaPAfPZrQe+9F3ywORVHIOJ7P3tWpHP73FCbj+burnN4N8T3C6T4yjsBw+yfeZpOJY9u3svPv30ncWfsvQ+56T7qOHEO30dfg5et3/g2EEA7VcP4yCCGcJjmnhEX/pvD91iROFtQy4QFCfT24/fJYbu3VlEBvDztGaEOKAmnbK/t37/4BjLXrVgNAWBvo8yB0uB50DeOLhtFsZEPqBn449ANrUtag1KbD82l9ovowqf0kekT0sPtAPlNREYV//knud99TtndvrbfTuLvjP3YMIZMno2/WDENpBfvWpbFnTSqZSYW13o/WTUPrnhF0HtaEoAifC3kJdVKQlcm+1SvYueJPirLPX77zDE8/f7pcMYrOV4zG299xg16FEHUjCbgQQlV+qZHfd6ezeHsqWxJrfzYUIC7Uhyn94riua2M83RtI14vcE7BrIexaULv63Wdr2hf6PATxwypPkdZziqKwJ2sPS48t5c/EP+t0tlun0TEibgS3t7udVsGt7BglKEYjRevXU/DrrxSu+Kf2Z7sBrZ8fQTeOJ+jWCWhDQ0nem8PBT/ZwfFdWrc92A3h4udF+QDQdBzXGJ0B//g0ugqGkhEOb17F/7SqS9+2u/DJYSwGNwuk2+hraDxyKu94xfdGFEBdOEnAhRJXyCjOrDp5i8Y5UVuw/Rbmp9okKQKeYQO4d0IxhbSMaRlWT0lzY+3Nl4p20oY4ba6DtGLj8IWjsmD7PFyulMIXfjv3G0mNLSSxIrNO2Xm5eXBd/HRPaTiDK135TlCuKQtmePeT/8isFv/+OKaduX/7cwsMJnjiRgOvHkZ2lsHFlBoe3HaSs6Pw1wM/mG6Sn05AY2vaNwsPTfn8qTRUVJO7czr61Kzm2bTMVxvI6bR/erAWXXXUtLXv2kaomQjQgkoALcYkrrzCz+Xg2f+7J4Lfd6eSV1C1R8XDTMrpjJLf2akqXmMD6X1O4LB8O/w37foZDy8BUt4QH7xDoeht0ux2CYu0QoG1lFGfwT9I/LEtcVqcBlWfEBcQxvtV4rmp+Ff4e/naIsDLpNhw8SOHyFRT89hvlx4/XeR/ePXoQeNNNlLfqwdG9eRz+317yTtah+9Bp0a2CaN8/mrjOoejsVMfbVFFB6oG9HN6ygYMb1lJaywGVZ+jc3Ijv2YdOw0cS3apt/f/MCSEsSAIuxCWoyFDB6oOZ/LUvg38OnKKwllVMztY0xJtbezZlXLfGBPnU8/7dBWlw8Hc48BscXwvmun3JAKBJ78qZK9uOATf7dkW4GIqicDjvMCuTVvJP8j/sy67l5EBncdO4MaTpEMa3Gs9l4ZfZJcFTKioo2b6dohUrKFy+AmNqLWupn0Xr54ff2Ksx9BlLUqY7q9dmUfhLQp334+HlRuveEbTvH223/t3lZaUk7tzO0a2bOLZ9K2XFRXXeh39YOJ2GjaD9oGHSv1uIBk4ScCEuEacKy1i+7xR/7ctgw5HsOncvAdBpNQxu3YgJvZrSt0Uo2vrazURRIPMgHFhamXin/nth+/Hwg443QPc7ILydbWO0IZPZREJmAv8k/cM/Sf+QUpRyQfuJ8IlgXPw4ro2/ljDvMBtHCebSUorXr6dw+QqKVq3ClJd3Qftxa9uR0iE3c1Ifx4n9eRgWnLyg/YQ18aP9gGjiLwvHXW/77hsl+Xkc/XcLR7Zu5MTuBEzGun/x02i0xHXpRqfhI4nt1BVtAypnKYSwThJwIVxUhcnMzpQ81hzKYs3hTBKS8+oypquajo0DuKZLNKM7RhHmV0/P/hqKKmt1H/2nsotJztEL249GBy2GVJYQbDUSPBxT47muskqz2Ji2kY1pG1mftr5OAynP5uPuw7Cmw7iq2VVcFnEZWo3tul0oikJ5YiLF6zdQvG4dxZs2oZSV1X0/QHmTdhT3vIps33jSUsox7TYDta8OcoZvkJ6WPSJo2TOckCjb1sU2m02cPHqExF3bSUzYTtrhA3UaSHm2RrHNadNvIK37DMA3KNimcQohnE8ScCFchKIoHMsqZuPRbNYdzmL90awL6lpyRnSgF9d0iebqLtG0aFQPJ/AwVUD6Tji+ujLpTtp0YV1LzojqAh1vhPbXga/tz/5erBJjCQmnEtiUsYmNaRs5kFOHuuTn0Gl09Inuw1XNrmJgzEA83WxXNaMiO5uSrVsrk+716zGmpV3Qfsrd/cgPb09hu0FkujWmuFiBTCCz7gm8u6eOFl0b0bJnBNHxgWhsdOVGURTyTqaTvHcXJ3buIGnPzgvqWnKGb0gobfoOpG2/QYTGNLVJjEKI+kkScCEaqDMJ96Zj2Ww6lsOmY9lkFta+TJuaIG93rmgXwTVdoukeG1y/upiYjJUJd+JaSFxXmXCXX3iyA1TOVNnu2sqz3WEtbROnjZxJuLee3MrWjK3szdpLhXLhX6gAOoZ1ZGTcSK6MvZIQrxCbxHkm4S7ZsoXiLVsoP3JhVx7K3f3IDYwnL7gV+ZEdKeL0gE8DYKj7WWSdm5aYNkG07BlBXMdQ3DwuvuuGoijkZaSRvG83yXt3k7JvN0W5F3bl4QxPH1+ad+9F236DiWnbHo3WPgM/hRD1iyTgQjQQJeUV7ErJZ3tSLttP5LEjKZfs4jpW8FARE+zFFW0jGNY2nG5Ng3CzU+WHOivOgpStkLyl8j7137pNimNNVFdoPQpaj4awVvWibreiKKQUpbAzcyc7T+1kZ+ZODuUewqSYLmq/7lp3ekb2ZHCTwQxsPPCi+3UrJhOGw4cpTUigdMcOShISMJ5IqvN+zBotxT5R5PvHUeAfR35gc0o9Qy8qNgC9txtNO4TQrFMYMW2DL7p8oLHcwMmjh0k7dID0wwdIO3SAkvy8i47TP6wRLS7rRYvuvYhu3U7KBwpxCZIEXIh6yGgyc+hkIXtTC9idms+O5Fz2pxdiMl9gJ+5ztI/2Z3jbCIa3C6dVuJ/zy5gZiiBjN6QnQFoCpGyBnGO22bfWDeL6VybdrUaCv/1qWNdWdmk2+3P2sy97H3uy9rAzc+cF9+E+l5+7H30b92Vwk8H0jeqLr8eFdR9SFAVjaiple/ZStncvpbt3U7ZrF+aSun0JUoAyzxAK/ZpQ6BtDvn8shf6xmHS2GUvgG6QnrnMYzTqFEhkfeMGlA80mE9kpSZw8fpSTx46QfvggmSeOYTZd3JegM8Jim9Hisp606N6bsKZxzv/MCSGcShJwIZyszGji8Mki9qTlsye18rY/o5DyirpXKbHG011Lz7gQBrUKY1i7CKIDvWy27zoryYFT+/9LttN3QtYhqMMU6OflHQLNBkGrEdBiKHgF2m7fdaAoCidLTnIo9xD7svdV3U6WXFjVDmua+DXh8qjLGdRkEN3Du+Ouc69bnCYT5UlJGA4cqEy29+6lbN9+zPn5ddqPWaOl1DOUIt/GlQm3XwyFvjFUuNuwtJ8GGjX1p0nbYJp1DiM0xrfOyayx3EBOagqnjh/l5PGjnDp2hMwTx+s8CU5N3Nw9iG7TjrjOl9Giey8CGoXbbN9CiIZPEnAhHMRoMnM8q5iDGYUcOllYdX8ip+SCq5PUpE2kP/1bhtI/PoxuTYMcPyW8oaiyFGDm/sqE+9S+yvvCdNs/l9YdmvSC5oMrbxEdwcF9aXPLcjmSd4TDuYc5knek8pZ7hEJjoc2fy8/dj56RPekd1ZveUb2J8Yup1XaKolCRno7h8OGqW9nhw5QfPVanad4VoEwfTLFPJMU+URT5RFHsE0mJTwRmbd2S/9rwDdIT0zaYmDbBxLQOxtO3ds9hqqggLyOdrOQTZCWfIPv0fV5GOopiuy+4Z4Q2iaVpxy7EduxCdJt2uHvU04pBQginkwRcCBtSFIXMQgPHs4pJzC7mWFYxiVnFHD99M5rskGmf1ircj17NgunVLIQeccGE+Drgj7/ZBHlJlSX/sk/fco5C1mHIO2G/59W6Q+PLILYvNO0DMT3Awz4TqJzNYDKQXJDMicITnCg4QVJBEicKTnA8/zjZZdl2e15fd1+6hnele3h3ukd0p1VwK9y01v/7NhUWUp54gvITJyg/kfjfz0ePYi4urvXzVug8KfFuRIlXGKVe4ZR4h1Hq1Yhi73BMbva7iuIT4EF0qyCiWwYR1TKQgDAvq2e5FUWhJD+P3PRUcjPSyEtPIzc9rfJxeiqmiosbuFqTkMZNaNy2AzFtO9C4TTt8AoPs9lxCCNciCbgQdWSoMJGeV0ZqXimpeaUkZZdwPLsy0U7MKqa43DZ9RmvirtPQPjqArk2CuKxpkH0TbkMh5CVDfgrkJ0HO8f8S7ZzjF1f6r7b0/pUJd+Me0LR35b0d6nMrikKeIY+04jTSi9JJK0ojqTCpKtlOL05HsWVXGSsaeTWiU6NOdArrxGURl9E6qDW6syZgUUwmjCdPYkxNw5iWhjE1tTLBTkyk/MQJTNm1+zKgoMGgD8CgD6LUM5gyz9DKZPt00m2009Tz5wqK8Ca8WQCRzQJUE25ThZHCrCwKsk5RkJVJ/qkMctNOJ9wZaZSXlto9Rq1OR6O45kTFtyaqVVtJuIUQF0UScCHOoigKBWUVpOZWJtdpp5PsM49T80ovutTfhYgM8KRzTCBdmwTRtWkg7aICbNOlxGyG4sz/kuuqRDv59M/JUJZ38c9TJxoIja9MsmO6V96HtbZJlxKj2UhmSSZpRWmkF6eTXlyZZGcUZ5BWXHlfWmH/ZO5sHloPWgW3olNYp6pbI10gFRkZlcn1vn3kpK/4L9lOT8eYkQG1OLNr0rpTpg/C4BlMmWcwZfpgyjyDqn426INQHDyzooeXG42a+hHRLICIZgE0ivVDqzVSkHmKgqwUju/YTkHmKQqzMqsS7uK83Aue0OZC+QYFE9GiFVEtWxPZsjXhzVpIlxIhhM1IAi4uCaXlJrKKDJwqNJBZaCCrqPI+s+icx4UGDDYc/HghogO9aB/tT4foANqfvoXW5ey2ooChAIpOQdHJ0/dn/Vx8zvKLLHV3UTRaCG0FUZ0hshNEdoaIDqCvfeUOs2Imz5BHVmkW2aXZ1e/LKu/PLMsz5DnkDLYanUkhrMyDjm5NaaNE0MwUTKTBi4BiBfP2HEyZe6jIWkVBdjZ5hdb7jZs1Wozufhh8/Sn3OPfmV/WzwcPfrt1EzkdRjHjoywkIU/AJqEDvbcTNvYyK8iJK8nM5uiWX3X/nUZyXR0W547/Uns0vJIzwZs1pFNec8GYtCI9rIWe3hRB2JQm4aFDMZoVCQwUFpUbya7jllZSTVVhelWAXGezXD/RCeXvoaBnuR6twP1pG+NEy3Jd2UQEE+3j8t5KpAsryITsFSvOgLPf0fV71+5Kc6gl2Rd1nC7Q771AIbwuN2kKjNpX34e2rdSUxmAwUGAooyDtJYXkhBeUF5BvyKSgvqLwZKu9zynLILs2uvJVlX3S97DpRFPRG8C0D77LKe58yBZ9zfm5U4UUjgyeBReBdYEBXUAyUAgeAAyhAhU7PSTcvKty8Mbp5U+Huj9EngooA78pl7pX35R5+lLtXJtdGDz/HvVYqrwqhGFAUAyhlZ92XVS3XKAbc9OVotWUo5mKMhkIqDKUYgELbFny5KG56PaGNmxAS05TQ07dGcc3x9g9wdmhCiEuMJODCIRRFwWhSKDWaKDOaKC03UVZReV9sMKkm0WpJdkGZ0dFXoi+Qgh4jnpQT5mmiRZCOZgEamgfqaO5vIsarnCBtCdqy/MokOisPUvJgXV7l47L8ysS63PYVNOzBDJRpNJRpNBh8wygNbEJZYGNKA5tQ6NeIAu8gCjTKf4l0ySEKDm2jYM9/SXVBeQEGk33PhGrMlcmzvgI8jFT+bAS98ewEujKJ/u9ny8daRYtZ645Z64FJ54FJ64FZ545Jp/8vmXbzptzdizQvbyr8vDE29abidEJd2e6FUsNASltQFBNQAYoRRakAjKBUoCjlp5Pnsspk2nxucn12kl1ObUpEVjj3JHY1Hl7eBEVGERQZTWhM06qEOyCskcw0KYSoF1wyATcYDDz33HN89dVX5Obm0rFjR1555RWGDRt23m1TU1OZNm0af/31F2azmUGDBjF79myaNWvmgMido8JkPp0YmyuT49MJcunpn8vO+rm03HTWOpXbGYxW2k+vc+axrSaRuTgK7pjwwoAn5XhpDHhRXvlYU3nvRXlVm+fpNq/Tbda28daU46sz4q0xolcMuJvL0JydtOSevjn81UK5Bso0WkpPJ8hl2sr7Uo2GMq22KnEurWr7b1n1dc9q07lRqnOr3B4Fg8UZ6JOVpz4L/61VnBpFwcMIfhX/JcUeVUmyYpEwe1ScXm48vfz0du5GDXqTO24md9zMHrifvtcpHujM7mg0Z5LlynuT7r8kuvq9e+V6nh4Yvd3J1npw6qw25SJL7VWWwKsAc3G1xBjFiHI6YUapOP2z2nL19aEC5ayfK78auSY3Dz1BEZEEnk60gyKiKn+OiMI7IFAmuhFC1GsumYDffvvtLFq0iIcffpj4+Hjmz5/PyJEjWblyJX379rW6XVFREYMGDSI/P5+nn34ad3d3Zs+ezYABA0hISCAkJMRuMX9y3/0Eetu+qoO9uAF+p2+XAgNgwI3KV95wjtOF0gBep28OcaHfzTSVlTxKdRpK3TTgVduky3j6Vou4TKdvF1XsxXQ60T6dUOPEfvcNhN7bB7/QMPxDw/ALbYR/aBj+YafvQxvhExgkZ7OFEA2WyyXgW7Zs4fvvv2fmzJlMnz4dgNtuu4327dvz+OOPs2HDBqvbzp07l8OHD7Nlyxa6d+8OwIgRI2jfvj1vvfUWr732mt3iNiuFmJX6109ZiHpNsfKzqLc0Wi3eAYH4BAThExiId2AQPgGB+IaE4n9Woq33tn9ddyGEcBaXS8AXLVqETqfjrrvuqlrm6enJHXfcwdNPP01ycjIxMeqzxi1atIju3btXJd8ArVu3ZsiQISxcuLDOCXhKSkqN7enpdpgRUAghHEyr06H38cUnILAyuQ4MqkysT9/OLPMJDMLL10/OXAshLnkul4Dv2LGDli1b4u9ffQKJHj16AJCQkKCagJvNZnbt2sXkyZMt2nr06MFff/1FYWEhfn6173RhLdEXQoj6Rufmht7HF08fX/S+lfeePr6nl/lYb/P1xV3vKX2uhRCiDlwuAU9PTycyMtJi+ZllaWlpqtvl5ORgMBjOu22rVq1sGK0QQtSNm7sHbno9bno97h5n3Xt4VF+m1+Pmcc59Vbsnnj4+1RJqNw+9JNFCCOEgLpeAl5aWotdbTlri6elZ1W5tO+CCtrUmOTm5xvb09PSqM/NummDcNE7o8yh/b3G1N0FT9U+1H855lRr1ZRq1de1Eo/nvOc/+GU1lInjmhWj+W0eD5XKNVoNGq0GrqbzXnLVMo+W/5ee0ac9eT4Ndk0+NVlvLxPjsBNrTol3n4Y7WwTNXCiGEsD2XS8C9vLwwGCwL0paVlVW1W9sOuKBtrWncuHGt171j7uw6rS+EEEIIIRomlxsJExkZqTq48cyyqKgo1e2Cg4PR6/UXtK0QQgghhBC15XIJeOfOnTl06BAFBQXVlm/evLmqXY1Wq6VDhw5s27bNom3z5s00a9asTgMwhRBCCCGEUONyCfi4ceMwmUx8/PHHVcsMBgPz5s2jZ8+eVZVJkpKSOHDggMW2W7durZaEHzx4kH/++Yfrr7/eMS9ACCGEEEK4NI2iKC43fcUNN9zA4sWLmTZtGi1atOCLL75gy5YtrFixgv79+wMwcOBAVq9ezdkvv7CwkC5dulBYWMj06dNxd3dn1qxZmEwmEhISCAsLs2mcKSkpVV8IkpOTpQ+4EEIIIUQ9Y498zeUGYQJ8+eWXzJgxg6+++orc3Fw6duzI0qVLq5Jva/z8/Fi1ahXTpk3jlVdewWw2M3DgQGbPnm3z5FsIIYQQQlyaXPIMeEMhZ8CFEEIIIeo3e+RrLtcHXAghhBBCiPpMEnAhhBBCCCEcSBJwIYQQQgghHEgScCGEEEIIIRxIEnAhhBBCCCEcSBJwIYQQQgghHEgScCGEEEIIIRxIEnAhhBBCCCEcSBJwIYQQQgghHEgScCGEEEIIIRzIzdkBXMoqKiqqfk5PT3diJEIIIYQQQs3ZOdrZudvFkATciTIzM6t+7tGjhxMjEUIIIYQQ55OZmUlsbOxF70e6oAghhBBCCOFAGkVRFGcHcakqKytj9+7dAISFheHmdmlekEhPT6+6ArBlyxYiIyOdHJGwFTm2rk2Or+uSY+va5PjWTUVFRVWvhQ4dOuDp6XnR+7w0M756wtPTk+7duzs7jHolMjKSxo0bOzsMYQdybF2bHF/XJcfWtcnxrR1bdDs5m3RBEUIIIYQQwoEkARdCCCGEEMKBJAEXQgghhBDCgSQBF0IIIYQQwoEkARdCCCGEEMKBJAEXQgghhBDCgSQBF0IIIYQQwoFkIh4hhBBCCCEcSM6ACyGEEEII4UCSgAshhBBCCOFAkoALIYQQQgjhQJKACyGEEEII4UCSgAshhBBCCOFAkoALIYQQQgjhQJKACyGEEEII4UCSgAshhBBCCOFAkoALIYQQQgjhQJKAiwbvzTffJCYmBj8/P7p06UJhYaGzQxI2tHHjRrRaLa+88oqzQxE2YjAYmDx5Mk2aNMHf359evXqxceNGZ4clLkBmZiajRo3Cx8eHVq1asWLFCmeHJGxEPqf25ebsAIS4GO+//z5//vkn69evJyYmht27d+Ph4eHssISNmM1mpk2bRvfu3Z0dirChiooKYmNjWbduHY0bN2bhwoVcddVVJCYm4uvr6+zwRB1MnTqViIgIMjMzWb58OTfccAOHDx8mODjY2aGJiySfU/vSKIqiODsIIS6EyWQiJiaGtWvX0rx5c2eHI+zgww8/ZP/+/eTn59OiRQueffZZZ4ck7CQqKoolS5bQrVs3Z4ciaqmoqIjg4GCOHTtG48aNARg4cCATJ05k0qRJTo5O2IN8Tm1HuqCIi1ZUVMTzzz/PlVdeSXBwMBqNhvnz56uuazAYeOKJJ4iKisLLy4uePXvy999/X9DzpqSkUFJSwqJFiwgPD6dVq1Z88sknF/FKxLmcdWwBsrOzefvtt3nxxRcveB+iZs48vmc7fPgwOTk5tGjRwib7E+psfbwPHz6Mr69vVfIN0KFDB/bu3WvPlyGssPfnWT6ntiUJuLhoWVlZvPTSS+zfv59OnTrVuO7tt9/OrFmzuOWWW5gzZw46nY6RI0eybt26Oj9vamoq+fn5HDp0iMTERH744Qeefvpp1q5de6EvRZzDWccW4JlnnuHhhx8mMDDwgrYX5+fM43tGaWkpt956K0899RQBAQEXtS9RM1sf76KiIvz9/att5+/vT1FRkV3iFzWz5+dZPqd2oAhxkcrKypT09HRFURRl69atCqDMmzfPYr3NmzcrgDJz5syqZaWlpUrz5s2V3r17V1u3T58+CqB6e+aZZxRFUZTt27crgJKYmFi13f333688+eSTdniVlyZnHtuuXbsqFRUViqIoysSJE5WXX37ZTq/y0uWs43tGeXm5MmrUKOXmm29WzGaz7V+gqMbWx3v79u1KUFBQtW3vv/9+5dFHH7XPCxA1ssfnWVHkc2ovMghTXDS9Xk9ERMR511u0aBE6nY677rqrapmnpyd33HEHTz/9NMnJycTExADU6qxay5Yt8fDwQKPRVC07+2dx8Zx1bFevXs3BgweJjo4GID8/Hzc3N44ePcq8efMu8NWIcznr+ELlANsJEyag0Wj44osv5LPrALY+3vHx8RQVFZGamlr1Wd2zZw+33Xab3V6DsM4en2f5nNqPdEERDrNjxw5atmxpccmyR48eACQkJNRpfz4+PowbN45XX30Vg8HA/v37WbBgASNHjrRVyKKWbH1s77rrLo4cOUJCQgIJCQmMGTOGqVOnMnv2bFuFLOrA1scX4O677yY9PZ0ffvgBNzc5F1Sf1PZ4+/r6MnbsWJ5//nlKS0tZunQpu3btYuzYsY4OWdRBXT7P8jm1H3k3hcOkp6cTGRlpsfzMsrS0tDrv8/333+eOO+4gNDSU0NBQXn75Zfr163fRsYq6sfWx9fb2xtvbu+qxl5cXvr6+0h/cSWx9fE+cOMGnn36Kp6cnoaGhVcv/+OMP+fzWA3U53nPnzmXixImEhITQuHFjFixYICUI67naHl/5nNqXJODCYUpLS9Hr9RbLPT09q9rrKjAwkB9//PGiYxMXxx7H9mzWRvILx7D18W3atCmKVMCtt+pyvMPCwvj9998dFpu4eLU9vvI5tS/pgiIcxsvLC4PBYLG8rKysql00THJsXZsc30uLHG/XJse3fpAEXDhMZGQk6enpFsvPLIuKinJ0SMJG5Ni6Njm+lxY53q5Njm/9IAm4cJjOnTtz6NAhCgoKqi3fvHlzVbtomOTYujY5vpcWOd6uTY5v/SAJuHCYcePGYTKZ+Pjjj6uWGQwG5s2bR8+ePavKHomGR46ta5Pje2mR4+3a5PjWDzIIU9jEe++9R15eXtXo6SVLlpCSkgLAAw88QEBAAD179uT666/nqaee4tSpU7Ro0YIvvviCxMREPvvsM2eGL2ogx9a1yfG9tMjxdm1yfBsQZ88EJFxD06ZNrc5+d/z48ar1SktLlenTpysRERGKXq9Xunfvrvz555/OC1yclxxb1ybH99Iix9u1yfFtODSKIjVmhBBCCCGEcBTpAy6EEEIIIYQDSQIuhBBCCCGEA0kCLoQQQgghhANJAi6EEEIIIYQDSQIuhBBCCCGEA0kCLoQQQgghhANJAi6EEEIIIYQDSQIuhBBCCCGEA0kCLoQQQgghhANJAi6EEEIIIYQDSQIuhBBCCCGEA0kCLoQQQgghhANJAi6EEEIIIYQDSQIuhBBCCCGEA0kCLoQQQgghhANJAi6EqJOMjAzCwsLQaDRVt6+//lp13TVr1qDT6arW0+v17Nq1S3VdjUZDbGxsreMYM2YMGo2GkSNHApCYmFgtprNvbm5uBAUF0bVrVx5++GEOHjxY59d9sebPn281vvnz59dpX2dve+57du7zvPDCCzZ7Da5m1apV1d6r22+/3dkhVXGF4/j222/b7HdeCFcjCbgQok4iIiL48MMPqy174IEHSElJqbassLCQiRMnYjabq5a98sordOzYEYDU1NTzPpe1dQoLC/nrr78AGDdu3Hn3YzKZyMvLY8eOHcyZM4cOHTqwaNGi824nhBBC2IObswMQQjQ81113HRMmTOCrr74CIC8vj8mTJ7Ns2TI0Gg0ADz/8MImJiVXb9OvXj0cffRSAlJQUWrVqxZAhQ3j11Vfp0KFDtf2vW7eOJ598ksTERA4fPoyXl1e19qVLl2IwGHBzc+Pqq6+uMU6AU6dOsWnTJoxGIwBGo5E777yTkSNH4u3tfVHvxYW67LLLaNq0KUCdzvyfT2xsbNXrBmjbtq3N9u1qwsLCqr1X3bt3d2I0ric+Pr7q/T1x4gTbtm1zckRC1COKEEJcgLy8PCUmJkYBqm7vvvuuoiiK8uuvv1Zb7ufnpxw/frxq2+PHjyvXX3+9otFoFK1Wq9x6660KoAQHBysjR45UAMXd3V258847lezsbIvnvvbaaxVAGTp0aLV9nv2c5/73tn37dsXNza1a+99//22fN0fFvHnzqj33vHnzLnhfZ++nadOmNotR1B/n/r48//zzzg7potjy918IVyBdUIQQFyQgIKCqn+oZTzzxBBs2bODOO++stu6cOXOqneWNjY1l4cKF7N69m+uuu45vvvkGgJycHP766y8mT57MoUOH+PjjjwkODq62r+LiYv7880+gdt1PzujSpYvF2eCsrCzVdfPy8pg5cyYDBgwgNDQUd3d3goOD6du3L7Nnz6a4uLjWz3uhli5dysCBA/Hz88Pf359+/frVqtvM+foODxw4sFp7YmIiX3/9NT179sTHx4ewsDBuvvlmjh07BkB5eTmvvfYarVu3xtPTk8jISCZPnkx6errVGI4ePcr06dPp0qULgYGBeHh4EBERwejRo1m0aBGKotQq7oyMDB566CHi4uLQ6/VEREQwadIkq12Tvv/+e6666ipiYmLw9PREr9cTFRVFt27dmDJlCh9++CEmk6lq/dr2Ad+6dStTpkyhdevW+Pn54eHhQWRkJCNHjmTevHmUl5dbbKO274KCAmbMmFH1XoaGhjJu3DgOHDhg9b08n7Vr1zJx4kTi4+Px9fXF09OTuLg4Jk6cyNatW1W3qaio4OOPP2bYsGFERkai1+vx8vIiJiaGXr16cd9996mO61i2bBk33HADzZo1w9vbu+q4duzYkQkTJjBnzhwKCwsv+LUIcUlx9jcAIUTD9tBDD1U7s3XuWeaxY8da3Xbv3r3K+PHjFY1GU237KVOmKImJiarb/PDDDwqgaLVa5eTJk1XLz3cGXFEUpUOHDtXaV69ebbHO2rVrlYiICIt9nX2Lj49XDh48WKf3qS5nAF977TWrzz19+vQaz4Cf78zpgAEDqrVfffXVqs8TEhKiHDhwQLn88stV25s1a6bk5eVZxP7+++8rHh4eNb5/I0aMUIqLi2uMe+TIkUpISIjq9k2bNlVyc3OrbT916tQan/PMrbCwsGqblStXVmubOHFitX2azWZl2rRp591np06dlBMnTlTb9tx99+vXT4mLi1PdPjAwsNoVotocR6PRqEyaNKnGuDQajTJjxgyL13TVVVed9zWFhIRU227mzJm1en93795t8Tuh9nrkDLi41EkCLoS4KKWlpUqbNm1U/xg3atRIOXXqlMU2iYmJyk033aRotVpFo9Eot9xyiwKVXVBGjBihAIqHh4dy3333KTk5OdW2HT9+vAIoAwYMqLb8fAn41q1bq305iIqKUsrKyqqtc+TIEcXf37/aPtq3b6+MHj1aadeunUUCem4SWZPaJiBr1qyp9oUEUGJiYpQrrrhCiYyMVE1Ga3qe8yXggBIWFqYMHz7cIuH19vauev5hw4ZVPT5ze+2116rte+HChdXadTqdcvnllyujRo1SoqOjq7WNHz++xrjP3Lp06aL069dP0el01Za/+uqrVdumpqZWe898fHyUwYMHK1dddZVy2WWXKY0aNbqgBPzll19WjWfIkCGKn59fteVt27ZVDAaD1X2fubVu3VoZPHiw4unpWW35nXfeWafjeN9991Vr9/PzU4YOHaoMHz5c8fX1rdb2wQcfVG23YcOGam1BQUHK8OHDlVGjRildunRRgoODLRLw8vLyavv08PBQ+vXrp4wZM0bp1auX0rhxY0nAhagjScCFEBdt69atqsnGokWLVNdPSkpSvLy8lBEjRigJCQmKoijVksnVq1crvXv3ViIjoJf4wgAADHhJREFUI6sluaWlpVWJwJn+5meoJeDXXXedct111yn9+vWrlnx7e3sry5Yts4jrTF/0M7fvvvuuWvu5Z6b/97//1fo9qm0CMnr06GrrXXvttUp5ebmiKIpSXFysDB482KYJeMeOHavOJu/du9fiPRw2bFjVF5XFixdXaxs0aFDVfk0mk9KkSZNqid2+ffuq2o1GozJq1Khq22/bts1q3Oe+R+e2n/3c69evr9a2Zs0ai/d1//79ypw5c2pMks9OwHNychQvL69q7d9++21Ve1JSkhIbG1ut/cMPP7S673OPxbntcXFxtT6OBw8eVLRabVVbjx49lPz8/Kr2kydPVhufERISUvW6v/nmm2r7TUpKqva8ZrNZ2b59u/L+++9XLUtNTa22zZdffmnx/iYmJioff/yxkp6ebtGm9nokAReXOqmCIoS4aJs3b7a6/OwqE2fExMRw4MABmjRporpd//792bBhA8nJydWqlCxbtoyioiI0Gg3XXnvteeP68ccfLZZ1796d77//nmbNmlVbbjab+fXXX6see3h4sGjRomr9rs/t37pkyZKqyi62YDKZ+Oeff6ote+2113B3dwfA29ubl156yWKdizF9+nQCAwOByoopgYGB5OXlVbXPmDEDvV4PwJAhQ6pte3Zf7O3bt5OUlFT12NvbmxkzZlRbPy0trdrjJUuW0K1bN9W4evbsWa1P9pgxY6w+95lqMme88sor3HDDDbRo0YL4+HiioqJo3bo1rVu3Vn0uNcuXL6e0tLRaPDfddFPV45iYGB577DGmTp1a7fXcfffdqvuLjo7m2WefrXp8pn//md+p2pTlPOPXX3+tVt6zvLycyZMnV1tHOauffXZ2Nhs2bGDgwIEW79Vjjz3GyJEjad68OfHx8TRq1IguXbrQpUuXqnVCQ0Px8fGpGvvw3nvvUVxcXPX+NmnShKZNm1qM/RBCWCcJuBDiohw+fJjHH39cte2tt95izJgx9O3b16LNWvJ9tpiYmGqPzyTDvXv3Jioq6gKirRxQ9+CDD/LTTz/h4eFRtTw7O5uCgoKqx+Xl5aoJ/NmOHz9+QTFYk5WVRUlJSdVjDw8PWrZsWW2d9u3b2/Q5zy0B6efnVy0BP/v5/Pz8qq1rMBiqfj73vUhNTb2o9+/ckoABAQFWnzs6Opp77rmnqj79X3/9VVUnHioTyMGDB3P//ffTr1+/GmM64+wSmmD5PgF06tSp2uOaXk+XLl1wc6v+JzcgIKAqAVcbyGnNuc+TkJBAQkLCebcZOHAgffr0YcSIEfzxxx8ALFiwgAULFlStFxUVxfDhw5k2bVpVzX4PDw9mzJjBk08+CcCWLVvYsmVL1Tb+/v7079+fu+66i6uuuqrWr0OIS5lUQRFCXDCTycRtt91WLWk8O2E0m81MnDiRoqKi8+5LURSLpOds5eXlLFmyBKh99RNFUSguLmbJkiXVqqn89ttvPPbYY7XaR00cUQ3F3s6c/T5Dq63+ZyEoKMhuz13T+xcSElLtsU6nq3FfH3zwAT/++CPXXnstkZGR1dqysrJYuHAhAwYM4Oeff65VbGefQQaqVfu5EOe+Hjj/a7Kls9/rJUuWMG/ePEaOHEloaGi19dLS0pg/fz49evSolmQ/8cQTrFixgltuuYWmTZtWez8KCgpYunQpY8aM4Z133rH/ixHCBUgCLoS4YG+88QabNm2qehwfH8+///5L//79q5YdO3aMRx555KKfa/ny5eTn5wOodmuxxtvbm9GjRzNv3rxqy99//3327dtX9TgkJKTaGV5/f38MBgNK5VgZ1Zu1MoYXKjQ0tFqXm/Lycg4fPlxtnb1799r0OW0lLi6u2uMrr7yyxvdOURSbz0Z67bXX8uOPP5KWlkZRURF79uxhzpw5VYmuoii8/fbbF/R6du/ebbHOrl27atzGXs59njfeeOO87/X9999ftb5Op+P222/nt99+IzMzs2qW2LO7DBkMBubOnVvteQYPHszXX39NYmIixcXFHDx4kHnz5uHr61u1zqxZs+z0qoVwLZKACyEuyI4dO3jxxRerHut0Or788kt8fX354osvqiWzn3zyCb/99ttFPd+ZZK179+616r5yrjFjxjBgwICqxyaTqVqNbK1Wy+jRo6seFxQU8Mgjj1Tr6gCVSdzmzZt5+OGHWbx4cZ3jqIlOp2PgwIHVlj3zzDNVM3iWlpby/PPP2/Q5baVr165ER0dXPf7rr7/48ssvLdYrKyvj999/54YbbiAlJcUmz11SUsKrr77Knj17qpb5+PjQrl07JkyYgKenZ9XyjIyMWu1zyJAh1WZg3bRpEwsXLqx6nJqaysyZM6ttc/bvjz2NHj262hnot956i+3bt1usl5WVxfz587n55purliUlJTF79uyqOu9Q2RWmc+fOTJgwodr2Z79Xr732Glu2bKm6MuDl5UXLli256aabaNSokeo2QgjrJAEXQtSZwWBgwoQJVYkhwJNPPkmvXr2Ayol25syZU22bKVOmkJ2dfUHPV1FRwS+//ALUbfKdc539hQEqk/qzz2y+8MIL1c7mvf/++0RFRTF48GDGjh1Lnz59CAoKolevXsyZM6fqjLwtPf7449WSq0WLFtGiRQuuvPJKWrRowfLly23+nLag1Wp58803qx6f6X4UFxfHiBEjGDVqVNXEPKNGjeKHH36goqLCJs9dXl7Os88+S4cOHYiMjGTgwIFcffXVVe/Z2d0v2rRpU6t9BgcHW4xtGD9+PN26dWPo0KG0bdu2Wl/s1q1bM2nSJJu8nvNp3bo1U6ZMqXqcmZlJt27d6Ny5M2PGjOGKK66gVatWhIeHM2nSJDZs2FC1bk5ODo888gjNmzenadOmDBkyhGuuuYahQ4fStWvXas9z9nv15ptv0rNnT8LCwujbty9jx45l1KhRxMXFVUvma/v+CnGpk0GYQog6e+aZZ6p1hejSpYvFmdlJkyaxZMmSqrPEGRkZ3HvvvdXOItbWypUrycnJAS4uAR8wYACDBg1i5cqVQOXZ7BdeeKFqsGDLli1ZunQpN954Y9WZvJycnKr1z3XuoDpbGDBgAC+++CLPPfdc1bKkpKSqCiOTJ0/m888/t/nz2sLNN99MdnY206dPrxpUmJiYaLVvvz36QGdkZFg9CxsSEsIrr7xS6309//zzZGdn895771UtUzvT3L59e5YsWVJVLcYR3n//fQwGQ7WrDDt37mTnzp0W61r7PT379+pcsbGxqoOrs7OzWb9+veo2Xl5evPXWW7UJX4hLnpwBF0LUyZo1a5g9e3bVY71ez1dffVVVKu9sH3/8MeHh4VWPf/jhh6pp5+viTPeTzp07W5QPrKtzz4IvXry4WgWJAQMGcODAAWbPns2QIUNo1KgR7u7u6PV6oqOjGTRoEM888wybNm3i1ltvvahYrJkxYwa//PIL/fr1w8fHBx8fH3r27Mn8+fP57LPP7PKctvLAAw+wf/9+nnjiCbp3705QUBA6nQ5vb2+aN2/OmDFj+N///sexY8csqtxcKD8/P7777jseeOABevXqRZMmTfDx8cHNzY3g4GB69OjBM888w549e2jXrl2t96vRaHj33XfZuHEjkydPpmXLlvj4+ODu7k54eDhXXHEFn3zyCdu2bSM2NtYmr6W23N3d+eKLL1i3bh2TJ0+mTZs2+Pr6otPp8Pf3p3379tx66618/vnn1aakj4+PZ/78+dx1111069aN6OhoPD09cXNzqzq7/frrr5OQkFBtMOtXX33FY489Rr9+/YiNjcXPzw+dTlfVfeXhhx9m9+7dDB482KHvgxANlUY5d6i3EELUIyaTiaioKE6dOsUrr7zCM8884+yQLsj8+fOrdVGYN29etTrXQrgy+f0Xojo5Ay6EqNdycnK49957ef755y0GiTVkkyZNQqPRoNFomD9/vrPDEcLm3n777arfcUf1jxeioZA+4EKIei0sLKxatRIhhBCioZMEXAghHCA2NtZq/XJH9x8WwhHi4+Pld14IK6QPuBBCCCGEEA4kfcCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHAgScCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHAgScCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHAgScCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHAgScCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHAgScCFEEIIIYRwIEnAhRBCCCGEcCBJwIUQQgghhHCg/wcIW3gkhUR7sAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Redefine Re in the same function from before within a for loop.\n", + "\n", + "### BEGIN SOLUTION ###\n", + "D_values = [0, 1] # Range of normalized d*\n", + "Re_values = np.array([1, 10, 100, 500, 1000, 5000]) # Values from above in an array\n", + "num_steps = 300 # Number of steps in linspace below\n", + "time_span = np.linspace(0, 1, num_steps)\n", + "initial_condition = [0] # Starting at the entrance of the tube\n", + "### END SOLUTION ###\n", + "\n", + "fig = plt.figure(figsize=(4, 3), dpi=200) # Format the plotted figure to be larger and clearer\n", + "\n", + "# Loop the integration for different values of Re and plot each iteration inside the loop\n", + "for i in range(len(Re_values)):\n", + " ### BEGIN SOLUTION ###\n", + " Re = Re_values[i]\n", + " e_re_lambda = lambda X, D: entrance(X, D, Re=Re)\n", + " solution = integrate.solve_ivp(e_re_lambda, D_values, initial_condition, t_eval=time_span) # Solve the ODE\n", + " D = solution.t # D = independent variable\n", + " X = solution.y[0] # X = dependent variable solution\n", + " # Use semilogx\n", + " plt.semilogx(X, D, linewidth=2, label=Re_values[i]) # Normalized x-axis to see where D crosses 1\n", + " Le_value = np.array(X[num_steps - 1])\n", + " ### END SOLUTION ###\n", + "\n", + " # Print values for Le\n", + "print(\"\\n\")\n", + "\n", + "# Labels and publication-quality details\n", + "plt.xlabel('X*/Re [dimensionless]', fontsize=8, fontweight='bold')\n", + "plt.ylabel('δ* [dimensionless]', fontsize=8, fontweight='bold')\n", + "plt.xticks(fontsize=6)\n", + "plt.yticks(fontsize=6)\n", + "plt.grid(False) # Remove grid lines\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "source": [ + "**Class Activity**\n", + "Now, reconsider the pipe question (3-2). Is the result consistent or closely aligned with the graph above when the velocity of water is 0.01 m²/s?\n" + ], + "metadata": { + "id": "kljFh_UJXjcH" + } + }, + { + "cell_type": "markdown", + "source": [ + "### 4-4-Discuss the limitations encountered in applying the integral method for wind tunnel practicality, as observed in the notebook. Highlight the reasons behind its ineffectiveness in real-life wind tunnel applications for finding the entrance length.\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:As the Reynolds number escalates, turbulence augments, consequently elongating the entrance length. This direct proportionality between the entrance length and Reynolds number implies their simultaneous increase. However, this model's validity diminishes at a certain threshold, wherein errors become notably significant, rendering it unsuitable for accurate entrance length calculations." + ], + "metadata": { + "id": "x395KMl-E3Iu" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "rlSwfeYbpgEV" + } + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/notebooks/contrib-dev/Entrance-Lenght-Airtunnel-example.ipynb b/notebooks/contrib-dev/Entrance-Lenght-Airtunnel-example.ipynb new file mode 100644 index 00000000..3ef5aa04 --- /dev/null +++ b/notebooks/contrib-dev/Entrance-Lenght-Airtunnel-example.ipynb @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "ZB7hIRdzvTep" + }, + "source": [ + "# Entrance Length Estimation for Channel Flow\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0_WncgpRkWH5" + }, + "source": [ + "**Prepared by**: Stephen Cini (scini@nd.edu) and David Gazzo (dgazzo@nd.edu)\n", + "\n", + ">\n", + "\n", + "**Editted by** Farbod Shirinichi (fshirini@nd.edu)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "# Introduction\n", + "\n", + "Estimating the entrance length of channel flow is a fundamental concept in fluid dynamics, with wide-ranging applications in various engineering and scientific disciplines. The entrance length, often referred to as the hydrodynamic entrance region, represents the distance over which a fluid undergoes a transition from a disturbed, uneven flow pattern to a more uniform, steady-state flow within a conduit or channel. Accurate estimation of this entrance length is crucial for optimizing the design and performance of fluid transport systems, whether in pipelines, heat exchangers, or microfluidic devices. Understanding and characterizing the entrance length is essential for predicting pressure drops, flow profiles, and heat transfer rates, thereby ensuring efficient and cost-effective operation in a multitude of engineering applications.[1][2]\n", + "\n", + "\n", + "The study of entrance length has been a topic of great interest to fluid dynamicists and engineers for many decades, as it provides critical insights into the behavior of fluid near the entry of a channel. The phenomena associated with entrance length have significant implications for industrial processes, energy systems, and transportation of fluids. By comprehending the factors that influence entrance length, researchers and engineers can make informed decisions about channel design, fluid transport efficiency, and the mitigation of undesired effects like turbulence and heat loss. [1][2]\n" + ], + "metadata": { + "id": "2IkaSRHHnOdD" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i9wwxaH-vTeq" + }, + "source": [ + "\n", + "\n", + "\n", + "**Intended Audience**: This problem is designed for junior and senior students majoring in Chemical and Biomolecular Engineering at the University of Notre Dame, specifically those who are currently enrolled in or have completed the Transport course and have a keen interest any student who has an interest in fluid dynamics." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yLqvejeuvTet" + }, + "source": [ + "## Learning Objectives\n", + "\n", + "\n", + "AUpon completing this notebook and actively participating in class discussions and activities, you should be able to:\n", + "\n", + "* Apply Python-based integration techniques to solve ordinary differential equations effectively.\n", + "* Demonstrate proficiency in creating and visualizing data using `matplotlib.` for effective data representation.\n", + "* Apply integration techniques to real-world scenarios, including entrance length flow in Channel Flow in different Systems.\n", + "* Solving an example of real use of calculating the the entrance length\n", + "* be able to adapt these skills to similar problems with only minor formula adjustments, showcasing your problem-solving versatility." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sDQW_Y8IvstJ" + }, + "source": [ + "## Coding Resources\n", + "\n", + "Relevant Modules in Class Website:\n", + "\n", + "\n", + "\n", + "* [Functions and Scope](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-and-Scope.html)\n", + "* [Visualization with matplotlib](https://ndcbe.github.io/data-and-computing/notebooks/01/Matplotlib.html)\n", + "* [Lambda Functions](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions)\n", + "* [Preparing Publication Quality Figures in Python](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html)\n", + "* [Scipy](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "id": "DuQsLLTnvTer", + "tags": [] + }, + "outputs": [], + "source": [ + "# load libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy import integrate" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZLUihthfR0Yz" + }, + "source": [ + "## Problem Statement:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n2b8uykvR0Y0" + }, + "source": [ + "
\n", + "

Homework Problem

\n", + " Complete the following problem outside of class to practice the concepts discussed.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "37pz7pp1R0Y1" + }, + "source": [ + "In this notebook, we delve into the concept of estimating the entrance length for flow in a rectangular channel, particularly when the channel's width \"w\" significantly exceeds its height \"H,\" as shown in the figure below.\n", + "\n", + "![image.png]()\n", + "\n", + "\n", + "The velocity field within the channel's entrance depends on both the x and y directions, creating a boundary layer as the fluid enters. The lecture focuses on the crucial point when the boundary layer grows to half the channel's height, H/2, marking the transition to fully developed flow.\n", + "\n", + "It's important to note that we assume the \"no slip condition\" throughout, where the fluid's velocity at the channel walls is zero, a fundamental concept in fluid mechanics.\n", + "\n", + "Additionally, the formulae provided here are only valid for laminar flow.\n", + "\n", + "The goal of this notebook is to offer a foundational understanding of entrance length in channel flow, its relevance in different systems, and the limitations of applying experimental formulae to broader fluid dynamics scenarios." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kw1O2l0kR0Y2" + }, + "source": [ + "## 1. Estimating Entrance Length\n", + "\n", + "As a first approximation, assume that the boundary layer is described by the results for flow over a flat plate. That is, the development of the boundary layer $δ$ is given by\n", + "\\begin{equation}\n", + "δ(x)=5.00xRe_x^{-1/2}\n", + "\\end{equation}\n", + "\n", + "where,\n", + "\\begin{equation}\n", + " Re_x=ρUx/μ\n", + "\\end{equation}\n", + "\n", + "Develop an expression for the entrance length in terms of the channels Reynolds number, $Re_x=2ρUH/μ = 2ρQ/wμ$, where $〈v〉$ is the average velocity in the channel.\n", + "\n", + "Show that the entrance length $Le$ is equal to $0.005ReH$.\n", + "\\begin{equation}\n", + "Le=0.005ReH\n", + "\\end{equation}\n", + "where\n", + "\\begin{equation}\n", + " Re_x<2000\n", + "\\end{equation}\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mLe463wyR0Y4" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "source": [ + "It is worth mentioning that\n", + "\\begin{equation}\n", + "Le=4.4Re^{1/6}H\n", + "\\end{equation}\n", + "or\n", + "\\begin{equation}\n", + "Le=10ReH\n", + "\\end{equation}\n", + "where\n", + "\\begin{equation}\n", + " Re_x> 3500\n", + "\\end{equation}\n", + "\n" + ], + "metadata": { + "id": "wr3Cd0DIXHFm" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fl9qDavDOkla" + }, + "source": [ + "## 2. More Accurate/Rigorous Method" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A4XwIlMgR0Y5" + }, + "source": [ + "### 2a. Normalize the expression on paper\n", + "\n", + "The analysis in Question 1 assumes that $U(x) = U_o = 〈v〉$. But in fact, the free-stream velocity changes as the boundary layer grows in the channel. Therefore, assuming a linear velocity profile, $v_x=\\frac{U_xy}{δ}$, in the boundary layer, and utilizing the von Karman momentum integral equation,\n", + "\n", + "\\begin{equation}\n", + "τ_w=ρ \\frac{∂}{∂x} ∫_0^∞v_x (U-v_x )dy+ρ\\frac{∂U}{∂x} ∫_0^∞(U-v_x )dy\n", + "\\end{equation}\n", + "\n", + "and the fact that the flow rate $Q$ is constant, the following expression for the growth of the boundary layer can be derived:\n", + "\n", + "\\begin{equation}\n", + "\\frac{dδ_{(x)}}{dx}=\\frac{6μW}{ρδ_{(x)}Q}\\frac{[H-δ_{(x)}]^2}{H+4δ_{(x)}}\n", + "\\end{equation}\n", + "\n", + "Manipulate this expression so that it can be integrated numerically. Hint: normalize it and keep symmetry in mind." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ObaJyG4Xp8Er" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lZcAJ3QiPKJ3" + }, + "source": [ + "### 2b. Numerically integrate the normalized expression\n", + "\n", + "Using the normalized form of the differential equation, use `scipy.integrate.solve_ivp` to numerically integrate the expression and find the value of x where $δ$ is fully developed.\n", + "\n", + "For more information on how to use `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "7iAzmaKEp-P0" + }, + "outputs": [], + "source": [ + "def entrance(d, x, Re = 1):\n", + " '''Solving for the entrance length of the tube with non constant velocity\n", + " Args:\n", + " d: δ_star; Normalized δ; partial derivative wrt x or y (numpy array)\n", + " x: x_star; Normalized x; position along channel (numpy array)\n", + " Re: Reynolds number, constant dimensionless quantity used to show\n", + " turbulence or roughness of flow. Set to unity as default value (float)\n", + " Returns:\n", + " dxdy: Normalized expression for the entrance length\n", + " '''\n", + "\n", + " # assume Re is at unity for the example\n", + "\n", + "### BEGIN SOLUTION\n", + " dxdy = (Re*d/6)*((1+(2*d))/(2-d)**2)\n", + "### END SOLUTION\n", + "\n", + " return dxdy" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "BGKBtOjYsBc6" + }, + "outputs": [], + "source": [ + "# Integrate the solution in scipy using defined function\n", + "\n", + "### BEGIN SOLUTION\n", + "dspan = [0, 1] # since del is dimensionless it will range from 0 to 1\n", + " # where del of 0 is at the entrance of the tube and at a del of 1 is the\n", + " # begining of fully developed flow\n", + "\n", + "n = 300 # number of steps in linspace\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "\n", + "# Solve using scipy.integrate.solve_ivp\n", + "soln = integrate.solve_ivp(entrance, dspan, xo, t_eval= tspan)\n", + "d = soln.t\n", + "x = soln.y[0]\n", + "### END SOLUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ufUkZqZNHuVN" + }, + "source": [ + "### 2c. Plot the results\n", + "Plot the resulting data to show the behavior of the integrated expression.\n", + "\n", + "For more information on how to use `matplotlib` to make publication quality plots, click [here](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html#preparing-publication-quality-figures-in-python) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "0h4ys3UGHL6L", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 587 + }, + "outputId": "b3a932d7-1832-4910-f716-28296bff3643" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAI6CAYAAACevlGeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AACEgUlEQVR4nOzdd3iUVd7G8XsmbYaQAikkIUDovQiGpgQUYa24LmBDgbWurnVFXLuibhHX9oq7siKIFUV0BctiAREREKnSS0IKgZAQSEJ68rx/xMwyzCSkzEwyk+/nunKRPPU3OYnOnXOec0yGYRgCAAAAAPgUc1MXAAAAAABwPcIeAAAAAPggwh4AAAAA+CDCHgAAAAD4IMIeAAAAAPggwh4AAAAA+CDCHgAAAAD4IMIeAAAAAPggwh4AAAAA+CDCHgAAAAD4IMIeAAAAAPggwh4AAAAA+CDCHgAAAAD4IMIeAAAAAPggwh4AAAAA+CDCHgAAAAD4IP+mLqAlKy4u1rZt2yRJUVFR8venOQAAAICWqLy8XEePHpUk9e/fXxaLpdHXJF00oW3btmno0KFNXQYAAACAZmT9+vVKTExs9HUYxgkAAAAAPoievSYUFRVl+3z9+vWKjY1tslqKioq0atUqSVJSUpKsVmuT1YL6oe28F23nvWg770XbeS/aznvRdnWTmZlpG/V3ak5oDMJeEzr1Gb3Y2FjFx8c3WS1FRUWKjIyUJMXHx/NL6EVoO+9F23kv2s570Xbei7bzXrRd/blqLg+GcQIAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACAD/LJsFdQUKDHH39cF154odq2bSuTyaQFCxbU+fzjx4/rlltuUVRUlIKDg3Xeeedp48aN7isYAAAAAFzMJ8Nedna2Zs2apZ07d2rgwIH1OreyslKXXHKJ3n33Xd1xxx169tlnlZWVpTFjxmjv3r1uqhgAAAAAXMu/qQtwh9jYWGVmZiomJkYbNmxQYmJinc9dvHix1qxZow8//FCTJk2SJF155ZXq0aOHHn/8cb377rvuKhsAAACAhxSVVuhAdoEOHD1Z9ZFdoFmX91OYNaCpS3MZnwx7QUFBiomJadC5ixcvVrt27fS73/3Oti0qKkpXXnml3n77bZWUlCgoKKhO10pPT691f2Zmpu3zoqIiFRUVNahmVyguLnb6OZo/2s570Xbei7bzXrSd96LtvFdTtl2lYehIXomScwqVnP3rR85JJecUKvNEicPx1wyJ1cD4MI/WWM0dWcAnw15jbNq0SYMHD5bZbD/CdejQoZo7d6727Nmj/v371+laHTp0qPN9V61apcjIyHrV6i6rVq1q6hLQQLSd96LtvBdt571oO+9F23kvd7VdSYWUVSRlFZuUVWTSkSIpq8iko8VSaaWpztdZ+t16HYky3FLjmWRnZ7v8moS902RmZiopKclhe2xsrCTp0KFDdQ57AAAAAFzDMKQTpdLhIpOyiqQjRSZlFVf9e6K07oGuNkeKTJKaJuy5A2HvNEVFRU6HaVosFtv+ukpLS6t1f2ZmpoYOHSpJSkpKUnx8fD0qda3i4mLbX1qSkpJsrxfNH23nvWg770XbeS/aznvRdt6rvm1XVlGptNwi7T9aqOTsk9qfXagD2Sd1ILtQhaUVbq3VFNpO48c3TcfOmR4BawjC3mmsVqtKShzH71aPL7ZarXW+Vn3Cm9Vqrde13clisTSbWlA/tJ33ou28F23nvWg770Xbea9T2+5kSbn2Hy3QvqwC27/7sgp0MKdQ5ZWe710L9DPLZDI32c+WO+5L2DtN9Uyep6veFhcX5+mSAAAAAK9kGIaOFpRo74mq5+h++mKPDuYWa19WgTJPNM1EO9EhQeoSFawuUa3VNaq1ukQFq2tka7VvY5Wf2TXDQZsLwt5pBg0apO+//16VlZV2k7SsW7dOrVq1Uo8ePZqwOgAAAKD5qag0lHas0K6HrvrzvOJySX5VBya7fqiiM0H+ZnWODLaFuS5RVZ93jgxWiMV3llY4kxYd9jIzM3XixAl17dpVAQFVjT5p0iQtXrxYS5Yssa2zl52drQ8//FCXXXZZnZddAAAAAHxNcVmF9h8t0P6jJ6sC3a+h7kD2SZWWV3q8nphQi12Y6xLVWl0ig9U+3Cqzj/XSNYTPhr1XXnlFx48f16FDhyRJS5cutT30eOeddyosLEwPPvig3nzzTSUnJyshIUFSVdgbPny4fv/732vHjh2KjIzUq6++qoqKCj355JNN9XIAAAAAjyksLdf+rJPacyRfe7Lyte9IgfZk5Ss9t0iGhx+n8zeb1CmilbpFVw277BZd9dElqrVaB/lsnHEJn/3uPPfcczp48KDt6yVLlmjJkiWSpOuuu05hYc4XS/Tz89Pnn3+u+++/Xy+//LKKioqUmJioBQsWqGfPnh6pHQAAAPCE5hTqggP91DW6tbpFtVbXU4Jdp4hWCvAzn/kCcOCzYS8lJeWMxyxYsEALFixw2N6mTRu9/vrrev31111fGAAAAOBhzSnURYUE/Rrogm3Brlt0a8WEWmQyMfTSlXw27AEAAAAtTVFphfZlFWjPkXztzSrQ3l/DnadDndkkdWxbNfSyYxuLio4kK8Zq6KqLz1NM21DPFdLCEfYAAAAAL9NcQp0lwKwukf97jq566GVCZCsF+VfNwFlUVKTlyw9IksKsLWcmzOaAsAcAAAA0U8Vl/wt1e45Uhbq9WQVKyy30aKgLsfirR7sQda8Odb8+W8esl80bYQ8AAABoYhWVhlKPFWr34TztOpyv3b9+pOScVGUThLoe7Vqre3SIurdrrR7tQhQdEsTzdF6IsAcAAAB4iGEYOppfot1HqsJcdbDbm5Wv4jLPrVNHqGsZCHsAAACAGxSUlNt66PYcydeuw3nafThfuYVlHqvh1FDXLbrqX0Jdy0HYAwAAABqhrKJSB46etIW5qmBXNVmKpxDq4AxhDwAAAKgDwzCUcbzIbvjl7sP5OpBdoLIKzzxYR6hDfRD2AAAAgNNUDcHM045Dedp5OF+7MvO050iBCkrKPXL/IH+zerQLUc+YEPX89d8e7ULULpRQh7oj7AEAAKDFMgxD6blF2pmZp52Z+VX/Hs7TwZxCj9zfbJISIoKrQl1MiHr9Guo6RQTLjyUN0EiEPQAAALQIxWUV2n3410BXHe4O5ym/2DO9ddEhQbZA1zMmVL1iQtQturUsAX4euT9aHsIeAAAAfIphGDqSV6KdmXnaYQt2eUrO9syada2D/G3DLnvF/G8oZpvgQPffHDgFYQ8AAABeq7S8UvuyCv7XW3e4qsfu2MlSt987wM+krlGtHYJd+3Arz9WhWSDsAQAAwCsUlEkZJ03KWJOqfdlF2pGZp/1HPTMTZvtwq3rHhpwS7ELVOTJYgf5mt98baCjCHgAAAJqV6iUOth/K0/aME9p+KE+/ZJzQkfxf37ru3Oe2ewf5m9UzJkS9Y0LVOzZEvWND1Ss2VGHWALfdE3AXwh4AAACaTEWloeTsk9p+qCrUVf97vLDM7fduFxqk3rGhto8+sSFKiAiWvx+9dfANhD0AAAB4RGl5pfYcydeOQ3n65ddQtzMzT4WlFW69b4CfSd2iQ9Q7NkR9Tgl3bZkwBT6OsAcAAACXKywt187MPNsQzO2H8rTnSL7bn6+LCA78NcyF2EJd16jWPFuHFomwBwAAgEY5XlhqF+q2HzqhA9knZbgx1/mZTeoSGXzKMMyqXruokCBmwgR+RdgDAABAnR3NL9G2jOPalv6/5+syjhe59Z6tAv3Uq11rBZflqn0rQ5PGDlO/jpEsRg6cAWEPAAAATh07WaptGSe0Lf24tqaf0LaME8o8UezWe4a3ClC/uDD1jQtV3/ZV/yZEBKu0pFjLly+XJPWNCyXoAXVA2AMAAIBOFJZpW8YJbc04rm3pJ7Q1/YTbe+xiQi3q1z5UfX4Nd/3ahykuzMIwTMBFCHsAAAAtTF5xmX7JOKFfMk7YeuwO5hS69Z4JEa1sPXV9fw13ka2D3HpPoKUj7AEAAPiwkyXl2n4oT1vTj/86JLNq8hR38TOb1D26tfrEhdqGY/aJC1WIhUXJAU8j7AEAAPiIotIK7cj8X2/dtvQT2ne0wG2zYgb5m9UrNrRqCOavwa5nTAjP0wHNBGEPAADAC5VXVGrPkQJtTjuuLWnHtSX9uPYcyVelm4JdoL9ZvWNDNaB9mPrHh2lAfJi6RbWWvx/r1wHNFWEPAACgmTMMQxnHi7Ql7YQ2p+VqS1pVz11RWYVb7hfgZ1KvmNCqUNc+TP3ah6lHuxAWJge8DGEPAACgmTlRVKat6VU9dpvTjmtz2gllF5S45V5+ZpN6tAux67HrGROiIH+GYgLejrAHAADQhErLK7XrcN6voa7q48BR90ygYjZJ3aNDbKGuf/sw9Y5lzTrAVxH2AAAAPMQwDB3MKdSW9OPalFr1nN32Q3kqLa90+b1MJqlLZLAGxIerf/uqcNcnLlStAnn7B7QU/LYDAAC4Se7JUrseuy3px3W8sMwt9+oU0UoD4sM18Nceu77tw9Q6iLd6QEvGfwEAAABcoKLS0J4j+dqYmquNB49rU2qu29azC28VoEEdwjUwPlyDOlb92zY40C33AuC9CHsAAAANcKKwTJvScrXxYK42plb13BWUlLv8PoH+ZvWNC9WgDuG2j45tW8lkMrn8XgB8C2EPAADgDCorDe0/WqCNqbn6+ddwty+rwC336hoVrIEdwnVWh3AN7BCuXjGhLHkAoEEIewAAAKfJLy7T5rTjtmC3OTVXecWu77WLbB30a29dmAZ1aKP+8WEKswa4/D4AWibCHgAAaNEMw9CB7JO/Dseset5uT1a+DMO197EG+Kl/+zDbM3aDOoYrLszCcEwAbkPYAwAALUpphZR6Ukr+PkVbD1UNzXTHDJldIoN1Vsc2GtwpXGd1aKMe7VrL34/hmAA8h7AHAAB8Wu7JUm04mKsNKce07kC2tmX4qcIwSdsPuOwerQL9NDA+XIM7hWtwxzY6q2MbZscE0OQIewAAwGcYhqH03CL9lHJMP6Xk6qeUY04mUmn8sMlOEa00uGMbDe4YrrM6tlGvmBB67QA0O4Q9AADgtSoqDe3MzNOGlGP66dfeuyN5JS69hyXArAHx4bZwN7hTG0W2DnLpPQDAHQh7AADAaxSVVmhz2nFbuNt4MNfla9vFt7HaBbvesaEKoNcOgBci7AEAgGbr2MnSqmD367DMXzJOqLzSddNkBvqbNaB9mAZ3+jXcdWyj6FCLy64PAE2JsAcAAJqNrLxirU0+prUHcrTuQI72Hz3p0uuHWfwVby1V1xBDV18wVEO6RCnI38+l9wCA5oKwBwAAmsyh40Val5yjdQeOaV3yMSVnuzbcxbexKjGhrc5OaKPEhLZqH+Knr7/6SpJ0Vocwgh4An0bYAwAAHpOeW6i1B45p3YEcrUs+ptRjhS67tskk9YoJVWJCG52d0FaJCW0UG2a1O6aoqMhl9wOA5o6wBwAA3MIwDKUdK9LaAzla+2vvXcZx14WtQH+zBnUIV+KvvXaDO7VRqCXAZdcHAG9H2AMAAC5hGIZScgptz9utSz6mzBPFLrt+eKsAnd2pza/DMtuqX/tQhmECQC0IewAAoEEMw9CB7JP6cX9VsFt3IEdZ+a5b4y42zKJhndtqaOcIJSa0Udeo1jKbG78gOgC0FIQ9AABQZxnHi7RmX7Z+3J+jNftzdDjPdT137cOtGtalrYZ3idDwzhHq0NYqk4lwBwANRdgDAAA1yi4osQW7H/dnKyXHdROqdIpopWGd22pY5wgN69JW8W1auezaAADCHgAAOEVecZnWHzimNftztGZ/tnYdznfZtbtEBmtYl/+Fu9NnygQAuBZhDwCAFqy4rEIbUnK1Zn+21uzP0baME6qoNFxy7W7Rrat67rpEaHjntooOtbjkugCAuiHsAQDQgpRVVGpr+nGt2ZejH/Zna+PB4yqtqHTJtXu2C9HwLlXhbmjntopsHeSS6wIAGoawBwCADzMMQ3uzCrRqz1H9sC9b65OP6WRphUuu3SUqWCO7RuicrpEa1iVCbYMDXXJdAIBrEPYAAPAxOQUlWr0vW9/vzdb3e4/qSJ5rlkOIC7NoZLdIjewaoZFdIxUTxrBMAGjOCHsAAHi5kvIK/ZySq1W/hrvth/Jcct22wYEa0TXC1nvXKaIVSyEAgBch7AEA4GVOHZr5/d5srUvOUXFZ45+7ax3kr2Gd29p673q2C2ERcwDwYoQ9AAC8QHZBiX7Yl61Ve7K1ep9rhmYG+pt1dqc2OqdbpEZ0jdCA9mHy9zO7oFoAQHNA2AMAoBkqLqvQzwdztWrvUa3em+2SoZlmkzSwQ7jO6VrVcze4UxtZAvxcUC0AoDki7AEA0EykHSvUyt1ZWrH7qH7cn6OissbPmhnfxqqkHlFK6h6pEV0iFdYqwAWVAgC8AWEPAIAmUlJeofXJx7Ri11Gt3JOlA0dPNvqaIUH+GtE1QqN6RGlUNyZVAYCWjLAHAIAHpR0r1Mo9R7VyV5bWuKD3zmySBnUI16juUUrqEamB8eE8dwcAkETYAwDArUrKK/RTcq5W7M7Syt1Z2u+C3rsOba1K6h6lUd0jNaJrpMKsDM0EADgi7AEA4GLVvXff7a7qvSssbVzvXUiQv0Z2i9C53auevesUEeyiSgEAvoywBwBAI5VVVOqn5GNa8evkKvuyChp9zQHxYRrTI0pJPaI0qANDMwEA9UfYAwCgAU6WSTuPm/Tl4l+0ev8x5ReXN+p6YdYAJfWIsgW8qJAgF1UKAGipCHsAANTR/qMF+mbnES3fflgbD/qpUiZJWQ2+Xv/2YRrTM0pjekZrUIdw+ZmZNRMA4DqEPQAAalBeUamfUnL1zc4j+mZXlpKzT51cpf7BLMwaoFHdIzWmZ7RG03sHAHAzwh4AAKc4UVimlXuy9M3Oqtkz8xo5PLNf+1Cd1zNaY3pGsSwCAMCjCHsAgBYvOfukvtl5RF/vPKKfUnJVUWk0+FqhFn+N6hGl83pGK6lHpKJDLC6sFACAuvPJsFdSUqLHHntMb731lnJzczVgwAA9/fTTGjdu3BnP/frrr/XMM89o27ZtKi8vV48ePXTnnXfq+uuv90DlAABPqKw0tCX9uP67/Yi+2nG40WvfdYkM1tje0Rrbu53O7tSG3jsAQLPgk2Fv+vTpWrx4se655x51795dCxYs0MUXX6wVK1bo3HPPrfG8Tz/9VL/97W81YsQIPfHEEzKZTPrggw80depUZWdn69577/XgqwAAuFJZRaXWHsjR8u1HtHzHYR3JK2nwtfxMJnUOqVTfNpW69bJz1Cc+woWVAgDgGj4X9tavX6/3339fs2fP1owZMyRJU6dOVb9+/TRz5kytWbOmxnNfeeUVxcbG6ttvv1VQUNVD87feeqt69eqlBQsWEPYAwMsUlpZr1Z6j+u/2I/pm55FGPX8XYvHXmJ7RuqB3tIZ2DNH671dIkjpHtHJVuQAAuJTPhb3FixfLz89Pt9xyi22bxWLRjTfeqIceekhpaWnq0KGD03Pz8vLUpk0bW9CTJH9/f0VGRjaolvT09Fr3Z2Zm2j4vKipSUVFRg+7jCsXFxU4/R/NH23kv2s49cgvL9N2ebH2966h+2H9MxeWVDb5Wx7ZWndcjUuf1iNTgjmEK+HV4Jm3nvWg770XbeS/arm7ckQV8Luxt2rRJPXr0UGhoqN32oUOHSpI2b95cY9gbM2aM/v73v+vRRx/VtGnTZDKZ9O6772rDhg364IMP6l1LTfdxZtWqVQ0Ola62atWqpi4BDUTbeS/arnFyS6Rtx0zaesyk/XmmX9e/qz+TDHUJkfq2qVS/toaiLfkymfJ1Ym+yVux1fg5t571oO+9F23kv2q5m2dnZLr+mz4W9zMxMxcbGOmyv3nbo0KEaz3300UeVnJysZ555Rk8//bQkqVWrVvroo490+eWXu6dgAECDHCmStuSYtPWYWWknG74YeaDZUJ9wQ/3aVv0bHODCIgEAaEI+F/aKiorshmFWs1gstv01CQoKUo8ePTRp0iT97ne/U0VFhebOnavrrrtOX331lYYPH16vWtLS0mrdn5mZaetxTEpKUnx8fL2u70rFxcW2v7QkJSXZvl9o/mg770Xb1d/erAL9d0eWvtxxtFEzaLZpFaDzekTqgt5RGtmljYL8/ep1Pm3nvWg770XbeS/arm7O9AhYQ/hc2LNarSopcZxhrXp8sNVqrfHcO+64Q2vXrtXGjRtlNlc9l3HllVeqb9++uvvuu7Vu3bp61VKf8Ga1WmutzZMsFkuzqQX1Q9t5L9quZnuO5GvZ1kx9vi1T+7IKGnyd9uFWje/bTr/pG+PS5RFoO+9F23kv2s570XY1c8f3xefCXmxsrDIyMhy2V0+GEhcX5/S80tJSzZs3TzNnzrQFPUkKCAjQRRddpFdeeUWlpaUKDAx0T+EAAEmSYRjac6RAn21rfMDr2S5Ev+nbTuP7xqhvXKhMpoYP9wQAwNv4XNgbNGiQVqxYoby8PLtJWqp75QYNGuT0vJycHJWXl6uiosJhX1lZmSorK53uAwA0nmEY2n0kX59vzdRn2zIbNURzcMdw/aZvjMb3jVHnyGAXVgkAgHfxubA3adIkPffcc5o7d65tnb2SkhLNnz9fw4YNs82QmZqaqsLCQvXq1UuSFB0drfDwcH388ceaNWuWrQevoKBAS5cuVa9evehyBgAXMgxDuw7n6/NtVQHvQAMDnr/ZpBFdI6oCXp92ig7lWRAAACQfDHvDhg3T5MmT9eCDDyorK0vdunXTm2++qZSUFM2bN8923NSpU/Xdd9/JMAxJkp+fn2bMmKFHHnlEw4cP19SpU1VRUaF58+YpPT1db7/9dlO9JADwKXuO5OvTzYf0+bZMHchuWMAL9DMrqUekLu4fq7G92ynMyhSaAACczufCniQtXLhQjz76qN566y3l5uZqwIABWrZsmZKSkmo97+GHH1bnzp310ksv6cknn1RJSYkGDBigxYsXa+LEiR6qHgB8T9qxQn265ZCWbjmkXYfzG3SNqoAXpUsGxGhs73YKtRDwAACojU+GPYvFotmzZ2v27Nk1HrNy5Uqn26+99lpde+21bqoMAFqOo/kl+mzrIX265ZA2ph5v0DUC/c0a3SNKl/SP1dje0Qoh4AEAUGc+GfYAAE0jr7hMX/5yWEu3HNIP+7JVadT/GoH+Zo3pEaVLBsTq/F4EPAAAGoqwBwBolOKyCn2zM0ufbsnQit1HVVpeWe9rBPmbNaZnlO0ZvNZB/O8JAIDG4v+mAIB6K6uo1Op92Vq6+ZD+u/2wTpbWf2maQH+zzu8ZrYt/7cEj4AEA4Fou/z/rwoULXXathISEM06qAgDwDMMwtDX9hJZsTNfSrZk6drK03tfwM5t0brdITRgYp/F92zFEEwAAN3J52Js+fbpMJpNLrjVx4kTCHgA0sYzjRfpkU4aWbExv8GLniQltNGFgnC7uH6uI1kEurhAAADjjtjEz1evXAQC8T0FJub7YlqklGzO0NjlHDflPep/YUE0YFKfLBsapfbjV9UUCAIBaNdsHJFzVOwgAqJuKSkOr92Xr443p+nL7YRWX1X+ilYSIVpowME4TBsWpW3SIG6oEAAB15bawl5iYqNtvv73e5xmGoRtuuMENFQEAnNl1OE9LNmbok00Zysovqff57UKDdOmAOE0YGKcB8WH8sQ4AgGbCbWGvU6dOmjZtWoPOJewBgHsdzS/RfzZnaMnGDO3IzKv3+a2D/HVJ/1hdflachnWOkJ+ZgAcAQHPjlrDniuf1eOYPAFyrvKJSK3cf1Qcb0vTtriyV13PFc7NJSuoRpd8Njte43u1kDfRzU6UAAMAVXB72XnjhBUlS9+7dm/QaAIAqB44W6IMN6fpoY7qONmCYZu/YUE0c3F4TBsUpOsTihgoBAIA7uDzs3X333c3iGgDQkhWWluuzrZn6cEO61qccq/f5USFBuuKs9rrirPbqHRvqhgoBAIC7NdvZOAEA9WMYhjalHdcHP6Vp6ZZDOllaUa/zLQFm/aZvjH43OF7ndI2Qv5/ZTZUCAABPcHvYO3nypA4ePChJioyMVHR0tCTplVde0fPPP6/Dhw+rT58++sc//qHRo0e7uxwA8DnZBSX6eGOGPtiQpr1ZBfU+f0SXCP1ucHtd2C9GIZYAN1QIAACagtvD3rx583TvvfdKkubOnasbb7xRy5Yt01133SWTySTDMLRx40Zdcskl2rZtmzp37uzukgDA61VWGvp+X7beXXdQ3+ys/2Qr7cOtmjQkXpOGxKtD21ZuqhIAADQlt4e9DRs2yDAMmUwmjR8/XlJV6KtWHfiKioo0Z84cPffcc+4uCQC81tH8En34c5reW5+qtGNF9To30M+s8X3b6arEDhrZNZLlEgAA8HFuD3tbtmyRJMXHx6tDhw6SpFWrVslkMik4OFjR0dE6cOCAJGnFihXuLgcAvI5hGPpxf47eWZ+q5dsPq6yifr14vWNDddXZ8bp8UHu1CQ50U5UAAKC5cXvYy8rKkslkUnx8vCQpNTVVeXl5MplMeuWVV3T11Verc+fOyszMVHJysrvLAQCvkXuyVB9tTNe761J1IPtkvc4Nsfjrt4Pa66rEDuobFyqTiV48AABaGreHvWPHqqb8rp6YZe/evbZ9I0eOVGBgoM466yxlZmaqoKD+EwsAgC8xDEMbDubq3XWp+mxbpkrLK+t1/jndInTl2R30m74xsgSw6DkAAC2Z28Oev7+/ysvLlZubK0nat2+fpKpn9aqHdfr7V5XRqhWTBABomfKKy7Ro42G9uz5Ve47U7w9f7UKDdNXZHTT57A5MtgIAAGzcHvZiYmKUnJysdevW6Z133tH8+fMlSR07dlRQUJAkKScnR5IUERHh7nIAoFk5dFL6/rBZf97wg4rK6t6LZzJJSd2jNGVYR53fK5o18QAAgAO3h72zzz5bycnJKi0t1dSpUyVV9eqde+65tmN27dpl19MHAL6svKJSX+04ojdWH9BPB6v/M1y3oBfZOlBXnt1B1wztSC8eAAColdvD3g033KAPP/zQ9nX1Mgw33HCDJOmnn35STk6OTCaThg8f7u5yAKDJ5BSU6P2f0vT22oPKPFFcr3NHdo3QlGGdNK5POwX604sHAADOzO1h7ze/+Y2effZZzZo1SwUFBQoODtajjz6qMWPGSJK+/vprhYWFSZJGjRrl7nIAwOO2pZ/QgjUpWrr1UL0mXAlvFaDJQ+J1zdCO6hLV2o0VAgAAX+T2sCdJM2bM0D333KOjR48qMjJSAQEBtn0PPvigHnzwQU+UAQAeU1peqS9+ydSCNSnalHq8XucmJrTRtcM66qJ+scyoCQAAGswjYU+qmnEzNjbWU7cDgCaRlV+sd9am6t31qTqaX1Ln86wBZv1ucLymjkhQz5gQN1YIAABaCo+FvdNt2LBBr776qg4fPqzevXtr5syZateuXVOVAwCNsutwnuZ9n6z/bD6k0oq6D9WMDDJ0bkylHrx6lNq1CXVjhQAAoKVxe9h75513dO+990qSZs2apT/84Q/atm2bRo0apdLSUknSf//7X/3nP//Rpk2bFBLCX7QBeAfDMLRqb7Ze//6Avt+bXa9zR/eI0jVnx6rowEaZTVKoJeDMJwEAANSD28PemjVrlJ2dLZPJpBEjRkiSXnjhBZWUlMhkMkmqesOUnJysf/3rX7r//vvdXRIANEpxWYU+3XxIr68+UK8F0FsH+WvSkHhNHdFJXaJaq6ioSMuT3VgoAABo0dwe9jZu3ChJatu2rQYOHChJWr58uUwmkwzDsDt22bJlhD0AzVZOQYneWZeqhT+mKLugtM7ndYturWkjOumKwfFqHdRko+cBAEAL4/Z3HRkZGTKZTOrUqZMk6ejRozp06JBMJpMee+wxXXfddRo8eLAKCgq0e/dud5cDAPW2L6tA81Yna8nGdJXUcekEk0ka26udpo9M0DndImwjGQAAADzF7WEvO7vqOZa4uDhJ0t69e237fve736lbt24aNmyYvvnmG+Xm5rq7HACos59SjulfK/frm11ZdT7HGuCnyWfH64ZzOishMtiN1QEAANTO7WGvsrLqr+BlZWWSpP3799v2de7cWZJsk7L4+zO8CUDTMgxD3+7K0j9X7teGg3X/A1S70CBNG5mga4d2VHirQDdWCAAAUDduT1dt27bV4cOH9dNPPykjI0Off/65JCkyMtIW8vLy8iRJERER7i4HAJwqr6jUsq2Z+ufK/dp9JL/O5/WODdXNozrr0gFxCvQ3u7FCAACA+nF72OvXr58OHz6s3NxcdezYUZJkMpk0dOhQ2zH79u2TyWRSTEyMu8sBADvFZRX6YEOa5q46oPTcojqfd36vaN10bmeN6MrzeAAAoHlye9ibNGmSvv76a0myzb5pMpk0efJkSVJycrJSU1NlMpk0ZMgQd5cDAJKkE0VlenvtQb2xOlk5J+s2s2aQv1kTh1Q9j9cturWbKwQAAGgct4e9G2+8UcuWLdOyZcts2y688EJdf/31kqT//Oc/kqqC4MiRI91dDoAW7khesd5Ynax31qWqoKS8TueEtwrQtBEJmjqikyJaB7m5QgAAANdwe9jz8/PTp59+qrVr1yo5OVmdOnWyC3UTJ07UeeedJ0nq3r27u8sB0EIdOl6kf67cr0U/pam0om7LJ8SGWXTzqC66emgHtQpkAikAAOBdPPbuZfjw4Ro+fLjD9g4dOqhDhw6eKgNAC5OeW6h/rtyvDzakqazCqNM53aJb6w+ju2rCQCZdAQAA3sujf6ouLy/XmjVrlJycrJMnT+r222/35O0BtCBpxwo1Z8U+Lf45XeWVdQt5AzuE6/YxXTWudzuZzUy6AgAAvJvHwt7cuXP1yCOPKCcnR1LVJC233367pkyZoh9//FEBAQFav369wsLCPFUSAB90MOekXvl2n5ZsylBFHUPeqO6Run1MNw3v0paZNQEAgM/wSNh7/PHH9fTTT9tm4zzVuHHj9N5778lkMumTTz7RtGnTPFESAB9z4GiBXlmxT//ZfKhOIc9kki7uH6vbRndVv/b8kQkAAPget4e9DRs26Omnn5Yk21/MTw19l112mcxmswzD0LfffkvYA1AvB44W6OVv9urTLYdUl448s0n67aD2+uP53dQ1iuUTAACA73J72HvllVdkGIZMJpPi4+NlGIbS09Nt+yMiItStWzft2bNHmzdvdnc5AHxEem6hXvp6rz7amF6nkOdnNul3Z7XXH8/rpoTIYPcXCAAA0MTcHvZWrVolSWrdurU2bNig22+/3S7sSVJCQoL27Nmj1NRUd5cDwMtl5RXrlRX79N761DrNrulvNmnSkHjdPqabOka08kCFAAAAzYPbw15mZqZMJpNGjhypqKgop8cEBVUtUnzy5El3lwPAS+WeLNW/vtuvN39MUXHZmdfJC/AzafLZHXTb6K7q0JaQBwAAWh63hz1/f3+VlpaqsrLmN2fVPXpWq9Xd5QDwMnnFZXr9+2S9sTpZBSXlZzw+0M+sqxI76LYxXRUXzn9TAABAy+X2sBcbG6t9+/Zp3bp1KigocNi/adMmbdmyRSaTicXVAdgUlpbrzTUH9dqq/TpeWHbG4wP9zLpmaAfdNqabYsIsHqgQAACgeXN72Bs5cqT27dun/Px8jRs3TqWlpbZ9s2fP1j/+8Q/b1yNGjHB3OQCaubKKSi36KU0vfbNXR/NLzni8n9mkyUPidefY7mpPTx4AAICN28PeTTfdpIULF0qS1q9fb9tuGIb+/Oc/2y3DcMMNN7i7HADNlGEYWr7jiP7+5S4dOHrm53dNJmnCwDjdc0EPdWZ2TQAAAAduD3vnnnuupk+frgULFtjW2av+t/pzwzA0depUevaAFurng7n66+c7teFgbp2OH9+nnf40vod6xYS6uTIAAADv5fawJ0n//ve/ZbVa9dprrzlM1GIymXTzzTdrzpw5nigFQDNy4GiBZv93t7745XCdjh/VPVIzxvfUwA7h7i0MAADAB3gk7Pn5+WnOnDm655579Omnnyo5OVmS1LlzZ1166aXq2bOnJ8oA0EwczS/Ry9/s1XvrU1VehxXRExPaaMb4nhrWJcID1QEAAPgGj4S9at27d9d9993nyVsCaEYKS8v1+vfJeu27/TpZWnHG43u2C9GfL+qlMT2j7IZ/AwAA4Mw8GvYAtEyGYeg/mw/pb1/s0uG84jMeHxNq0Z/G99DEwfHyMxPyAAAAGsLlYW/WrFmNOv+xxx5zUSUAmoPNacf15NLt2pR6/IzHhgT567bzuur3IzvLGujn/uIAAAB8mMvD3hNPPNGo4VaEPcA3HMkr1t+/3KUlGzPOeGyAn0nXDe+kO8/vrrbBgR6oDgAAwPc1m2GchmHwTA7gA4rLKjRvdbLmrNinwjo8l3fpgFjd/5ue6hTBWnkAAACu5Jawd+pC6QBaBsMw9OUvh/XM5zuVnlt0xuOHJrTVQ5f01iCWUQAAAHALl4e9+fPnu/qSAJq5XYfz9MSn27X2wLEzHhvfxqqHLu6ti/rF0JsPAADgRi4Pe9OmTXP1JQE0UwUl5Xrxqz2avyZFFWdYL69VoJ9uH9NVN43qIksAk68AAAC4W7N5Zg+A9zAMQ59ty9RTy3boSF7JGY//3VntNfPCXooJs3igOgAAAEiEPQD1dOBogR77z3at3pd9xmMHdQjX45f10Vkd23igMgAAAJzKI2EvNTVVf/nLX/T1118rIyNDpaWlTo8zmUwqLy/3REkA6qmotEJzVuzT3FUHVFpRWeux7UKD9OeLeunyge1lZlF0AACAJuH2sLd7926NHDlSx48fZ5ZOwEt9veOInli6/YyzbAb4mXTzqC7643ndFBzEwAEAAICm5PZ3Y4888ohyc3MlqdaZ9wiCQPNz+ESxHv3PL/pqx5EzHntOtwg9OaGfukW39kBlAAAAOBO3h72VK1faQp5hGAoJCVFYWJj8/JiND2iuKisNvbs+VX//YpfyS2ofWh0dEqRHL+2jSwfEspQCAABAM+L2sFdQUCBJslgs+vzzzzV69Gh33xJAI+w/WqAHP9qm9Sm1r5nnZzZp+sgE3XNBd4VYAjxUHQAAAOrK7WEvISFBe/bs0ciRIwl6QDNWWl6puav26+Vv9p1xApazO7XRU7/tp96xoR6qDgAAAPVldvcNJk2aJMMwdOjQIXffCkADbU47rgmvrNZzy/fUGvTaBgdq9qQB+uDWEQQ9AACAZs7tYW/mzJnq3Lmzdu3apaeeekqVlbX3GLhCSUmJHnjgAcXFxclqtWrYsGH66quv6nz+okWLNGLECAUHBys8PFwjR47Ut99+68aKgaZRWFquWUt36IpXf9Cuw/m1Hvu7we31zZ9Ga/LZHVhOAQAAwAu4fRjn3Xffrfj4eCUnJ+uJJ57Qv//9b5111lmKiIhwONZkMmnevHmNvuf06dO1ePFi3XPPPerevbsWLFigiy++WCtWrNC5555b67lPPPGEZs2apUmTJmn69OkqKyvTL7/8ooyMjEbXBTQn65OPacaHW5R6rLDW4+LbWPWXK/orqUeUhyoDAACAK7g97C1YsEAmk0kmk0mGYSg9Pd1pcDIMwyVhb/369Xr//fc1e/ZszZgxQ5I0depU9evXTzNnztSaNWtqPHft2rWaNWuW/vGPf+jee+9tVB1Ac1VcVqHn/rtb835IVm0rnphN0g3ndNafxvdQq0DWzAMAAPA2Hn0H54lp2RcvXiw/Pz/dcssttm0Wi0U33nijHnroIaWlpalDhw5Oz33xxRcVExOju+++W4Zh6OTJk2rduuFrhqWnp9e6PzMz0/Z5UVGRiopqX7DanYqLi51+juavPm23NSNPD36yQweya+/N69mutZ66rJf6tw+VKspUVFTmklphj98770XbeS/aznvRdt6Ltqsbd2QBk+Hm1czN5ro/FmgymVRRUdGo+40bN04ZGRnasWOH3fZvvvlGF1xwgT799FNddtllTs+NiorSyJEjdd555+npp59WTk6OYmJi9PDDD+uOO+6ody31Cbevv/66IiMj630PoC7KK6Uv0836OsMkQzX/XPqbDP0mvlJj4wz5uf2JXgAAAFTLzs7WTTfdJElKS0tTfHx8o6/p9p69FStWuPsWdjIzMxUbG+uwvXpbTbOC5ubmKjs7Wz/88IO+/fZbPf744+rYsaPmz5+vO++8UwEBAbr11lvdWjvgDuknpXf2+elQYe1/fOgcYuiarhVqZ/VQYQAAAHArt4c9T6+tV1RUpKCgIIftFovFtt+Z6sXfc3Jy9P777+uqq66SVLV0RP/+/fX000/XO+ylpaXVuj8zM1NDhw6VJCUlJbkkvTdUcXGxVq1aZaul+vuF5q+mtquoNPTv1Qc1Z12yyitr7sAP9DPrnvO7aOrwDvJjlk2P4vfOe9F23ou28160nfei7ermTI+ANYTPzbpgtVpVUlLisL16fLDV6rzbonp7QECAJk2aZNtuNpt11VVX6fHHH1dqaqo6duxY51rqE96sVmuNtXmaxWJpNrWgfqrbLj23UPcu2qyfUnJrPX5AfJj+MXmgurcL8VCFqAm/d96LtvNetJ33ou28F21XM3d8XzwW9srLyzV//nwtXbpUycnJkqTOnTvrsssu0/Tp0xUQEOCS+8TGxjqd7bN6MpS4uDin57Vt21YWi0Xh4eHy8/Oz2xcdHS2paqhnfcIe0BQ+3XJID3+8TfnF5TUeE+Bn0l3nd9dtY7rKn4fzAAAAfJJHwl5aWpouvvhi26Qp1XPC7NixQ5999pleeuklff755y4JUoMGDdKKFSuUl5en0NBQ2/Z169bZ9jtjNps1aNAg/fTTTyotLVVgYKBtX/VzflFRrDOG5qu4XHrg4x36dOvhWo/rFROif1w5UH3jwjxUGQAAAJqC2/+kX1ZWpgkTJmj79u22kFe97p5UFfx27NihCRMmqKys8dO7T5o0SRUVFZo7d65tW0lJiebPn69hw4bZll1ITU3Vrl277M696qqrVFFRoTfffNO2rbi4WO+884769OlTY68g0NRS8qVnt/rVGvT8zCbdcV43fXrHuQQ9AACAFsDtPXvvvPOOtmzZYhfuTlW92Pq2bdv09ttv6/e//32j7jds2DBNnjxZDz74oLKystStWze9+eabSklJsVuwferUqfruu+/s6rn11lv1+uuv649//KP27Nmjjh076q233tLBgwe1dOnSRtUFuENFpaFXv0vWnF/8VFnLkgod27bSi1cP0uCObTxYHQAAAJqS28Pehx9+aPu8U6dOuv/++zVw4EBJ0pYtW/Tcc8/ZnuH78MMPGx32JGnhwoV69NFH9dZbbyk3N1cDBgzQsmXLlJSUVOt5VqtV3377rWbOnKk33nhDJ0+e1KBBg/TZZ5/pN7/5TaPrAlzpSF6x7nxvk9YnH5NqCXq/G9xeT07oqxCLa56LBQAAgHdwe9jbtGmTJCkkJETff/+92rdvb9s3cuRITZgwQX379lVeXp42b97skntaLBbNnj1bs2fPrvGYlStXOt0eHR2tBQsWuKQOwF1W7TmqexdtVs7J0hqPCbH465kr+mvCQIYfAwAAtERuf2YvJydHJpNJQ4cOtQt61dq3b6/ExERJ0rFjx9xdDuDVKioNPb98t6bNX19r0EtMaKMv7h5F0AMAAGjB3N6zFxQUpPLy8lqDXG5u1Vpgp86ACcBeVn6x7n5vs348kFPjMX4mk+65oLtuP68bC6QDAAC0cG7v2Wvfvr0Mw9CmTZv0wQcfOOz/8MMPtXHjRplMJqc9fwCkNfuydfFLq2sNehFBht6+YbDuHNudoAcAAAD39+yde+652r17twzD0DXXXKMXX3xR/fv3l8lk0rZt27R27Vq7YwH8T0WloVe+3acXv9mj0yaytTOgbaWu6VqpQfEsqQAAAIAqbg97t956q+bNm2dbYmHdunW2Bc4l+6UYbr75ZneXA3iNE0Vluuf9TVqx+2iNxwT4mTTjgm5qd2KnTHTmAQAA4BRuH8Z59tln65577pFhGLa19k5Vve2OO+7Q0KFD3V0O4BV2H87X5a+srjXotQ+36sM/jNTU4R0IegAAAHDg9p49SXr++efVtm1b/fWvf1VRUZHdPqvVqpkzZ+rxxx/3RClAs/f5tkzN+HCLCksrajzmgt7Rem7yQIW3CnT4nQIAAAAkD4U9SXrkkUd0xx136Ouvv1ZKSooMw1Dnzp01duxYtWnTxlNlAM1WRaWh55bv1j9X7q/xGD+zSQ9c2FM3j+ritKccAAAAqOaxsCdJ4eHhmjRpkidvCXiF44WluvO9Tfp+b3aNx0SFBOnVKYOVmNDWg5UBAADAW3k07AFwtPtwvm5a+JPSjtU8HHNwx3D987ohahdq8WBlAAAA8GYuD3s33HCDJCkxMVG33Xab7eu6MJlMmjdvnqtLApqtb3cd0Z3vbtLJWp7Pu3ZYRz1+WR8F+ft5sDIAAAB4O5eHvQULFshkMqmgoEC33Xab7eszqZ6tk7CHlsAwDL3xQ4qe+WyHKmtYPy/Qz6xZl/fV1UM7erY4AAAA+ASGcQIeVlZRqcf+s13vrU+t8ZiYUIv+ed1gndWRyYsAAADQMG4Je6culO7sa6ClOlFYptve+Vlr9ufUeExiQhvNmTJY0SE8nwcAAICGc3nYW7FihSQpKirK7mugpUvOPqkbF/ykA9knazxm8pB4PXNFfwX6mz1YGQAAAHyRy8Pe6NGja/0aaIk2pBzTTQs36HhhmdP9JpP05wt76ZYk1s8DAACAa/DMHuBmX/5yWHe/v0kl5ZVO91sD/PTS1YM0vm+MhysDAACAL3P7WDHDMFRYWKjCwkKVl5fbtn/66ac6//zz1adPH02aNEk7d+50dymAx725JkW3vfNzjUEvNsyiD/8wgqAHAAAAl3N72Js7d65CQkIUEhKif/3rX5Kk1atX64orrtB3332nXbt2acmSJRozZoyysrLcXQ7gEYZh6O9f7tLjn25XTfMTDYwP03/+eI76tQ/zbHEAAABoEdwe9jZs2GCbjXP8+PGSpFdeecW2rfr5pOzsbM2ZM8fd5QBuV1peqfs+2KJ/rtxf4zEX9o3RoltHKDqUGTcBAADgHm4Pe5s2bZIkRUdHq0ePHpKkb7/9ViaTSWazWa1atbIdu3z5cneXA7hVQUm5bnzzJy3ZlFHjMdNGdNKcKYNlCfDzYGUAAABoadwe9jIzM2UymdSxY0fb19nZ2ZKkF154QWlpaWrbtq0Mw9C+ffvcXQ7gNrknS3Xtv9fq+73ZNR7z54t66YkJfeVnZsZNAAAAuJfbw15OTtXi0bGxsZKkvXv32vaNHTtW4eHhSkxMlCTl5eW5uxzALbLyinXV3B+1Nf2E0/0Bfia9eNUg/WF0V5ZWAAAAgEe4femF6je2J09WLSR9au9dQkKCJMliqXpuKSgoyN3lAC6XdqxQ181bp4M5hU73tw7y17+uG6Jzu0d6uDIAAAC0ZG7v2YuKipJhGFq3bp1++OEHffDBB5KqevqsVqsk6fjx45KkiIgId5cDuNS+rAJN/tePNQa9qJAgLbp1OEEPAAAAHuf2nr1BgwYpPT1dJ0+eVFJSkqSq3r4RI0bYjtm9e7dMJpPi4uLcXQ7gMr9knNDUN9br2MlSp/s7tLXqnRuHq2NEK6f7AQAAAHdye8/etddea/vcMAzbkgtTpkyRJG3fvl2HDx+WJNuze0Bz9/PBXF3z77U1Br1u0a314a0jCXoAAABoMm4Pe1dffbVuv/12u2233nqrfvvb30qS/vOf/0iqCoIjR450dzlAo/188JimvbFe+cXlTvf3bx+mD24doZgw1tADAABA03H7ME6pahH1hx9+WCkpKerUqZPdcM17771Xf/zjHyVJISEhnigHaLCfDx7T1HnrdbK0wun+oQlt9fr0sxVqCfBwZQAAAIA9j4Q9qWpClurlF05ltVptE7UAzdmZgt7oHlH613VDZA1ksXQAAAA0PY+FPcCbbUipGrpZU9C7sG+MXr7mLAX6u31kNAAAAFAnHgl7eXl5evXVV/X1118rIyNDJSUlTo8zmUzav3+/J0oC6uxMQe+iflVBL8CPoAcAAIDmw+1h79ChQzr33HN18OBBSbLNxulM9QLsQHOxKTW31qB3cf8YvXQ1QQ8AAADNj9vD3iOPPKKUlBRJVWGupkBXWwgEmsLOzDyCHgAAALyW28PeF198YQt4BDp4iwNHC3T9vHXKq2F5hUv6x+rFqwcR9AAAANBsuf2dam5uriTJz89P8+fPV05OjsrLy1VZWenwUVHhvAcF8KT03EJd9/o6ZRc4XzCdoAcAAABv4PZ3q9Vr6o0cOVLTpk1TmzZtZDbzJhnNU1Z+sa57fZ0OnSh2un9cn3YEPQAAAHgFt79jveyyy2QYhgoKCtx9K6BRjheW6vrX1yslp9Dp/lHdI/XKtTyjBwAAAO/g9netDz30kCIiIrRp0ya99dZb7r4d0CDFZRW68c0N2n0k3+n+IZ3a6LXrhyjInwXTAQAA4B3cPkHLa6+9pmHDhunzzz/X9OnT9c9//lOJiYmKiIhwevxjjz3m7pIAOxWVhu56b5N+PpjrdH/fuFC9MT1RrQI9siwlAAAA4BJuf/f6xBNP2JZcMAxD69at07p162o8nrAHTzIMQ098ul3Ldxxxur9rVLAW3jBUYdYAD1cGAAAANI5HHz6qbdF0lmVAU3h15X69tfag033tw61656bhimgd5OGqAAAAgMbzyLg0ghyao8U/p2v2f3c73RfeKkALbxyqmDCLh6sCAAAAXMPtYW/+/PnuvgVQb9/vPao/f7TV6b4gf7PmTTtbXaNae7gqAAAAwHXcHvamTZvm7lsA9bIvK1+3v71R5ZWOPc5mk/TyNWdpSKe2TVAZAAAA4DosGIYWJfdkqW5YsEH5JeVO98+6vJ9+0zfGw1UBAAAArufRueQ3bdqkpUuXKjk5WYWFhVq0aJEOHTqk8vJy+fn5qX379p4sBy1MaXmlbn37Z6Uec75o+h3nddN1wzt5uCoAAADAPTwS9oqLi3XDDTdo0aJFkqombKmemfPee+/V4sWLZTKZtH//fnXqxJttuJ5hGHrkk21an3zM6f7fDorTfeN7eLgqAAAAwH08Moxz4sSJWrRokQzDcJiZc9q0abbtS5Ys8UQ5aIFe/z5ZH2xId7pvcMdw/W3igFqXBgEAAAC8jdvD3kcffaQvvviixv1jx45VUFDVOmarVq1ydzlogVbsztJfvtjpdF/7cKteu/5sWQL8PFwVAAAA4F5uD3sLFiywfX7JJZforLPOstsfFBSk3r17yzAMbd++3d3loIU5mHNSd7+3Sc6WegwO9NPr085WVAiLpgMAAMD3uD3sbdiwQZLUvn17ffLJJ+rSpYvDMXFxcZKkzMxMd5eDFqSotEJ/eHuj8oodZ940maSXrj5LvWNDm6AyAAAAwP3cHvaOHTsmk8mkQYMGyc/P+VC5yspKSVJJSYm7y0ELYRiGHlyyVTsz85zuf/CiXrqgTzsPVwUAAAB4jtvDXqtWrSRJubm5NR6za9cuSVJoKL0scI0316Tok82HnO6bMDBON49y7GEGAAAAfInbw17nzp1lGIbWrVun3bt3O+x/6623lJKSIpPJpG7durm7HLQA65OP6enPnE/I0ismRH+b2J+ZNwEAAODz3L7O3tixY7V582ZVVFTonHPOsfX0SVUTtixfvtz29fnnn+/ucuDjcgpKdMe7G1Ve6TgjS6jFX69dP0StAj2yvCQAAADQpNzes3fbbbcpMDBQUtXzexkZGZKqnqn68ssvVVFRIUkKDAzULbfc4u5y4MMqKw396YMtysp3/uzni1cPUqeIYA9XBQAAADQNt4e9Ll266Pnnn5dhGLahcyaTyWEY3XPPPaeEhAR3lwMfNvf7A/puz1Gn++65oLvO78WELAAAAGg53B72JOn222/XokWL1KFDBxmGYffRvn17vfPOO/rjH//oiVLgo34+mKvn/uv4TKgkje4RpbvO7+7higAAAICm5bGHlyZPnqxJkyZp48aNSk5OllQ1ecvgwYOZLAONcqKwTHe9t8npc3rtQoP0/JUDZTbzMwYAAICWxaMzVZhMJg0ZMkRDhgzx5G3hwwzD0MyPtijjeJHDPvOvC6dHtA5qgsoAAACApuWRYZyAu3y4IV3/3X7E6b67x/bQ8C4RHq4IAAAAaB480rOXn5+vV199VV999ZUyMjJUUuJ8tkSTyaT9+/d7oiT4gNScQj25dLvTfSO6ROiO81m3EQAAAC2X28Pe4cOHNWrUKB04cEBS1bC7mvDsHuqqotLQnz7YrJOlFQ77IoID9eLVg+THc3oAAABowdwe9h5++GFbb52zJReq1RYCgdO9tmq/NhzMdbrv7xMHqF2oxcMVAQAAAM2L28PeF198YQt4BDq4wi8ZJ/TCV3uc7rtmaAdd0If19AAAAAC3T9CSm1vV+9KqVSt9/PHHysvLU2VlpdOPigrHIXnAqUrKK3TfB1tUVuH4h4OObVvpkUv6NEFVAAAAQPPj9rCXkJAgSTrnnHN0+eWXq3Xr1u6+JXzYnBX7tftIvsN2s0l64aqBCg7y6GoiAAAAQLPl9rB3/fXXyzAM7dq1S2VlZe6+HXzYzsw8vbpin9N9t43pqiGd2nq4IgAAAKD5cnvYu//++zVixAilpaVpwoQJ+uGHH3TixAl33xY+pryiUjMXb1V5pePwzd6xobp7bI8mqAoAAABovtwe9gICAjR//nxZrVYtX75cSUlJatu2rfz8/Bw+/P1dMwSvpKREDzzwgOLi4mS1WjVs2DB99dVX9b7OuHHjZDKZdMcdd7ikLjTc66uTtS3D8Y8EfmaTZk8aoEB/t/8oAwAAAF7F7e+Qk5OTde6556qoqEiGYZzxwxWmT5+u559/XlOmTNFLL70kPz8/XXzxxVq9enWdr7FkyRL9+OOPLqkHjXPgaEGNs2/emtRF/dqHebgiAAAAoPlze9h75JFHlJ2dLel/6+w5+3CV9evX6/3339df//pXzZ49W7fccou+/fZbderUSTNnzqzTNYqLi3XffffpgQcecFldaBjDMPTwx7+opLzSYV/XqGDdNbZ7E1QFAAAANH9un7rwq6++kslksvXahYeHKyQkRGaze3Lm4sWL5efnp1tuucW2zWKx6MYbb9RDDz2ktLQ0dejQodZrPPvss6qsrNSMGTP02GOPNbiW9PT0WvdnZmbaPi8qKlJRUVGD79VYxcXFTj9vaku3HtaPB3IctpskPXVZLxnlpSoq93xdzUlzbTucGW3nvWg770XbeS/aznvRdnXjjizg9rBXWFgoSYqMjNR3332n3r17u/V+mzZtUo8ePRQaGmq3fejQoZKkzZs31xr2UlNT9be//U1vvPGGrFZro2o5U6g81apVqxQZGdmo+7nKqlWrmroESVJhufSXzX6qinb2RsVU6ujOdVq+0/N1NWfNpe1Qf7Sd96LtvBdt571oO+9F29WsejSkK7l9GGe/fv0kSUOGDHF70JOqestiY2MdtldvO3ToUK3n33fffTrrrLN09dVXu6U+1N3naWbllzkGvbBAQ5d2dBzWCQAAAOB/3N6zd8cdd2jq1KnatGmT8vPzFRIS4tb7FRUVKSgoyGG7xWKx7a/JihUr9NFHH2ndunUuqSUtLa3W/ZmZmbYex6SkJMXHx7vkvg1RXFxs+0tLUlKS7fvVVLYfytMPazc43Tfr8v4a3yfawxU1X82t7VB3tJ33ou28F23nvWg770Xb1c2ZHgFrCLeHvaSkJP32t7/VJ598oqSkJM2YMUP9+/dXeHi40+M7duzYqPtZrVaVlJQ4bK8eH1zT0Mzy8nLddddduv7665WYmNioGqrVJ7xZrdZGDxt1FYvF0qS1VFYaeuqLn+VkST2N7hGlCYM7unRSH1/S1G2HhqPtvBdt571oO+9F23kv2q5m7vi+uD3sJSQk2N6Yb9myRVOnTq3xWJPJpPLyxs22ERsbq4yMDIft1ZOhxMXFOT1v4cKF2r17t1577TWlpKTY7cvPz1dKSoqio6PVqlWrRtWHM/toY7q2pDuuqRfob9asy/sS9AAAAIA68NhK1NVLLLh7nb1BgwZpz549ysvLs9tePTRz0KBBTs9LTU1VWVmZzjnnHHXu3Nn2IVUFwc6dO2v58uWNrg+1O1lSrmf/u9vpvj+O6aZOEcEerggAAADwTm7v2atWW5A7dWmGxpo0aZKee+45zZ07VzNmzJAklZSUaP78+Ro2bJhthszU1FQVFhaqV69ekqSrr77aaRC84oordPHFF+vmm2/WsGHDXFIjavbqyn06mu84DLdTRCvdOrpLE1QEAAAAeCePPLPnyWF3w4YN0+TJk/Xggw8qKytL3bp105tvvqmUlBTNmzfPdtzUqVP13Xff2UJmr169bMHvdJ07d9Zvf/tbT5TfoqUdK9S/v092uu/hi3vLEuDn4YoAAAAA7+X2sLdy5Up338LBwoUL9eijj+qtt95Sbm6uBgwYoGXLlikpKcnjtaDu/vblLpWWOy6pMLJrhMb1adcEFQEAAADey2PDOD3JYrFo9uzZmj17do3H1DWEump4KWq3IeWYPtua6bDdbJIevbQPk7IAAAAA9eSxCVqAmhiGob99scvpvquHdlTv2FAPVwQAAAB4P5f37M2aNUuS1KdPH02aNMn2dV099thjri4Jzdy3u7K04WCuw/aQIH/dN65HE1QEAAAAeD+Xh70nnnhCJpNJEydO1KRJk2xf1xVhr2WpqDT07JfOl1q47byuimgd5OGKAAAAAN/QbIZx8mxcy/TJpgztPpLvsL1daJB+P7JzE1QEAAAA+Aa3TNByenAjyMGZkvIKPf/VHqf77h7bQ9ZAlloAAAAAGsrlYW/+/PmSpISEBLuvgdMt+ilNGceLHLZ3jgzW5LPjm6AiAAAAwHe4POxNmzat1q8BqapX758r9zvdN2N8TwX4NZsRxgAAAIBX4h01msSHG9KVeaLYYXv/9mG6uH9ME1QEAAAA+BbCHjyutLyyxl69u8d2ZwF1AAAAwAVcPoyzS5cuDT7XZDJp/37nIQC+46ON6U6f1esbF6qxvaOboCIAAADA97g87KWkpMhkMjVoBk56dHxfWUWl5qzY53TfXfTqAQAAAC7jlqUXpPoHN5ZnaBk+3pih9FzHXr3esaEa36ddE1QEAAAA+CaPrLMnqdbevupgSODzbRWVhl5dWUOv3vnd6NUDAAAAXMjlE7RUVlY6fMyYMUOGYej888/X6tWrdfz4cR0/flw//PCDxo4dK0m68cYbVVlZ6epy0Ix8teOIUnIKHbb3bBei3/RlBk4AAADAldw2jLPakiVL9NxzzykuLk7Lli2TxWKx7RsxYoSWLl2qbt266Y033tDo0aN13XXXubskNJF/f3/A6fY7zu8ms5lePQAAAMCV3L70wosvvihJGjBggF3Qq2axWNS/f38ZhqFXX33V3eWgifx8MFc/H8x12N6hrVUX9aNXDwAAAHA1t4e9LVu2yGQyaceOHaqoqHDYX15erp07d0qSfvnlF3eXgybyeg29ejee01n+fiz3CAAAALia299lV0+6kpaWpmuuuUZ79+617du3b5+mTJmi1NRUd5eBJnQw56S+3H7YYXuYNUCTz+7QBBUBAAAAvs/tz+wNGTJEq1atkiR99NFH+uijjxQYGChJKi0ttR1nMpk0ePBgd5eDJjBvdbKcTbR63fCOCg5y+48gAAAA0CK5vWfvvvvus1tSwTAMlZSUqKSkxGGphRkzZri7HHjYiaIyfbgh3WF7oJ9Z00YkeL4gAAAAoIVwe9i79NJL9cwzz0iqCnomk8nuo3rbk08+qUsvvdTd5cDDPvo5XUVljs9qXj4oTtGhjhP2AAAAAHANj8yM8eCDD2rlypW65JJLZLVaZRiGDMOQ1WrVxRdfrBUrVuiRRx7xRCnwIMMw9Pbag0733TSqi4erAQAAAFoWjz0wNWrUKI0aNUqVlZXKzs6WJEVGRspsZiZGX7Vmf44OZJ902D6sc1v1jAlpgooAAACAlsPjs2OYzWZFR0d7+rZoAjX16l0/opOHKwEAAABaHpeHvYULF0qSEhISlJSU1GTXQNM6fKJYy3cccdge2TpI4/uwiDoAAADgbi4Pe9OnT5fJZNLEiRMbHNRccQ00rffWp6qi0nG9hWuGdlCgP0N3AQAAAHfjXTdcrryiUu//lOqw3WySrhnasQkqAgAAAFoetz2zd/DgQdtwTLQs3+/L1pG8EoftY3u3U1y4tQkqAgAAAFoet4W9DRs26Pe//727Lo9mbLGTRdQlacowevUAAAAAT3HrbJyG4fjMVl2YTCYXVwJPOV5Yqq+cTMwSE2rRqO5RTVARAAAA0DK5Jew1NOS56nw0nU+3HFJpRaXD9t8Nbi8/MyEeAAAA8BSXh7358+e77FoJCQkuuxY8Y/HPzodwThoS7+FKAAAAgJbN5WFv2rRprr4kvMTuw/namn7CYfuQTm3UJap1E1QEAAAAtFwsvQCX+Wij8169yfTqAQAAAB5H2INLVFYaWrblkMN2S4BZlwyIbYKKAAAAgJaNsAeX2Jiaq0Mnih22/6ZvjEIsAU1QEQAAANCyEfbgEkud9OpJ0mUD4jxcCQAAAACJsAcXqKg09Nm2ww7bQy3+GtUjsgkqAgAAAEDYQ6OtO5Cj7IISh+0X9otRkL9fE1QEAAAAgLCHRlu61fkQzksZwgkAAAA0GcIeGqWsolJf/OI4hLNtcKBGdo1ogooAAAAASG4Me1u3btX27dttX+/cuVObN2921+3QRH5KPqbjhWUO2y/qFyN/P/6WAAAAADQVt7wbP3TokM4++2zNmDHDtm3GjBkaOnSo0tOdL7wN77R8xxGn2y/pz9p6AAAAQFPyd8dF4+LidPXVV+udd97R2rVrJUlffPGFpkyZovj4eHfcEk3AMAx95STshVkDNLRz2yaoCAAAAEA1t4Q9SZo1a5Y++OADPfroozKZTAoMDNRTTz3lrtuhCezIzFPG8SKH7WN7RTOEEwAAAGhiLg97qampkiSz2awrrrhCixYtkslk0lVXXSWz2Wzb37FjR1ffGh7mrFdPksb1aefhSgAAAACczuVhLyEhQSaTyW6bYRhatGiRFi1aJEkymUwqLy939a3hYcu3O4a9QH+zknpENUE1AAAAAE7l8rCXlJRkC3vp6enav3+/TCaTunTpwvN6PiTjeJF2ZOY5bD+3W6SCg9w2OhgAAABAHbn8XfnKlSttn48aNUqHD1etwdauXTutWLHC1bdDE1m5O8vp9vEM4QQAAACaBbfNorFs2TKtWbNGt99+u+644w79+OOPWrZsmbtuBw/7bvdRp9vP7xXt4UoAAAAAOOOWsGcYhh5++GEFBwdr5syZmjFjhoKDg/XQQw/JMAx33BIeVFZRqTX7cxy294kNVXSopQkqAgAAAHA6t4S9I0eOyGw26/bbb1dERIQiIiJ0xx13yGw224Z1wnttPJirghLHCXZG92RiFgAAAKC5cMtMGjExMdq4caNKSkps2x577DE988wzDjN1wvt8t8f5EM6k7oQ9AAAAoLlw27SJJpNJFsv/hvRVf56dna3169eroKBAcXFxGjZsmAICAtxVBtxg1V7HsBcc6Kchndo0QTUAAAAAnPHYHPllZWW644479MYbb6iystK2PTw8XLNmzdIf//hHT5WCRjiaX6JfMhyXXBjZLVKB/m6b7wcAAABAPbk87G3evFlvvPGGJOnee+9V586dJUnTpk3TokWLHCZoyc3N1V133aWjR4/qiSeecHU5cLEfDzhOzCKJhdQBAACAZsblXTGvvvqqXnnlFb3++uvq0KGDpKq1995//31Jsntmz2QyyWQyyTAMPfPMM9q2bZury4GLra0h7I3qFunhSgAAAADUxuVhb+3atZKkHj16yN+/quNw7ty5kqqWZGjXrp3GjRun0aNHq23btraevsrKSv3rX/9ydTlwsbVOllyIDbOoU0SrJqgGAAAAQE1cHvbS0tJkMpkUExNj2/bVV1/JZDLp7rvv1sGDB/Xf//5XK1asUFpamu655x7bcatWrXJ1OXChI3nFOpB90mH7iC4RzLIKAAAANDMuD3sFBQWSJKvVKknKyMhQTk6OunTpohdeeMFu5k2LxaLnn39e3bt3l2EYSk1NdXU5cKGahnAO7xLh4UoAAAAAnInLw1710M3qGTc3bNggSTr//PNrPCchIUGSVFxc7Opy4EI1hb0RXQl7AAAAQHPj8rAXEREhwzC0YcMGHTlyxPa8Xk6O86Bw9OhR/fTTT5KqlmFA87X2wDGHbe3DrYpvY22CagAAAADUxuVhr2/fvpKkw4cPKy4uTl9++aVMJpM+/vhjTZo0SatXr9bRo0eVlpamjz/+WBdccIGOHz8uk8mkfv36ubocuEh2QYmSnTyvN6xLW57XAwAAAJohl6+zN2HCBH311VeSqmbfrA4ChmHo448/1scff1zruWieNh7Mdbp9WOe2Hq4EAAAAQF24vGfvpptuUmJiom1JBZPJpLlz56pfv34yDMPho1p8fLxuvPFGV5cDF9mYetzp9sEd23i2EAAAAAB14vKevaCgIK1atUqLFy9WRkaGxowZo6FDh2rEiBE6//zzlZWVZTfszzAMtWnTRh999JFat27t6nLgIhtTHXv2Qi3+6hpFmwEAAADNkcvDnlQV+KZMmWK3rU+fPtq8ebMeeeQRLVu2TCdOnFD79u11ySWX6IEHHlBcXJw7SoELlFVUamv6cYftgzq2kdnM83oAAABAc+SWsFeTmJgYvf766568JVxgV2a+issqHbYP7hju+WIAAAAA1InLn9mD73E2hFPieT0AAACgOSPs4YychT2TSRpEzx4AAADQbPlk2CspKbE9B2i1WjVs2DDbchC1WbJkia666ip16dJFrVq1Us+ePXXffffp+PHj7i+6GducdtxhW/fo1gq1BHi+GAAAAAB14pNhb/r06Xr++ec1ZcoUvfTSS/Lz89PFF1+s1atX13reLbfcop07d+q6667Tyy+/rAsvvFCvvPKKRowYoaKiIg9V37ycKCrTwZxCh+1ndWAIJwAAANCceXSCFk9Yv3693n//fc2ePVszZsyQJE2dOlX9+vXTzJkztWbNmhrPXbx4scaMGWO3bciQIZo2bZreeecd3XTTTe4svVnacSjP6fZ+8WEergQAAABAffhc2Fu8eLH8/Px0yy232LZZLBbdeOONeuihh5SWlqYOHTo4Pff0oCdJV1xxhaZNm6adO3fWu5b09PRa92dmZto+LyoqatLew+LiYqefbz6Y7fT4bhFBLba3s7mpqe3Q/NF23ou28160nfei7bwXbVc37nhv7XNhb9OmTerRo4dCQ0Pttg8dOlSStHnz5hrDnjOHDx+WJEVGRta7lvrcZ9WqVQ26hzusWrXK9vk3e806fbSvSYbSt61T1g4PF4YzOrXt4F1oO+9F23kv2s570Xbei7arWXa2806WxvC5Z/YyMzMVGxvrsL1626FDh+p1vb///e/y8/PTpEmTXFKft0k/6bhoejurFOjXBMUAAAAAqDOf69krKipSUFCQw3aLxWLbX1fvvvuu5s2bp5kzZ6p79+71riUtLa3W/ZmZmbYex6SkJMXHx9f7Hq5SXFxs+0tLUlKSLBaLisoqdO/a7xyOTeweo/Hj+3q6RNTAWdvBO9B23ou28160nfei7bwXbVc3Z3oErCF8LuxZrVaVlJQ4bK8eH2y1Wut0ne+//1433nijfvOb3+iZZ55pUC31CW9Wq7XOtbmbxWKR1WrVrqO5qjQc9w/s0LbZ1Ap71W0H70PbeS/aznvRdt6LtvNetF3N3PF98blhnLGxsXYTn1Sr3hYXF3fGa2zZskUTJkxQv379tHjxYvn7+1wmrpNfapiJs28cM3ECAAAAzZ3Phb1BgwZpz549ysuzDyrr1q2z7a/N/v37deGFFyo6Olqff/65Wrdu7a5Sm73dh52HvT5xoU63AwAAAGg+fC7sTZo0SRUVFZo7d65tW0lJiebPn69hw4bZZshMTU3Vrl277M49fPiwxo8fL7PZrP/+97+KioryaO3Nzd4jBQ7b4sIsCrMGNEE1AAAAAOrD58YnDhs2TJMnT9aDDz6orKwsdevWTW+++aZSUlI0b94823FTp07Vd999J8P430NpF154oQ4cOKCZM2dq9erVWr16tW1fu3btNG7cOI++lqa2N8sx7HVvF9IElQAAAACoL58Le5K0cOFCPfroo3rrrbeUm5urAQMGaNmyZUpKSqr1vC1btkiSnn32WYd9o0ePblFhL6egRMdOljps7x7dcoe1AgAAAN7EJ8OexWLR7NmzNXv27BqPWblypcO2U3v5Wro9ToZwSlIPevYAAAAAr+Bzz+zBNfZl5Tvd3q0dPXsAAACANyDswamaeva6MYwTAAAA8AqEPTi110nPXmyYRaEWZuIEAAAAvAFhD07tyzrpsI1ePQAAAMB7EPbg4GRJubILShy2d40i7AEAAADegrAHB6m5RU63d44M9nAlAAAAABqKsAcHqcech71OEa08XAkAAACAhiLswUHqsUKn2xMi6NkDAAAAvAVhDw4OOunZ8zOb1L6NtQmqAQAAANAQhD04cDaMM76NVQF+/LgAAAAA3oJ373DgLOx1YggnAAAA4FUIe7BTWiEdyXdcdqFTWyZnAQAAALwJYQ92ckudb2cmTgAAAMC7EPZgJ7fE5HR7PJOzAAAAAF6FsAc7uY4jOCVJsWGEPQAAAMCbEPZgJ7fUec9eXDhhDwAAAPAmhD3YcdazF+hvVkRwoOeLAQAAANBghD3YcRb24sIsMpud9/gBAAAAaJ4Ie7DjbBgnz+sBAAAA3oewBxvDkI4769njeT0AAADA6xD2YHOyXCo3HHv24sItTVANAAAAgMYg7MEmr4YF1duFEvYAAAAAb0PYg01emfNJWKJCgjxcCQAAAIDGIuzBJr/M+fbI1oQ9AAAAwNsQ9mBTU9iLpmcPAAAA8DqEPdjkO1l2QaJnDwAAAPBGhD3Y5Dnp2Wsd5C9roJ/niwEAAADQKIQ92DgbxhnZOtDzhQAAAABoNMIebJzNxslMnAAAAIB3IuzBJt/JOnuEPQAAAMA7EfYgSao0DJ0sd9weEUzYAwAAALwRYQ+SpPzichlyHMbZJphn9gAAAABvRNiDJOlEkfNF9sKtAR6uBAAAAIArEPYgSTpR5GQMp6TwVoQ9AAAAwBsR9iBJyit23rMXRs8eAAAA4JUIe5AkHadnDwAAAPAphD1IqvmZvTArE7QAAAAA3oiwB0m1hT169gAAAABvRNiDJCmvhmGchD0AAADAOxH2IEk64WSCluBAPwX68yMCAAAAeCPeyUOSlFfs2LMXSq8eAAAA4LUIe5AkFZZWOGxrHeTfBJUAAAAAcAXCHiQ5D3utCHsAAACA1yLsQZLzsBcc6NcElQAAAABwBcIeJNXQsxdIzx4AAADgrQh7kFRDz14QPXsAAACAtyLsQVJNYY+ePQAAAMBbEfag8opKlZRXOmznmT0AAADAexH2oJNOevUkntkDAAAAvBlhDyosdVxQXeKZPQAAAMCbEfagkyX07AEAAAC+hrAHFdU4jJOePQAAAMBbEfagknLnYc8SQNgDAAAAvBVhDyp1MhOnJAX68eMBAAAAeCvezUMlFTWEPX9+PAAAAABvxbt51NyzR9gDAAAAvBbv5kHYAwAAAHwQ7+bBM3sAAACAD+LdPFRawzN7QfTsAQAAAF6Ld/NgGCcAAADgg3g3D8IeAAAA4IN4N48ah3HyzB4AAADgvXg3D5XU0LMXQM8eAAAA4LV4Nw9VVhpOtweY+fEAAAAAvBXv5qEKw3nYM5k8XAgAAAAAlyHsQZU1hD0zaQ8AAADwWoQ9qIasJz8zYQ8AAADwVoQ91PjMHlkPAAAA8F6EPdTyzB5pDwAAAPBWhD04HcZJrx4AAADg3Xwy7JWUlOiBBx5QXFycrFarhg0bpq+++qpO52ZkZOjKK69UeHi4QkNDdfnll+vAgQNurrhpOZughef1AAAAAO/mk2Fv+vTpev755zVlyhS99NJL8vPz08UXX6zVq1fXel5BQYHOO+88fffdd3rooYf05JNPatOmTRo9erRycnI8VL3nOQt7DOEEAAAAvJt/UxfgauvXr9f777+v2bNna8aMGZKkqVOnql+/fpo5c6bWrFlT47mvvvqq9u7dq/Xr1ysxMVGSdNFFF6lfv376xz/+ob/85S8eeQ2eVlHpuI2OPQAAAMC7+VzYW7x4sfz8/HTLLbfYtlksFt1444166KGHlJaWpg4dOtR4bmJioi3oSVKvXr00duxYffDBB/UOe+np6bXuz8zMtH1eVFSkoqKiel3fVcrKyhy2mU2mJqsH9VNcXOz0czR/tJ33ou28F23nvWg770Xb1Y073nv7XNjbtGmTevToodDQULvtQ4cOlSRt3rzZadirrKzU1q1bdcMNNzjsGzp0qJYvX678/HyFhITUuZaaQqUzq1atUmRkZJ2Pd6W0dLNOH9FbWVGu5cuXN0k9aLhVq1Y1dQloINrOe9F23ou28160nfei7WqWnZ3t8mv63DN7mZmZio2Nddheve3QoUNOzzt27JhKSkoadK63c7bwAqM4AQAAAO/mcz17RUVFCgoKcthusVhs+2s6T1KDzq1JWlparfszMzNtPY5JSUmKj4+v1/Vd5ZuTO6Sjh+22BQYGaPz4sU1SD+qnuLjY9leypKQk288rmj/aznvRdt6LtvNetJ33ou3q5kyPgDWEz4U9q9WqkpISh+3V44OtVmuN50lq0Lk1qU94s1qt9b6+q5jNjh28/mZzk9WDhrNYLLSbl6LtvBdt571oO+9F23kv2q5m7vi++FzYi42NVUZGhsP26slQ4uLinJ7Xtm1bBQUF2U2aUtdzvd2fxvXUtWfH6ce1a2VIOjtxqKz8xQUAAADwaj4X9gYNGqQVK1YoLy/PbpKWdevW2fY7Yzab1b9/f23YsMFh37p169SlS5d6Tc7iTTpGtFJUK5Myf315QzqG8xcXAAAAwMv53AQtkyZNUkVFhebOnWvbVlJSovnz52vYsGG2GTJTU1O1a9cuh3N/+uknu8C3e/duffvtt5o8ebJnXgAAAAAAuIDP9ewNGzZMkydP1oMPPqisrCx169ZNb775plJSUjRv3jzbcVOnTtV3330nw/jfXJS33367/v3vf+uSSy7RjBkzFBAQoOeff17t2rXTfffd1xQvBwAAAAAaxOfCniQtXLhQjz76qN566y3l5uZqwIABWrZsmZKSkmo9LyQkRCtXrtS9996rp59+WpWVlRozZoxeeOEFRUVFeah6AAAAAGg8nwx7FotFs2fP1uzZs2s8ZuXKlU63x8fH68MPP3RTZQAAAADgGT73zB4AAAAAgLAHAAAAAD6JsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiwBwAAAAA+yL+pC2jJysvLbZ9nZmY2YSVSUVGRsrOzJUnp6emyWq1NWg/qjrbzXrSd96LtvBdt571oO+9F29XNqXng1JzQGIS9JnT06FHb50OHDm3CSgAAAAA0F0ePHlVCQkKjr8MwTgAAAADwQSbDMIymLqKlKi4u1rZt2yRJUVFR8vdvuo7WzMxMW+/i+vXrFRsb22S1oH5oO+9F23kv2s570Xbei7bzXrRd3ZSXl9tG/vXv318Wi6XR12QYZxOyWCxKTExs6jIcxMbGKj4+vqnLQAPQdt6LtvNetJ33ou28F23nvWi72rli6OapGMYJAAAAAD6IsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IRdUBAAAAwAfRswcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiwBwAAAAA+iLAHAAAAAD6IsAcAAAAAPoiw52NKSkr0wAMPKC4uTlarVcOGDdNXX31Vp3MzMjJ05ZVXKjw8XKGhobr88st14MABp8fOmzdPvXv3lsViUffu3fV///d/rnwZLZK72y4tLU1PPvmkhg4dqjZt2igyMlJjxozR119/7Y6X06J46veu2urVq2UymWQymZSdne2Kl9Bieartjhw5oltvvVXt27eXxWJRQkKCbrzxRle+lBbHE2134sQJzZw5U927d5fValWnTp104403KjU11dUvp0VpaNvt3r1b9957r0aOHCmLxSKTyaSUlJQaj//00081ePBgWSwWdezYUY8//rjKy8td+EpaHne3XU5OjmbPnq2kpCRFRUUpPDxcw4cP16JFi9zwaloIAz7l6quvNvz9/Y0ZM2YYr732mjFixAjD39/f+P7772s9Lz8/3+jevbsRHR1t/P3vfzeef/55o0OHDkZ8fLyRnZ1td+y//vUvQ5IxceJEY+7cucb1119vSDL+9re/ufOl+Tx3t93//d//GVar1bjmmmuMV155xXjxxReNwYMHG5KMN954w90vz6d54veuWkVFhTFo0CAjODjYkGQcPXrUHS+pxfBE26WmphodOnQwOnToYMyaNcuYN2+e8dRTTxmXXXaZO1+az3N321VUVBiJiYlGcHCwcf/99xv//ve/jQceeMAICQkx2rdvb+Tl5bn7Jfqshrbd/PnzDbPZbPTr188YNGiQIclITk52euznn39umEwm47zzzjPmzp1r3HnnnYbZbDb+8Ic/uOEVtRzubrulS5caAQEBxuWXX268+OKLxiuvvGKcd955hiTjsccec9Or8m2EPR+ybt06Q5Ixe/Zs27aioiKja9euxogRI2o99+9//7shyVi/fr1t286dOw0/Pz/jwQcftG0rLCw0IiIijEsuucTu/ClTphjBwcHGsWPHXPRqWhZPtN0vv/ziEAyKi4uNXr16GfHx8S56JS2PJ9ruVP/85z+NiIgI4+677ybsNZKn2u6iiy4yOnfuXGOAR/15ou1++OEHQ5Lxyiuv2J3/xhtvGJKMJUuWuOjVtCyNabucnBxbyJ49e3atYa9Pnz7GwIEDjbKyMtu2hx9+2DCZTMbOnTsb/0JaIE+03YEDB4yUlBS7bZWVlcb5559vBAUFGQUFBY1/IS0MYc+H3H///Yafn59x4sQJu+1/+ctfDElGampqjecmJiYaiYmJDtvHjx9vdO3a1fb1Z599ZkgyPvvsM7vj1qxZY0gy3nrrrUa+ipbJE21Xkz/96U+GJP5K3UCebLucnBwjIiLCmDNnjvH4448T9hrJE223c+dOQ5Lx6quvGoZR9caotLTURa+g5fJE233xxReGJOPDDz+0O656+xdffNHIV9EyNabtTlVbYNi+fbshyZgzZ47d9oyMDEOS8dRTTzW4/pbME21Xk5dfftmQZGzdurU+JcMwDJ7Z8yGbNm1Sjx49FBoaard96NChkqTNmzc7Pa+yslJbt27V2Wef7bBv6NCh2r9/v/Lz8233kORw7JAhQ2Q2m237UT+eaLuaHD58WK1atVKrVq0aVnwL58m2e/TRRxUTE6Nbb73VNcW3cJ5ou+pnYtu1a6exY8fKarXKarXqoosuqvVZI9TOE2139tlnKzg4WI8++qi+/fZbZWRk6LvvvtPMmTOVmJioCy64wLUvqoVoaNvV9x6S43uVuLg4xcfH816lgTzRdjU5fPiwJCkyMtJt9/BVhD0fkpmZqdjYWIft1dsOHTrk9Lxjx46ppKSkTudmZmbKz89P0dHRdscFBgYqIiKixnugdp5oO2f27dunJUuWaOLEifLz82tI6S2ep9pu69ateu211/T888/TVi7iibbbu3evJOmWW25RYGCgFi1apL/97W9avXq1LrjgAhUWFrrktbQ0nmi7yMhILVq0SCdOnNDYsWMVHx+vMWPGKC4uTt9++638/f1d9XJalIa2XX3vceo1T78P71UaxhNt58yxY8f0+uuva9SoUU7vj9rxXyofUlRUpKCgIIftFovFtr+m8yTV6dyioiIFBgY6vY7FYqnxHqidJ9rudIWFhZo8ebKsVqv+9re/NahueK7t7rrrLl100UUaP358o2tGFU+0XUFBgSQpJiZGn332mczmqr+xxsfH65prrtG7776rm266qZGvpOXx1O9dVFSUzjrrLN1xxx3q27evNm/erGeffVa///3v9eGHHzb6dbREDW27+t5Dqrmd8/LyGn2PlsgTbXe6yspKTZkyRcePH2fm9wYi7PkQq9WqkpISh+3FxcW2/TWdJ6lO51qtVpWWljq9TnFxcY33QO080Xanqqio0NVXX60dO3boiy++UFxcXINrb+k80XaLFi3SmjVr9Msvv7ikZlTx1H8zJenKK6+0BT1Jmjx5sq6//nqtWbOGsNcAnmi7AwcO6LzzztPChQs1ceJESdLll1+uhIQETZ8+XV988YUuuuiixr+YFqahbVffe0g1tzPvVRrGE213ujvvvFNffvmlFi5cqIEDB7r8+i0Bwzh9SGxsrG3owqmqt9X0hr5t27YKCgqq07mxsbGqqKhQVlaW3XGlpaXKyckhNDSQJ9ruVDfffLOWLVumBQsW6Pzzz29M6S2eJ9ru/vvv1+TJkxUYGKiUlBSlpKTo+PHjkqrWT2RIUsN4ou2q/23Xrp3dcX5+foqIiFBubm7DX0AL5om2W7BggYqLi3XppZfaHTdhwgRJ0g8//NDwF9CCNbTt6nuPU695+n14r9Iwnmi7Uz355JN69dVX9be//U3XX3+9S6/dkhD2fMigQYO0Z88eh+EJ69ats+13xmw2q3///tqwYYPDvnXr1qlLly4KCQmxu8bpx27YsEGVlZU13gO180TbVbv//vs1f/58vfDCC7rmmmtc8wJaME+0XVpamt5991117tzZ9vHSSy9JkgYPHqyLL77Yha+o5fBE2w0ZMkRS1SLepyotLVV2draioqIa+zJaJE+03ZEjR2QYhioqKuyOKysrkyQW526ghrZdfe8hOb5XOXTokNLT03mv0kCeaLtqc+bM0RNPPKF77rlHDzzwgMuu2yI19XSgcJ21a9c6rH9SXFxsdOvWzRg2bJht28GDBx3WmPnb3/5mSDJ++ukn27Zdu3YZfn5+xgMPPGDbVlhYaLRt29a49NJL7c6/7rrrjFatWhk5OTmuflktgifazjAM49lnnzUkGQ899JCbXknL44m2+/jjjx0+rrrqKkOSsXDhQuPbb7914yv0XZ5ou+LiYiM6Otro0qWLUVRUZNv+2muvGZKMDz74wB0vzed5ou2ee+45Q5Ixf/58u/NffPFFQ5Lx/vvvu/hVtQyNabtTnWn6/l69ehkDBw40ysvLbdseeeQRw2QyGTt27Gj8C2mBPNV277//vmE2m40pU6YYlZWVLqu/pSLs+ZjJkycb/v7+xv3332+89tprxsiRIw1/f3/ju+++sx0zevRo4/Scn5eXZ3Tt2tWIjo42nn32WeOFF14wOnToYMTFxRlZWVl2x86ZM8eQZEyaNMn497//bUydOtWQZDzzzDMeeY2+yt1tt2TJEkOS0b17d+Ott95y+Dh8+LDHXquv8cTv3elYZ881PNF2b775piHJSExMNF5++WVjxowZRkBAgDFq1Ci7N6KoH3e3XXZ2thETE2MEBgYad911l/Haa68Zt956q+Hn52f07dvXKCkp8dhr9TUNbbvjx48bTz31lPHUU08ZF154oSHJuO+++4ynnnrK+L//+z+7Y5cuXWqYTCbj/PPPN+bOnWvcddddhtlsNm6++WaPvEZf5e62W7dunREYGGhERUUZb7zxhsN7lf3793vstfoKwp6PKSoqMmbMmGHExMQYQUFBRmJiovHll1/aHePsl9AwDCMtLc2YNGmSERoaarRu3dq49NJLjb179zq9z9y5c42ePXsagYGBRteuXY0XXniBv740krvbrjoc1PSxYsUKd748n+ap37tTEfZcw1Nt99577xkDBw40goKCjHbt2hl33HGHkZeX55bX1FJ4ou3S09ONG264wejcubMRGBhoxMbGGjfffDO/d43U0LZLTk6u8f9hnTp1crjPxx9/bAwaNMgICgoy4uPjjUceecQoLS1150vzee5uu/nz59f6XuX0nnacmckwDKORI0EBAAAAAM0ME7QAAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBAAAAgA8i7AEAAACADyLsAQAAAIAPIuwBgBcaM2aMTCaTUlJS6nT8888/L5PJpDZt2qi0tFSSlJCQIJPJ5PBhNpsVEhKiXr166frrr9c333zjxlfiXEpKitPaTCaTpk+fXq9rVX+vqj9O/Z6dfp8xY8a49HX4mlO/VwkJCU1djo0vtOPmzZtd9jMPANUIewDgBTIzM1VZWVnrMRkZGTXuW7x4sSTpsssuU2BgYK3XMQxDBQUF2r17t95++21dcMEF+tOf/lT/ogEAQJPyb+oCAAC1q6ys1EUXXaTKyko988wzuuyyy+z2p6Sk6LHHHtN7772nn376SYMGDbLbf+jQIa1du1aSNGnSpBrvk5SUpKioKOXl5WnDhg3Kzc217XvhhRc0adIkjRw50nUvrB46deqks88+W5KUmJjosusGBwdr4sSJtq/79u3rsmv7olO/V9HR0U1Yie8JDw+3fX8LCwv1xRdfNHFFAHwBYQ8AmrmSkhKNHz9er776qiZMmKBzzjlHhw8fliT9+c9/1scff6zS0lKNGzdOfn5+Dud/9NFHMgxDISEhGj9+fI33efLJJ23D306cOKHBgwfrwIEDtv2ff/55k4W9MWPGaMGCBS6/blRUlK3XE2fG98p9EhISbN/flJQUde7cuYkrAuALGMYJAB6SnJys8PBw23M4kZGRttBW7corr7R7VmfOnDmyWq169tlnlZycrPvvv1+bN2/W/v37JUmLFi3Sueeeq9WrV2v58uXq37+/w32r30Becsklslgsdao1LCxMl156qd227Oxsp8eWl5fr3Xff1YQJExQfHy+LxaKQkBD1799f999/v9LT0+t0z8bYsWOHrrzySkVFRclqtapv3776+9//rrKyslrPO9OzXk888YTd/gULFmjdunW65JJL1KZNG4WGhuq8887TihUrbOe8//77GjFihIKDgxUWFqaLLrpI69evr7GG48ePa/bs2Ro9erQiIyMVEBCgtm3b6txzz9ULL7ygkydP1qnukpISPffccxo4cKCsVqvCwsJ04YUX2np1T7du3TpNmzZNPXv2VHBwsAICAhQVFaU+ffroyiuv1OzZsx1+PuvyzF5aWpoeeughJSYmqk2bNgoICFBERITOOeccPfPMMzX+HJ1+7crKSr3++usaPny4WrdurdatW2vUqFGN6vHav3+/ZsyYobPOOkvh4eEKDAxUTEyMLr30Ui1evFiGYTg977///a+uvPJKdenSRa1atbKdN2DAAF1//fV66aWXlJ+fb3fOzp07ddttt6lv374KCQmRv7+/IiIi1LNnT/32t7/V008/rX379jX4tQBAnRgAAI9ZvHixIcn2cdFFF9n2vfHGG3b7Jk+ebHfu0aNHjQceeMAIDg62O27s2LHGmjVrnN7v8OHDhtlsNiQZixcvttvXqVMnu+usWLHCbv+dd95pt//JJ590uP6hQ4eMoUOH2h13+kdISIjxn//8p17fp+TkZLtrTJs2rcZjv/76a8NqtTq9d1JSkpGYmGi3LTk5ucb7jB492u7ajz/+uN3+yy67zPDz83O4j5+fn/Hpp58a99xzj9M6LBaLsX79eofav//+eyMmJqbW71/37t2N3bt31/r96devnzF48GCn5wcFBRlr1661O3/RokW2n4vaPpYuXWp33qn7OnXq5PB63nnnHYefz9M/IiMjja+//trh3FOPadeunTF+/Hin55tMJmPJkiW1fj9Ob0fDMIw5c+YYgYGBtdZ20UUXGSdPnrQ7b/bs2Wf8Pkkytm3bZteuFovljOf83//9n0Odzl5PbT//AFAbwh4AeNgf//hHuzdyc+bMMfbt22e0bt3atq1r167GiRMnDMMwjMLCQuPBBx+07R8xYoTRtWtXQ5Jx1VVXGQEBAbY3qr/88ovdvf75z38akoxWrVo5vImtLewdO3bMSEhIsHuDvWXLFrvzS0tLjUGDBtldIz4+3rj44ouNc845xy5MWCwWY/PmzXX+HtX1ze6xY8eMqKgou2PDw8ONCy64wOjdu7fTN9iNCXuSDKvVapx33nlGt27d7La3atXKkGSEhYUZ48aNcwhx48ePt7v2vn37jNDQUIfQdumllxp9+/a1296lSxe79ju97uqPhIQEY9y4cQ7XHTdunN29e/ToYdtnNpuNYcOGGRMmTDDOOeccIyEhwTCZTPUOeytWrHAIwp07dzZ+85vfGHFxcXbbg4ODjV27dtV47eqP2NhYY9y4cUZkZKTd9u7du9f683J6O37wwQd2+/38/IyRI0cal1xyidG+fXu7fVdddZXtvNLSUrvfy8DAQGPUqFHGhAkTjOHDhxvx8fFOw97pQfWss84yJkyYYCQlJRndunWzfZ8IewDcjbAHAB5WXFxsnHXWWXYhYcCAAbavg4KCjI0bN9qOr6ioMAYMGGD06dPH+OSTTwzDMIzRo0fbgsv+/fuNa6+91vDz8zN+/vlnu3uNHTvWkGRMnDjRoY7Tw15SUpIxceJEY9y4cUZ4eLjdvqefftrh/Ndff93umNtvv92oqKiw7f/hhx9soUGScemll9b5e1TXN7vPPfec3XHdunUzMjMzbfv//Oc/uzTsBQcHG1u3bjUMwzCKioqMDh062O1v3769kZaWZhiGYWRmZhpBQUF27VpaWmq79nXXXWd37nvvvWd377/85S92+5977rka65Zk3HDDDUZ5eblhGIaxa9cuu16swMBAu3tX/4FAkjFr1iyH7+vhw4eNhQsXGjt37rTbXlvYGz58uN3+2267zfbzUFRUZFxyySV2+6+++uoary3JuPDCC43CwkJbPdHR0Xb7Dx48WKd2rKioMDp27Gjb16ZNG2PHjh22/WVlZQ61bdiwwTAMw8jIyLDbvnDhQofvVUpKijF37ly7n7vu3bvbtcvpcnNzjQ8//ND48ccfHfY5ez2EPQANxQQtAOBhQUFB+uCDDzR48GDl5+ersLBQW7dute1//vnnddZZZ9m+NpvN+vzzzxUTE+N0ApYuXbronXfe0V//+ld17NjRtj0nJ0ffffedpNpn4ay2atUqh23R0dF69913NXbsWId9H3/8sd3Xe/fu1ZVXXmm3LTAwUCUlJZKkr776SiUlJQoKCjpjLXX11Vdf2X09Y8YMxcTE2L5+7LHHNGfOHIfnqRrqqquusj0XabFYNGTIEKWlpdn233rrrYqPj5ckxcTEqG/fvtq4caOkqol2srOzFRsbq8rKSn366ae28wIDA7V48WK7CVBOr3np0qW67777nNZlsVj03HPP2X4+evbsqZ49e2rbtm2SpNLSUtu9parZTaufF3vnnXcUGhqqnj17qlu3burcubPatWun66+/vs7fl6ysLK1bt87u9fz1r3+V2Wy21ffss8/qs88+sx3z+eefq7Ky0nbM6V544QVZrVZJUrt27TRs2DAtXbrUtj8jI8Pu570mGzduVGpqqu3rVq1a6dFHH7U75tChQ3ZfL126VEOGDFFkZKSCg4Ntz02+8sorOnnypLp166bu3burY8eO6tSpk26++Wa78zt16qS9e/dKkr788ks9++yz6tOnj7p27aquXbsqPDy8Tr+TANBYhD0AaALdunXTv/71L02ZMsVu+xVXXKHbb7/d4fj27duf8Zqnv/H95JNPVF5eLovFoksuuaRBdWZlZem2227T8uXLHSbkSE5Otvv69OB1upKSEh06dMilswwePHjQ7uvTJ6ixWq3q2rWrNm/e7JL7nX79kJAQu6/79etX6/7q4JuTk6O8vDzb9tLSUn300Ue13vv07/epunXrpjZt2thtCwsLc3pvSZo1a5amTJkiwzC0e/du3XPPPbZ9VqtVI0aM0PTp03XdddfJZDLVWpdU1Q7GKZObdOzY0eH+vXv3VmBgoEpLSyVJeXl5ysnJUVRUlMP1WrdurV69etX59dTm9O9bRkZGnb/XgYGBevTRR/XnP/9ZkrR+/Xq7yXZCQ0OVlJSkW265xW5JlEceeUTff/+97Wf+gQcesO0LDAzUkCFDdO211+qWW24547qXANAYzMYJAE3k1N68ajt27FBBQcEZz125cqUMw6hxRkTpf7Nwjh8/3iF0OLNixQqVlpbq559/1uDBg23b9+7dq4kTJ6qiouKM1zgTZzNLepPw8HC7r0/vlTo9cLlSbd+7iIgIh23OeoGrXXPNNVq/fr1uvvlmde/e3e51FBUV6dtvv9XUqVNr7Ek83alBT1KdAmJt6vt6XO3U7/UDDzygb775RlOmTFGnTp3sXlteXp6WLVumCRMm6OWXX7ZtHz16tLZu3aq7775b/fr1U0BAgG1faWmpfvzxR9155526+uqrPfOCALRYhD0AaAJffPGFnn32WYftu3fv1h/+8IdGX//48eP65ptvJNVtCGe1gIAADR48WJ9++qlat25t275x40bNmzfP7tjTe+jWrl0ro+pZ8Bo/Tu/5aqzTezN/+eUXu6+Li4vt1gpsLiIiIuwCeGhoqEpKSmr93tW0ZEFDnX322Zo7d6727NmjoqIi7d+/Xx9++KHi4uJsx7z66qsqLi4+47VO/6NDamqqXc+lJO3atcvWqydV9Xo6C3WudvrP6YUXXnjGn9PT1xM8//zz9fbbbyslJUUnT57U7t27NX/+fLvfkeeff97unB49eujFF1/Utm3bVFhYqNTUVC1dulR9+/a1HfPxxx8rJSXF9S8aAH5F2AMAD0tPT9fUqVNtvSEdO3bU5MmTbfvfeecdvf766426x6effqqysjIFBgbaDS+rq/bt2zv06jz11FN2Q+cmTJhgt//ee+9VVlaWw7X27dunv//975o1a1a96ziTCy64wO7rf/zjHzpy5Ijt66efftohdDQHZrPZbh3DvLw8/elPf3IYmmgYhtatW6d77rnH4RnJxnj55Ze1cuVKlZeXS6oaWtilSxf97ne/U9euXW3HlZSU6Pjx42e8XnR0tIYOHWp33kMPPaTKykrb19VDIatdfPHFNT6v50qDBw+2Gwa9fPlyLVy40OG44uJiff7557ryyivt1ob8y1/+ovXr19t+X61Wq3r06KFrrrlG0dHRtuNOXZNwwYIF+vzzz23t6e/vrw4dOujSSy/VwIED7e57+lqGAOBKPLMHAB5UXl6ua665xtZLYzab9fbbb2vQoEHauHGjbbH0u+66S8OGDXO6SHpdVPdMjB071mHoYV3dc889eumll2xv9tPT0/Xvf/9bd9xxhyRp+vTpevnll7V9+3ZJ0o8//qiOHTtqyJAhioqKUl5ennbv3m2b/GLatGkNqqM2N954o5599lnb93PPnj3q1auXEhMTlZGRoR07drj8nq7yxBNPaOnSpbZhu3PmzNF7772ngQMHKiQkRNnZ2dq+fbtOnDghSRo0aJDL7v3GG29oy5YtCg0NVe/evRUdHS3DMLR9+3a7Z9wiIyOdPlPnzF//+leNGzfOFvDmzJmjL774Qj169NC2bduUkZFhO7ZVq1Z6/PHHXfZ6amM2m/Xss8/ano+trKzUtGnT9Pjjj6tXr14ym806dOiQdu7caQtnp/a6P/vss3r44YcVERGhXr16KSIiQuXl5dq0aZMyMzNtx/Xu3dv2+SeffKL//Oc/atWqlXr37m2bXGnfvn12P5P+/v7q3r27u78FAFowwh4AeNAjjzyi1atX277+85//rFGjRkmS3n33XZ1zzjkqLy9XUVGRrrzySm3YsEHBwcH1ukd+fr6WL18uqX5DOE8XHh6ue++91+5N+V//+lfddNNNslgsCgwM1JdffqkrrrhCGzZskFTVg7NmzRqn1/P3d/3/ctq2bat3331XEyZMsA03PH78uG2ymMGDB6uiokJbtmxx+b0bq0ePHlq2bJmuvvpqW+/OsWPHtGLFCqfHu+P7l5eXZzeL5qn8/Pz0wgsv1PlZufPPP18LFizQrbfeqqKiIknSgQMHHIbRtm3bVu+9955dOHK3a6+9Vjk5OZoxY4ZtKGlKSkqNQyidveacnBz98MMPTo+3Wq36xz/+4bC9sLBQP//8c411PfXUUx4Zygqg5WIYJwB4yOnP6SUmJurJJ5+0fT106FA99dRTtq937drVoOf3li1bppKSEvn7++vyyy9vVM333HOP3aQjhw4d0muvvWb7Oj4+XmvXrtX777+vK664Qh07dpTFYlFAQIAiIyM1dOhQ/fGPf9Snn36qf/7zn42qpSbjxo3TTz/9pEmTJikiIkJBQUHq2bOnHn/8cX3//fcN7tn0hNGjR2vXrl164YUXNHbsWEVHRysgIEBBQUFq3769zjvvPD388MNau3atrrvuOpfd98UXX9QjjzyiCy64QF26dFFYWJjMZrNat26tvn376uabb9aGDRvqfc/rr79eO3fu1AMPPKAhQ4YoLCxM/v7+atOmjYYPH64nn3xSO3fu1Pjx4132WurqzjvvtNWWmJioNm3ayM/PT61atVLXrl01YcIEPffcczpw4IA6dOhgO++tt97S/fffr1GjRikhIUEhISHy8/NTWFiYBg0apHvuuUfbtm3T+eefbzvnkUce0VNPPaWLL75Y3bt3V9u2bW336tGjh6677jqtXLnSYWgrALiayTh9Ci0AgFebOHGilixZogsuuOCMyyE0VykpKXYTa0ybNk0LFixouoIAD+LnH4Cr0LMHAD5m+PDhevzxxx0WjvZmb775pkwmk0wmk6ZPn97U5QAut3nzZtvPuCvXogTQsvHMHgD4mPvvv7+pSwAAAM0AYQ8A0OwEBwdr4sSJTvclJiZ6uBrA/cLDw/mZB+ByPLMHAAAAAD6IZ/YAAAAAwAcR9gAAAADABxH2AAAAAMAHEfYAAAAAwAcR9gAAAADABxH2AAAAAMAHEfYAAAAAwAcR9gAAAADABxH2AAAAAMAHEfYAAAAAwAcR9gAAAADABxH2AAAA/r/9OpABAAAAGORvfY+vLAIYkj0AAIAh2QMAABiSPQAAgCHZAwAAGJI9AACAIdkDAAAYCpQaZFG8KebtAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Plot the integrated expression\n", + "\n", + "fig = plt.figure(figsize=(5,3),dpi=200) # formats the plotted figure\n", + "\n", + "### BEGIN SOLUTION\n", + "plt.plot(x, d, linewidth=2)\n", + "### END SOLUTION\n", + "\n", + "# Format for publication quality\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=8,fontweight='bold')\n", + "plt.ylabel('\\u03B4* [dimensionless]', fontsize=8,fontweight='bold')\n", + "plt.xticks(fontsize=6)\n", + "plt.yticks(fontsize=6)\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QK8RXm8ZboYw" + }, + "source": [ + "### 2d. Define the entrance length\n", + "\n", + "At what value of x does the boundary layer become fully developed?\n", + "\n", + "Hint: What is the coordinate where $δ$ = 1?\n", + "\n", + "Store your solution as a numpy array labelled `Le`." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EYKTX9Qfc20I", + "outputId": "6a6a8bcf-c528-4dee-9638-06eff240ea1f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Le (x @ δ*=1) = 0.12694690354738747\n" + ] + } + ], + "source": [ + "### BEGIN SOLUTION\n", + "Le = np.array(x[-1])\n", + "### END SOLUTION\n", + "\n", + "# Print Value\n", + "print(\"Le (x @ δ*=1) =\", Le) # we want to know the dimensionless\n", + " # length at which del is 1 since this will give us our entrance length where\n", + " # flow is stil developing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SbcoTuHbtDak" + }, + "source": [ + "### 2e. Define an equation for Le using new value\n", + "\n", + "Using the obtained value of `Le`, make a general expression for the entrance length similar to the expression derived in part 1.\n", + "\n", + "*Hint*: The value obtained for Le is dimensionless." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z3iuGDfTvYyr" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W_TIpO1s6Mjl" + }, + "source": [ + "### 2f. Comparing integration methods\n", + "\n", + "Compare your previous results using the `RK45` integration method with alternative methods.\n", + "\n", + "Define your equation as `methods`.\n", + "\n", + "For more information on other integration methods for `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html) to go to the relevant section of the class website. Further detail into integration methods for `scipy.integrate`, is also provided in the documentation [here](https://docs.scipy.org/doc/scipy/reference/integrate.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "eepM5dJK8emB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "4af50e53-154d-41b7-a4c3-c097bad31158" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using method RK23\n", + "Number of RHS function evaluations: 53\n", + "Le (x @ δ*=1) = 0.12693195882302588\n", + "\n", + "\n", + "Using method RK45\n", + "Number of RHS function evaluations: 38\n", + "Le (x @ δ*=1) = 0.12694690354738747\n", + "\n", + "\n", + "Using method DOP853\n", + "Number of RHS function evaluations: 89\n", + "Le (x @ δ*=1) = 0.12694710642481696\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# make a list of methods\n", + "methods = [\"RK23\", \"RK45\", \"DOP853\"]\n", + "\n", + "# loop through methods for best\n", + "for i in methods:\n", + " print(\"Using method\",i)\n", + "\n", + "### BEGIN SOLUTION\n", + " other_methods = integrate.solve_ivp(entrance, dspan, xo, method=i, t_eval= tspan)\n", + " d1 = other_methods.t\n", + " x1 = other_methods.y[0]\n", + " Le = np.array(x1[-1])\n", + "### END SOLUTION\n", + "\n", + "# print values for each method within loop\n", + "# some solver statistics\n", + " print(\"Number of RHS function evaluations:\",other_methods.nfev)\n", + "# calculated length from each method\n", + " print(\"Le (x @ δ*=1) =\", Le) # dimensionless\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_45mKgasR0Y6" + }, + "source": [ + "## 3. Discussion and Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OXqzw7jWR0Y6" + }, + "source": [ + "### 3a. Explain why the equation derived in Question 2e differs from the one obtained in Question 1.\n", + "**Discuss** in 1-3 sentences.\n", + "\n", + "**Answer**:Question 2 shifts away from the assumption of a constant and uniform fluid velocity upon entering the channel. Instead, it considers the variable nature of this velocity across the entrance, influencing the way flow is analyzed. As a consequence, the initial flow condition changes over the developing region, leading to an extended entrance length." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N93m2GRF90ci" + }, + "source": [ + "### 3b. Describe the integration methods used in 2f and how they differ in performance. Was the best method used originally in 2b? Why or why not?\n", + "\n", + "\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:In Question 2f, we compared three numerical integration methods: RK23, RK45, and DOP853, ranked by their error levels. RK45 provides similar precision to DOP853 but with fewer iterations. Thus, our choice to use the default scipy.integrate_ivp method was valid." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pKp85z-zsxMZ", + "tags": [] + }, + "source": [ + "### 3c. \tA Reynolds number of 1 was used as a starting point to simulate laminar flow. If the Reynolds number were increased, what would happen to the entrance length? Does it get larger or smaller? Why does this occur?\n", + "\n", + "**Explain** your reasoning using the derived equations for `Le` and the nature of turbulence.\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:As the Reynolds number increases, the entrance length also grows due to the increased turbulence in the flow. The relationship between entrance length and Reynolds number is directly proportional, meaning that as one increases, the other follows suit. This relationship is substantiated by the derived expressions in both Question 1 and Question 2e." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ga1hxJLNs1H0" + }, + "source": [ + "To visualize, plot the curve above with the following values of Re:\n", + "\n", + "1, 10, 100, 500, 1000, 5000.\n", + "\n", + "*Hints*:\n", + "\n", + "1. Use a [lambda function](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions) to allow redefinition of Re.\n", + "\n", + "2. Make a semi-log plot for easier viewing of trend in results.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "iMNgZLshYyWg", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 624 + }, + "outputId": "82aec0ec-8c28-4556-da02-338a94b9a7b3" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuAAAAI8CAYAAACwIh5dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydeXhU5dn/v7Mkmcm+73tCCGELSxJ2UCoKKoug1doKdePViqVvBX9WS23Vt1VstYJtpSCgVVtXFAR3FtmyQNgTQjayk31fZ+b8/kgzJjzPhBky58zJyf25Lq5rcp+ZJ/cwk5n73Of7fG+VIAgCCIIgCIIgCIKQBLWjEyAIgiAIgiCIkQQV4ARBEARBEAQhIVSAEwRBEARBEISEUAFOEARBEARBEBJCBThBEARBEARBSAgV4ARBEARBEAQhIVSAEwRBEARBEISEUAFOEARBEARBEBJCBThBEARBEARBSAgV4ARBEARBEAQhIVSAEwRBEARBEISEUAFOEARBEARBEBJCBThBEARBEARBSAgV4ARBEARBEAQhIVSAEwRBEARBEISEUAFOEARBEARBEBKidXQCI5nOzk6cPXsWABAQEACtll4OgiAIgiAIOWEwGFBTUwMAGD9+PHQ63ZDXpIrPgZw9exapqamOToMgCIIgCIKwgoyMDKSkpAx5HZKgEARBEARBEISEUAfcgQQEBJhvZ2RkICQkxIHZOI6Ojg4cOnQIADBnzhzo9XoHZ0TYC3ptlQ29vsqFXltlQ6+vbVRWVpoVC/1rt6FABbgD6a/5DgkJQXh4uAOzcRwdHR3w9/cHAISHh9MHgYKg11bZ0OurXOi1VTb0+l4/9tqvRxIUgiAIgiAIgpAQKsAJgiAIgiAIQkKoACcIgiAIgiAICaECnCAIgiAIgiAkhApwgiAIgiAIgpAQKsAJgiAIgiAIQkKoACcIgiAIgiAICaECnCAIgiAIgiAkhApwgiAIgiAIgpAQKsAJgiAIgiAIQkJoFL0C6OzsRGNjI9rb22E0Gh2djs2YTCb4+fkBAEpKSqBW03nhcEaj0cDZ2Rmenp7QaDSOTocgCIIgZAcV4MMYQRBQWVmJpqYmR6cyJARBgF6vBwAYjUaYTCYHZ0QMBYPBgK6uLrS0tEAQBDg7O6O7u9vRaREEQRCEbKACfBhTV1fHFN9a7fB8SVUqFYDhmz/xA0ajEYIgAOg9ufLy8hr2J4kEQRAEYU8UWe20trZi48aNSE9PR0ZGBhoaGrB9+3asWrXKqsc3NjZi/fr1+OSTT9De3o7U1FT8+c9/xuTJk8VN3Aa6u7tRU1Nj/jkwMBDe3t7D8pK/yWRCc3MzAMDT05MkKMMcQRDQ3t6O+vp6tLS0wMnJCV5eXnRlgyAIgiD+iyIrndraWvzhD39ATk4OJk6caNNjTSYTbr31Vrz77rt47LHH8NJLL6G6uhrz5s3DpUuXRMrYdlpbW823/fz84OfnNyyLb0J5qFQquLm5ITw8HO7u7nBxcYFKpUJ7e7ujUyMIu9N3tWfEMMKe73B4fQVBsEue9lpHbIZDjtagyA54SEgIKisrERwcjKysLKSkpFj92A8//BBHjx7FBx98gBUrVgAA7rrrLiQkJOB3v/sd3n33XbHStom2tjbzbU9PTwdmQhB8VCoVfHx80NzcDLVajba2NgQEBDg6LYKwK9sOF+HDE2WYFuuHtBhfpMb4ws/dxdFpiccHq4DWaiB6JhA1E4hIBZzdHJ2VKBhNRtz2yW2I947HlKApmBo8FYm+idCq5VU6dV26hNKHV8M1JQWuKVPhmpIC5+hos7TTWurKW/H562cQmuCNsFE+CB3lDa9Avc3riM3pr/fh9FefIzxpHMLH9P5z8/ZxdFo2I693kZ1wcXFBcHDwdT32ww8/RFBQEO644w5zLCAgAHfddRf+9a9/oaurCy4u1n24lpWVDXq8srLSfLujowMdHR1W59nR0QFBEKBWq+Hk5DSsL+/3z304Pw+CRafTAeh1Runs7LTpPU7In87OTu7tkcThS9XIrWpBblULdhwtBgAkBrnjg4enQjuM5XTc19ZkhK5gP1RdTUDJUQAbIai1MI6/Gz23vOyYREUkryEPZa1lKGstw4GyAwAAN60b1iavxZLYJY5Nrh/NR4/CUFWF5t270bx7NwBA4++PwFdfhcvYJO5jeK9v8fkatDZ0IS/9CvLSrwAA9J5OWPDQGPiFy+ckq/hMNmpLL6O29DJOffk5AMAnNAx3/X4jNE5OovxOMb67FFmAD4Xs7GxMnjyZ0SGnpqZiy5YtyMvLw/jx461aKyIiwurfe+jQIfj7+1t9fz8/P+j1euj1erS0tFj9OLnTX1pDKAO1Wg2VSoXa2lpcvHjR0ekQInHo0CFHpyA5JgFIL9AAGNgh7GhrwXfffOOYpESg77X1bL+MG7oGbqhWmQwoqmzAha++ckRqonK06ygTazO0oSSnBF/ly+f5hny+Fx5XxQx1dfj+Uh5M5YM3AoEfXt+6kzoAAwvYjuZuZJ4+AvUFOyU7RARBQPHZU0y8rb0D3+7fL9rvra2ttfuaw/f0XCQqKysREhLCxPtiFRUVUqc0KHK7NEQQV0PvUUKpVLQDHUb2/R3vqQyN6tX4t+Zy47XuiRJnIg3FhmImpoIKUdoo6ZOxhCBAX1TEhLuCg2FydbVlGXTVs/vInDxNUIvTVL4uelqaYOxku9H6QLZukzvUAb+Kjo4OrsSk71K6LZchSktLBz1eWVmJ1NRUAMCcOXMQHh5u9dolJSUwGo3QarXDXgNuMpnMnW93d3dyQVEQ/SVFvr6+mDJligOzIexNZ2enuXs2Z84c8+fkSGHn8VLgDLs5/855yZg7yvormnKE99o6f/Jv5n6CSo3kxf8DuFzdgx3eCIKAlz9jZTWjfUZj8U2LHZARn57iYpRzrhwHzJ2LxAULLD7u6te3o9GET744zdwvITkcaQui7ZbvUDl/4GuUcOLTbroZcSnTRfu915IUXw9UgF+FXq9HV1cXE+/TSPUNjLEGWwrqPjmJtajVanNxo6SCVa1WK+r5ED+g0Whseo8TwwudTjfiXt+Tpc1MTK0CZiYEQ6+TUdtwiOh0OuhdXIDS48wxVfAE6L0DHZCVuOQ35KOxq5GJp4SkyOp93nnmLDfuOX261XnqdDqUl9Rxj0Um+cvq+V65xJcxxk6cLGqeYqxNlc5V9DmoXE1fLDQ0VOqUCIIgCJlhMgnIKK5n4mNDveChoOLbTE0u0ME+X0TNlD4XCci6ksWNTw2aKnEmg9OemcmNu6bYlmf5pUZuPDTe28aMxEMQBJTlnGPivmERcPXylj6hIUIF+FUkJyfj5MmTjBtHeno6XF1dkZCQ4KDMCIIgCLmQV92CxvYeJp4W4+uAbCTg8hF+PFqZBfiJKye48cmB8hnIJwgCtwB3jo+D1tf696EgCKjgFOB+YW7QucvnZLKp+gpa69lOfUTSOAdkM3RGdAFeWVmJ3Nxc9PT88CG6YsUKXLlyBR9//LE5Vltbiw8++AC333671RaEBEEQhHJJL+R0gwGkxfpJnIlEFB/mBFVApHi6W0chCAK3Az7KZxS8dd7SJ2SBnrIyGK5cYeKuU23rfjfXdqK9qZuJy6n7DQBlF/hym7Axw7MAV6wGfPPmzWhsbDS7luzevdssol+zZg28vLzw1FNPYefOnSgqKkJ0dDSA3gJ82rRp+PnPf44LFy7A398ff/vb32A0GvH73//eUU+HkAHV1dXIyMhARkYGMjMzkZmZibq63rPxlStXYseOHY5NkCAIyUgvYjtxKhWQGq3ADrgg8DvgQWMBV+U938vNl1HbwdrOyU5+kmFJfmL98EEAqCpg9zIAQGiCvIbb8OQnABBBBbi8ePnll3H58mXzzx9//LG5q/3Tn/4UXl5e3MdpNBrs3bsX69atw2uvvYaOjg6kpKRgx44dGD16tCS5E/IkKCjI0SkQBCEDBEFARhHbAU8M9oSXq3wu2dsLVX0+0FbDHhhh+u8pQfJycbKs/7axAM+3UICP8rY1JVEpvcAW4N7BIXD3HZ5XnRQrQSkuLoYgCNx/fd3uHTt2DPi5Dx8fH2zduhW1tbVoa2vDgQMHMNXGSzqEsomMjMSCQSyeCIJQLgU1rahtZS/ZK1X/rea4nwAYcfpv2RXgWeyJgnNUFJwCbXOlqSpkC3CfYFe4ejpfd272prm2Gs01rNwmfIx1gxHliGI74ARhbzZs2ICUlBSkpKQgKCgIxcXFiImJcXRaBEFIzHEL+u9psUotwI/xDyiwA25J/x3jFQN/vXy83XsqK9HD8abW2+h+YmhXoa2BPZkMkVn3uyznPDcePmasxJnYDyrACcJKaA8AQRAAkM6RnwBAaszwvBQ+KIIATQmnAA9IBNzkU5Dai/LWclS1VTFx2XW/LchP3GyUn/CmXwJAmNwKcAsbMCOShm8HXLESFIIgCIKwN4IgIL2Q3YA5OsgDvm7yuWRvL1y7q6FqZWdjIGqG9MlIgCX5iew2YGbydeq26r+7GvgFeOgouW3AZDvgngGB8AwYvkOgqAAnCIIgCCsprmtHdQs7LTlNofIT/9Zc/gEFyk+A4b0B0yksDE42DgvsqmeFEJ4Berj7yMdyubWhHg2V5Uw8fJi6n/RBBThBEARBWAmv+w0AaUqUnwDws1SAR8+SNhGJyKpiC/Bw93AEuwU7IBs+hpoadBcXM3Fb/b+NnSoY29kyUG7uJ5bsB4d7AU4acAXz/z46g4tXWhydxrURAKPRCKDXBhKq61tmdJAH/rR8gh0TIwiCGIhl/bdSO+AX2aBvHOAhn4LUXlS1VaGsld3YODVYbvITC/aDqUrVf1sowIfpBMw+qABXMBevtCC7pNHRaRAEQSgCQRBwnNMBjwtwQ4CHfC7Z2wt9dy1cu9mBNEq1H8ys4he2ctN/t2VkcOM2678tFOBy64CXcjZguvv4wjsoxAHZ2A+SoBAEQRCEFZTWd6CyqZOJK3X8vH+LJf23QuUnFvTfKcG2FbZiw5uAqQ0JgVNEhE3rdNWxPVgPPx08/fXXnZu9aWtsQH15KROPGDsBKtV1Xi6XCVSAEwRBEIQVHOeMnweUO4DHsv575HTAw9zDEOpu28ZGMTHU1KC7sJCJu6Wm2FSQtjV2wcDRf4cleA8lPbtjUf89jO0H+6ACnCAIgiCsIN3iAB5ldsC5Bbh3FOAVLn0yIlPVVoXSFrbTKrvut0X9d6pN61QV8MfPhyXIy36w9LwF/++xw78AJw24ghkd5OHoFKzDjpswCYIgxCKd0wGP9nNFkKfOAdmITEsl3Lur2bhC7Qct6b/lVoC3pVvQf9tYgFfm8wtw2em/z59hYu6+fsNe/w1QAa5ohosjiMlkQnNz74eBp6cn1Gq6MEMQhLwob+xAWUMHE1eq/aCm9Dj/wAiSnwDy24DZztmAqQ0JgVO4bVclqjgFuCz13xWsK01E0vhhr/8GSIJCEARBENfEov+3QgfwqEuO8g+MoA643PTfPdXV6C4qYuK26r9bGzrRXMtuJpab/pvnfgIoQ/8NUAFOEARBENfEkv5bqQ4o6pIjbNAzDPCJljwXsalsreT6f8tNfmIv/Xd5XiM3Ljf9d5mFAlwJ+m+ACnCCIAiCuCY8/Xe4jx5h3vK5ZG83miugbmCdNhA9G1DApf+rGc72g4DtBXhFXgM3Lj/9N8f/WyH6b4A04ARhNYcPH0Z+fr7559raHwZU5OfnY8eOHQPuv2rVKokyIwhCTK40d6K4rp2JK1X/jeLD/HjMbGnzkIiRpv/mdcBJ/y09VIAThJVs3boVO3fu5B47cuQIjhwZeMmWCnCCUAa86ZeAcvXfKP6eH49W5gCekab/bqphNxOT/lt6SIJCEARBEIOQXmTB/3skdcC9Ikn/7UBI/92LUvTfABXgBGE1O3bsgCAIVv8jCEIZ8BxQQr10iPCVzyV7u9FUDtTz9N/K7H6T/rsX0n9LDxXgBEEQBGGB6pZOFNS0MfG0WD/FaFEHQPpvACNL/+3u60L6bwdABThBEARBWOC4JfvBGKXqvw/x4wrtgJP+GwiJ9xxSfvZmJOi/ASrACYIgCMIixwr4GzCnx40c/bfJKxLwjnRAMuJC+u9eguPkVYCPBP03QAU4QRAEQVjEkv470tfVAdmITGMp0FDMhE2RM6TPRQJI/91LsNw64CNA/w1QAU4QBEEQXK40d6KwltV/Txth+m9T5MgZPw+MLP23Rm+Ch6/uelOzOyNF/w1QAU4QBEEQXCzJT6YpVn7C9/82RU6XOBFpIP034OJrHFJ+9mak6L8BKsAJgiAIgoulATzTY0dOAd7mHAjB07ZO63DAkv47Ndg2WYfYWNZ/p9m0jiX9t4ufwdaURMWS/jty7ASJMxEfKsAJgiAIgsMxTgEe5q1HhBL13w2XgcYSJlzrMcYByYjPsNd/p9lH/y27DjhP/+3nD6+gYAdkIy5UgBMEQRDEVVQ0duByXTsTH0nuJwBQ654ocSLSMKz136EhcAoLs2kdS/pvrV4+Q+NGkv4boAKcIAiCIBhGnvzEUgGuzA44rwAPdw9HiLt8nDYs6r9TUkeU/jtCgfpvgApwgiAIgmAYURswBYGr/251CUKns/IGDpH/dy/DRf9NBThBEARBjBCOF7EFeKSvK8K85TOy2240XgaaSpmwUrvfpP/uRXYd8BGk/waoACcIgiCIAZQ1tKO0nr1kr1j5SRHffpD0345FTP23u68L6b8dDBXgBEEQBNEPy/IT5ckxAFjUf9cp1AGF9N9AiNymX44w+QlABThBEARBDOB4YT03Pk2JHXBB4BbgJt84dDr5OCAhcSH9dy/B8V62piQqI03/DVABThAEQRBmBEHgOqBE+7kixEuB+u+GIqCZLUiVOn6e9N+9hMTJrAM+wvTfABXgBEEQBGGmtL4D5Y0c/bcS3U8Ai/ITU8QMiRORhowqVlcNyFD/nZ7OxK5H/13G6YB7+uvg7utyvanZnZGo/waoACcIgiAIM5b8vxUpPwEsbsA0RiqzAOfpv8Pcw+Sl/75yBd3FxUzcLSXFpoK0pb4TzRz9d+go7yFkZ39Kzp/hxsPHjJM4E2mhApwgCIIg/gtv/DygUAcUC/pv+CcA7oHS5yMyZS1lKG8tZ+JpIWkOyMYyvO43ALimTbNpnfKLfPlJ+Gh5aftLz53mxiPHTZQ4E2mhApwgCIIg0Kv/5jmgxAa4IdBT54CMRKa+EGipYOPRs6TPRQIsyU9Sg23TVYtN23F+Ae5mo/67zEIBHiazApzXAfcMCIRXYJADspEOKsAJwkqqq6uxZ88ebNiwAQsXLoS/vz9UKhVUKhVWrVpl83r79u3DsmXLEB4eDhcXF4SHh2PZsmXYt2+f/ZMnCOKaXK5rR1VzJxNXZPcb4E6/BABEz5Y2D4lIr+QXtnIqwAVBQNvxY0zcKTLSJv23IAjcDrh3kCvcfeRzMtlUfQVNV6qYeMTYCYrWfwOA1tEJEMRwISjIPmfjJpMJDz/8MLZt2zYgXl5ejvLycuzatQsPPvgg3njjDajVdI5MEFJhSX4y0vTfSuyAC4LA7YDHesUiwDXAARnx6Skrg6Gikom7pdkmk2mq7kBrQxcTl1v3u9SC/lvp8hOAOuAEcV1ERkZiwYIF1/XYp59+2lx8T5o0Ce+99x4yMjLw3nvvYdKkSQCArVu34plnnrFbvgRBXBuLA3iUWIBb0n8HJCpS/13UVITajlomLqfuNwC0HT/OjbtOs60AtyQ/kZv+29IGzIixyvX/7oM64ARhJRs2bEBKSgpSUlIQFBSE4uJixMTE2LRGXl4eXn75ZQDA1KlTcejQIej1vd7CKSkpWLx4MebOnYusrCxs3LgR999/P+Lj4+3+XAiCGIgl/+9Rge4I8JCPZZvdqMsHWtlL/0rsfgNAehVffiK7DZgW9d+25WlpA2ZYgretKYmGIAjcDZg+oeHw8PV3QEbSQh1wgrCS3//+97jtttuGJEV59dVXYTAYAACbNm0yF999uLq6YtOmTQAAg8GAV1555foTJgjCagpr21Ddwl6yV2T3GwCKDvHjCtV/Z1Sy8hMVVLLy/xYEAW0cBxSXUfHQ+ltfkAomAeWcATx+Ye7QezgPKUd70lBZjtYGdups5NgJDshGeqgAJwiJEAQBn376KQAgMTER06bxLaWmTZuG0aNHAwA+/fRTCIIgWY4EMVKxJD9R7ACeooP8uAI74CbBxNV/J/omwlvnLX1CFuguKICxlpXJ2Go/WF/Zho6WHiYuO/nJOUv6byrACYKwI0VFRaio6LX8mjt37qD37TteXl6OYs5ABoIg7IulATxpMb4SZyIBJhN/A2bQeMBNeZf+L9ZfRHN3MxOXn/7bgvzEVv13rgX5SaK8CnBL/t/hScrXfwNUgBOEZFy4cMF8OzExcdD79j+ek5MjWk4EQfTpv9lL4aODPODnrkD995VzQAf7fBEzR/pcJMCi/3eIvArw9nTOBkyVCq4pKTatw9uAqVLJawKmYDKh5MJZJh4QFQNXTy8HZCQ9tAlTyXy2BqiWf/GmEgB3Y68uWqXRAtdr/Rk4Bli8yX6J2ZmysjLz7fDw8EHvGxERYb5dWloqWk4EQQD51a2obWX138qVn1jQfyu0AOf5f2tUGkwJmuKAbPgIRiPaMjKZuC4pCRov6wtSk9GECo7+OyDKEy56+ZR8NSXF6Gxhr0qMFPkJQAW4sqnOAcrYP2i5ocLIeCO2tLSYb7u7uw96Xzc3N/Pt1tZW0XIiCGIw/28Fyk8AfgGu0gBRM6TPRWR6TD04ceUEEx/nPw5uTm6cRziGztxcmJqamLit9oM1pa3o7jQycbnpvy35f0eMVb7/dx8kQSEIiejs/GHCnrPz4DvRXVx+uOzd0dEhWk4EQQBH89kCXKUC0mIU2AE39gCXj7DxsMmAzlP6fETmfO15tBvambjc9N+i2w+O9rY1JVEp4ei/VWo1wseMc0A2joEKcIKQCJ3uh/G/3d3dg963q+uHy+FXWxUSBGE/jCaB2wFPCvGEj5t8LNvsRkU20M25qqZQ+UlmFf8qsNz8v9t4+m+tFvrJtslkePpvtUaFkDjv68zM/piMRpTlnGPiwbGj4OLq6oCMHAMV4AQhER4eHubb15KVtLW1mW9fS65CEMT1c6GiGU0drGXbDMXqvy3YD8YM7sw0XOEN4HFWO2NigHykDkJPD9qzWJmMfvx4aNytl8kYDSZUXmpk4kExnnBy0QwlRbtypTAf3ZwruxEjSP8NjAzp7cglcIyjM7AKQQCM/92EqdFooRrKJkwZ03/jZf8NmTz6b7zsvyGTIAj7crSA9V0GgBnxyrPjAwAUcgpwjQsQIS9Jhj3oMnbhVPUpJp4cmAydVsc+wEF0nD0HoZ2Vydiq/75S1AxDj4mJy03/zZOfAEDkCNJ/A1SAKxsZO4L0RzCZ0Nrcuxva09MTKrUyL8wkJSWZb+fm5g563/7Hx4yR94kFQQxnjnAG8GjVKqRGK3ADZk8HUMqx5ItMA5yUJ3U7U3MGXUbW3UZ2+m+e/ASAm40DeHjyEwAIl5n/dwlnA6ZGq0Xo6MHteZWGMisdgpAhMTExCA0NBQAcPGjhMvB/OXSo16UgLCwM0dHRYqdGECOSboMJmUWsH3ZyhDfcXBTYnyrNADgFqVL13zz7QUCG+m/OBkyVszP0k5JtWoe3AVPrpEZQtHx8tQ09PajIvcDEQxIS4eQin6sSUkAFOEFIhEqlwpIlSwD0driPH+d3PY4fP27ugC9ZsgSq69bkEAQxGKdKG9HRw1q2KVZ+MsL037wBPHqtHmP9xzogGz6mzk50ZGczcf3kyVC7WD8EqqfbiKpC1sYwJN4LGif5lHqVl3Jh6GFNCEaa/ASgApwgJGXt2rXQaHo3w6xZs4axGOzo6MCaNWsAAFqtFmvXrpU6RYIYMRzJ5+u/Zyp2AybH/9vZAwidLH0uItPe046zNeykxSlBU+CkdnJARnw6Tp2CwHHFsnX8fFV+E0xGgYmHyU7/bcH/e4RtwARIA04QVnP48GHk5+ebf66t/eHLOz8/Hzt27Bhw/1WrVjFrJCQkYN26dfjTn/6ErKwszJw5E08++STi4uJQUFCAF198Edn/7YasW7cOo0aNEuW5EATB34Cpc1IjOdJb+mTEprMZKD/JxqNmABrllQInq0/CIBiYeFqw3OQn/Cuhrjb6f1vUf4+W116G0vPsBkytiwtC4hMckI1jUd5fHUGIxNatW7Fz507usSNHjuDIkYHDLXgFOAC88MILqK6uxptvvons7GzcfffdzH0eeOABPP/880POmSAIPu3dBmSXNDLxlGhfuGjlY9lmNy4fBQRWbqNU/XdGJWezKYDUEJltwOTov9WurtCPs20gDa8Ad9ZpEBApHxvbns5OVF66yMTDE8dCo5XPVQmpIAkKQUiMWq3Gtm3b8Pnnn2PJkiUIDQ2Fs7MzQkNDsWTJEuzduxdbt26FWqFuMAQhBzKK6mEwsZfsZypW/82RnwBArDL13zz/b09nT4z2Ge2AbPgYW9vQcZaVyehTpkLlZH1B2tVhQM3lZiYemuADtUY+3yPluedhMrIngRFjR578BKAOOEFYzY4dOxiZyVBYtGgRFi1aZLf1CIKwnqMc+0FghA3gcfUDAuWzIdFeNHU1Iacuh4mnBKdAo5bP1Y2OE1kApyC11X6w4lIjBPZcUn7+3xz7QQCIHDfyNmAC1AEnCIIgRiA8/benTouxofKxbLMbbbXAFXb0N6JnAwq80pZ1JQsC2IpUbv7fPPtBwPYNmOW5fP33cNiA6eLqhsCYWAdk43iU95dHEARBEIPQ2N6N8xXsJfvpcX7QqBVo+1n8PT8+wvTfsvP/5gzgUXt5wSXRtoE0PP23zt0JfqHWj7EXm87WVlQXFTDx8KTxUMvoqoSUUAFOEARBjCiOFdRxL9nPiFOo/ps3fh4YUf7ffjo/xHrJp9NqaGhAVw47EdktNdWmadAdLd2oK29l4mEJPlDJ6GSyLOccBMHExCNHoP1gH1SAEwRBECOKIxz5CQDMjFeq/puzAdMzDPCLkz4XkantqEV+Yz4TTw1JldVQs/bMTPDOAl1tlZ/kNXLj8hs/z9oPAkDkCN2ACVABThAEQYwweBswAz1cEBcgH8s2u9FUBtSzl/4RMweQUUFqLzKrMrlxufl/8+wHAcBtmm0bMC37f8urAC/l6L/1nl7wi4hyQDbygApwgiAIYsRQ1dSJwpo2Jj4jzk9WHVK7Ycl+UKH672MVx7hx2W3APHqUiWkC/OEca5tMpjSnnom5ebvAK1B/3bnZm7bGBtSWXmbiEWMnKPNvzkqoACcIgiBGDJbGz88Yaf7fCizABUHAsUq2AA9zD0OEZ4QDMuLTU1GB7uJiJu42fbpNBWlzbQeaazqYeESij6wK28tnT3HjUeOTJc1DblABThAEQYwYRpT/tyDwC3DfOMArXPp8RKakpQRVbVVMfFqIbbIOsWk7xh8/7zZ9hk3rlFmwHwwfI6/x8yVUgHOhApwgCIIYEQiCwPX/jvJzRbiPqwMyEpm6AqC5nI0rdPrl8Qp+YTstVG4FOF8m4zbdtjxLc1n5CSCvDZiCIHA74N5BIfAKDJI+IRmhyAK8q6sLTz75JEJDQ6HX65GWloavv/7aqsd+8803uOGGG+Dv7w9vb2+kpqbi7bffFjljgiAIQmyKattQ2dTJxBVrP8ibfgkoUn4CAMcr+QW4nDZgCoLALcCdY2PhFBxs/TomgdsB9w11g5uXy5BytCf1FWVorWevOkWOH5nTL/ujyAJ81apV+Mtf/oJ7770Xf/3rX6HRaLBo0SIcPnx40Md99tlnWLBgAbq7u/Hss8/ihRdegF6vx3333YdXXnlFouwJgiAIMbAkP1Gs/WDhAX48erakaUiB0WREehXrLDLGdwx8dPLpCHflXYKxjn0fuk2fbtM6teWt6GztYeJy6n4DJD8ZDK2jE7A3GRkZ+Pe//42NGzfiiSeeAADcd999GDduHNavX4+jnJ3HfWzevBkhISH47rvv4OLSewa5evVqJCYmYseOHfjVr34lyXMgCIIg7A9PfgIA02MVWICbjHz9d9B4wE15Hf+c+hy0dLcwcfnpv/k1iNsM2wrwshy+/jsiUV7678tnOf7fKhUiRrD/dx+KK8A//PBDaDQaPPzww+aYTqfDAw88gN/85jcoLS1FRAR/N3RzczN8fHzMxTcAaLVa+Ptf34dVWVnZoMcrKyvNtzs6OtDRwe5mtoTJZILwXxN/k4mdLjWc6J//cH8uxED6v55Go9Gm9zghfzo7O7m35YhJEHA0n+08jg5yh6vGpLj3pqoyG7rORibeEzULBiue63B6bQHg+5LvufFJfpNk9dq2HD7CBtVqqMePtynPyxdqmJhKDfhG6KxaR4rX12Q0opQzgCcgKgbQOsnqdbkWYuSquAI8OzsbCQkJ8PT0HBBPTe31AD116pTFAnzevHl48cUX8dvf/hYrV66ESqXCu+++i6ysLLz//vs252Lp9/A4dOiQTYW+n58f9Ho9VCoVmpubbc5NrrS2siN1CWVQX1+PS5cuOToNQiQOHbJgdycTytqAxg72Ky9E3YyvvvrKARmJy6iqz5DEiWfWuaHGxucr99cWAL5o/YKJaaBB7elafHVGJq+vwYD4jAxG+9sRHo5vLGzM5CEYgYo8dwADrQadvAzYf+hbm9MS6/XtrL2Cbk7h2uPqMez+5mpr+VfPhoLiCvDKykqEhIQw8b5YRUWFxcf+9re/RVFREV544QU8//zzAABXV1d89NFHWLJkiTgJEwRBEKKT18T3RR7lxY4DVwIBLeeZmFGlRb37aAdkIy7dQjcuG9hBL5HaSDirnB2QER99aSnU3d1MvH1UvE3rdDVqIJjY97POz3jduYlBexXHgQeAa3CYxJnIE8UV4B0dHQMkJH3odDrzcUu4uLggISEBK1aswB133AGj0YgtW7bgpz/9Kb7++mtMs3FEbGlp6aDHKysrzZ35OXPmIDzcel/WkpISGI1GaLVapts/3DCZTObOt7u7O9RqRe4NHpH0l6D4+vpiypQpDsyGsDednZ3m7tmcOXPMn7Ny5P1/nQIw0LZNo1Lh4aU3wN1FYV+FPe3QneGMn49Iw/xbbrdqieH02qZXpcN4iC0+b0m8BQuSFjggIz4Nf/87mjjxsffcA50Nn40n9pagFmxxO3vhZATFWlcPSPH67jrBym00WifcdvdPoHWWj1OLNVxLUnw9KOxTB9Dr9ejq6mLifRonvd7yeNbHHnsMx48fx8mTJ81F4F133YWxY8fil7/8JdLT2R3Wg2FLQa3X6wfN7WrUarW5uFFSwapWqxX1fIgf0Gg0Nr3HieGFTqeT7evb2WNE1uVGJj4p0hsB3h7SJyQ2ZUcAI9tp1Yyaf12vkZxfWwA4WXeSG58dOVtWeV/JyGRiKr0e3qmpUDlb36mvvMRuNnVy0SAiMQAaje3fn2K8vj2dnajKz2PiYYlJ8PDytuvvkgIx3keKq3RCQkIGbG7soy8WGhrKfVx3dze2bduGW2+9dUAB6OTkhIULFyIrKwvdnEtHBEEQhLzJKm5Al4Hd4D1rlPLcQAAAhfv58dh5kqYhFTz/bw8nDyT58VTwjsHY0oKOs2eZuGvKVJuK7862HtRcZvd9hSV4X1fxLRZluedhMhqYeCTZD5qRz6tlJ5KTk5GXl8dsTOzrXicnJ3MfV1dXB4PBAKORvYzV09MDk8nEPUYQBEHIm+/zWccIAJit2AL8ABvTeQMhyRInIj4NnQ3Iqc9h4qkhqdCoNQ7IiE97ZibAqSFsHT9fkdcIgbNtIVx29oOnuHHy//4BxRXgK1asMGu3++jq6sL27duRlpZmdiYpKSlBbm6u+T6BgYHw9vbGJ598MqDT3drait27dyMxMVFWl7IIgiAI6zh8iXUw8HDRYmK4t/TJiE1rNXDlHBuPmQPIqCC1F7zhO4AM/b+PWhg/b6P/t8Xx82PkP4BH5+aOwJhY6ZORKYorwNPS0nDnnXfiqaeewvr167FlyxbceOONKC4uxksvvWS+33333YcxY8aYf9ZoNHjiiSeQl5eHadOm4dVXX8Wf//xnpKamoqysDM8884wjng4hI6qrq7Fnzx5s2LABCxcuhL+/P1QqFVQqFVatWmXzevv27cOyZcsQHh4OFxcXhIeHY9myZdi3b5/VaxgMBvzjH//A7NmzERAQAL1ej7i4OKxevRrnz7MuCAQx0qhr7cL5CvaS/bQ4P2hldMnebhRaGD8fd4O0eUjE8Qr++HnZFeAcm0GNnx9cRo2yaR3e+HlXT2f4hrhdd272pr2pETWXi5h4xLgJUCvwJPB6UdwmTAB466238Nvf/hZvv/02GhoaMGHCBOzZswdz5swZ9HFPP/00YmJi8Ne//hW///3v0dXVhQkTJuDDDz/E8uXLJcqekCtBQUF2WcdkMuHhhx/Gtm3bBsTLy8tRXl6OXbt24cEHH8Qbb7wx6IbU2tpaLFq0CJmZAzf2FBYWYsuWLdi5cyc2b96MBx980C55E8Rw5IiF8fMjSn4CjCj9d4hbCKI8oxyQDZ+eK1fQXcC60rhNmwaVDaYDLfWdaLzSzsTDx/hApeLbbDqCknOc6ZcAosZPkjgTeaPA0//eHb0bN25EZWUlOjs7kZGRgZtvvnnAfQ4cOGCeJNmfn/zkJ0hPT0dDQwPa29tx/PhxKr4JhsjISCxYcH32Vk8//bS5+J40aRLee+89ZGRk4L333sOkSb0fUFu3bh30qovRaMSyZcvMxfcdd9yBffv2IT09Ha+99hoCAwPR1dWF1atX29RRJwilcfgSX/89K16BBbgg8DdgekcBvsq79F/aUoryVtaOb1rINFkVpLzuN3Ad4+ctyE+Gxfh5kP77ahTZAScIMdiwYQNSUlKQkpKCoKAgFBcXIyYmxqY18vLy8PLLLwMApk6dikOHDpn3FqSkpGDx4sWYO3cusrKysHHjRtx///2Ij2eHNOzcuROHDx8GADz66KN4/fXXzcdSU1OxcOFCTJkyBc3NzXj88ceRk5MDrZb+3ImRhSAIXP13mLceMf7yuWRvN+rygWbO8JMR1P0G5Cc/abdUgE+3Uf+dw8pPACA8UT76b0EQcPlsNhP3DAiCV1CwAzKSL4rsgBOEGPz+97/HbbfdNiQpyquvvgqDodeaadOmTczGXldXV2zatAlAr777lVde4a7TV8T7+vpi48aNzPH4+Hg89dRTAID8/Hx88skn150zQQxXCmvbUNHUycRnj/KXVYfUbhRYsB8cYfrv1JBUiTOxjCAI3A2YzlFRcLJgi2xpHV4H3CfYFe4+8hmS1HilEi217FWnqPETlfk3NwSoACcIiRAEAZ9++ikAIDEx0eJk1WnTpmH06N5x0Z9++ikjlcrLy0NOTq/t1l133QVXV1fuOv03hlIBToxEeN1vQMn+3wc4QRUQM1fqTETHJJi4DigJPgnw18vn9e0uKIChhi1I3WbaZj9YX9GGjpYeJh4+Rl7yE577CUD+3zzsfk36rbfestta0dHR19w4SRDDhaKiIlRUVAAA5s4d/Atx7ty5uHjxIsrLyxmpS5/05FrrBAcHIyEhAXl5eThyhB0JTBBK53tOAa5SATPj5FOg2Q2jASj+no2HTARc5VWk2YPc+lw0dbGD3eUmP7FkP+hqs/zEkv5bPvITwLL/d+S4idImMgywewG+atUqu11mWL58ORXgQ+DZo8/iUuMlR6dxbQSYhxxpNBrgOt8+o7xH4dkZz9ovLztz4cIF8+3ExMRB79v/eE5OzoAC3NZ18vLyUFpaira2Nri5KVD3ShAceowmHC9kHVDGhXrBx836yYPDhoqTQBdrt0j6b8fC3YCpVsMt1TaZDM9+UKVWITRBPgW4yWRE6bkzTDwgOhaunl4OyEjeiLYri+cwQkjLpcZLOFPD/jEQjqGsrMx8Ozw8fND79g2MAoDS0tIhryMIAsrKyszSFoJQOqdLG9HaxY7CVqz8ZITpv49VsIWtVq3FlKApDsiGj9DTg/aMDCauGzcOGi/rC1KjwYTyS41MPCjaAy56+Wyury4sQGdbKxMn9xM+stWAk1ifUBotLS3m2+7u7oPet3+nurV14AeavdYhCCXDk58AwGwl2g8CfP23VgdEyKsjbA86DZ3IrmadNiYGTISrE39PjCPoOHsWprY2Jm6r+8mVoiYYutgx9sNm/DzJT7iIduqUkpKCRx991ObHCYKA+++/X4SMCMKxdHb+4Mbg7Dz4JXAXFxfz7Y6ODlHWIQglczifLcB1TmpMiZbPJXu70dUClLGdVkROB5zk45BhL05eOYkuYxcTTwtJc0A2lmnrt1+nP27TbTspKjlvYfy8zPTfxWdOMjGNVouwxLEOyEb+iFaAR0VFYeXKldf1WCrACSWi0/3wRdjd3T3ofbu6fvhyudqq8Op1+v9syzoEoVSaO3twqrSRiafG+MFFq8BR2JePAiZWbqNU/ffRiqPc+MzQmRJnMjitnM3vKr0e+smTbVqHtwHTyUWD4Fj56Kq7O9pRcTGXiYclJsFpkO+okYwoBbg99N+kIR86o7xHOToF67DjJkw54+HhYb59LTlIW7/LllfLTK5eZ7ACfLB1CEKpHC+og9HEfocoVn4ywvTfRyrYwtbT2RNj/eTTaTU2NqLz7Dkm7pqaAvU1rlz2p6O1G9UlLUw8bLQPNFr5qIhLL5yFycieBEZNsO1kYyRh9wK8b3DIqFHXXwzZYw0CsnYE6Y/JZEJzc+/ufU9PT6jV8vlQsSf9N0z230jJo//Gy/4bMnnr+PtbLir61lGpVNfcsEkQSoEnPwEUvAGTN37e1Q8IGi99LiJT3V6N/MZ8Jj4tZBo0avlc3Wg7fhwwmZi4+0zbuvRlOQ0Apx8ZITP/7+LTrCYfAKInUgFuCbsX4L/85S9lsQZByI2kpCTz7dxc9lJdf/ofHzNmzKDrJCcnX3OdiIgIsiAkRgy8ATz+7i5IDPbg3HuY01QO1HA+T2LmAgpsZliSn8wItW2wjdi0WtJ/z5pl0zolF1grTQCITJJXAX6Zo/929fJGQGS09MkME5T310kQMiUmJgah/x09fPDgwUHve+jQIQBAWFgYoqOjBxyb1e8DfLB1qqqqkJeXBwCYaWPXhSCGK+WNHSisZZ0nZsX7KdNdq+A7flyh8pPhUIALgoC2I2ye2pAQOPeb6WDNOqUXWP23h58OXoHy2dPTVF2FhsoKJh41PhkqBZ4E2gvR/2fa2tpw4cIFXLhwAdXV1eb45s2bERsbC1dXV0ydOvWaBQlBDHdUKhWWLFkCoLczffw4f5DE8ePHzZ3rJUuWMEVDQkKCuSv+/vvvo729nbvOjh07zLeXLVs21PQJYljwfR479hsAZo0KkDgTiSj4lh+Pmy9tHhJgEkw4XsF+bsZ4xSDEPcQBGfHpLiqCobKSibvPmmnTSWB9ZRvamtgN+5FJvrI6mbx85hQ3TvKTwRG9AN+2bRvGjx+P8ePHY/fu3QCAPXv24PHHH8fly5fR2dmJkydP4tZbb0VRUZHY6RCEQ1m7dm3vRlMAa9asYawBOzo6sGbNGgCAVqvF2rVrues88cQTAID6+nqsX7+eOV5QUIA//vGPAID4+HgqwIkRw6FLFgpwJW7ANBn5GzADEgGvMOnzEZmc+hw0dLETIeXU/QYGsR+08Uokr/sNABEyk58Un2blJwAQNWGSxJkML0QfoZSVlQVBEKBSqbBgwQIAwJYtW8zHVSoVBEFAR0cHXn/9dbz88stip0QQ18Xhw4eRn//D5p/a2h90pvn5+QM6zgCwatUqZo2EhASsW7cOf/rTn5CVlYWZM2fiySefRFxcHAoKCvDiiy8iO7t3M8u6dessbkReuXIl3nzzTRw5cgSvv/46qqqq8NBDD8HHxwcZGRl47rnn0NzcDLVajddeew1arXympRGEWBiMJu4AntFBHgj2UqAVWkU20NnIxhXY/Qb40y8B+RXgPPtBqNVwm2ab/zevAFepVQgfLR//b5PRiJJzp5l4QFQM3Lzlk6ccEf1b+fTp3hcmPDzc7OZw6NAhqFQquLm5ITAwEIWFhQCA/fstWCkRhAzYunUrdu7cyT125MgRHLnqQ5dXgAPACy+8gOrqarz55pvIzs7G3XffzdzngQcewPPPP28xF41Gg127dmHRokXIzMzERx99hI8++mjAfVxcXLB582YsXLjwGs+MIJTB6bJGtHSyVmhzRytUfpJvQX4Sf6O0eUjEkXK2sHVSO2Fq0FQHZMPH1N2N9oxMJq4bPw4ab2+r1zF0Gy2Mn/eEi6vTEDK0L5X5eehqZ/dcUPf72oguQamurh5ggVZSUmK2nNu8eTMuXLiAkJAQCIJAEhRiRKBWq7Ft2zZ8/vnnWLJkCUJDQ+Hs7IzQ0FAsWbIEe/fuxdatW69px+jv74+jR4/ib3/7G2bNmgU/Pz/odDrExsbioYcewokTJ/Dggw9K9KwIwvEcvMiXn8wZSfpvrQ6IUt6m67aeNpyqOcXEJwdOltf4+ZMnIXCmDrvPtM39pDK/CcYe1sYwcqy85Cc89xOA9N/WIHoHvL6+9xJKYGAgAODSpUvmYzNmzICzszMmTZqEysrKaw4nIQhHsmPHDkZmMhQWLVqERYsWDWkNrVaLRx55BI888oidsiKI4ctBzgZMvZMGU5U4fr6jESjLYuNRMwAn+Thk2IvMqkwYONM+p4dOd0A2lrGo/55l20mRJftB+fl/swW41tkFYaOTOPcm+iN6B7xPe9rQ0Ltxok9Dq1KpzJKUvvu4usrnLJYgCIIYPtS3deNMeRMTnx7nB52TfAa02I2ig4BgZOMK1X9bHD8fJq9ufyvHflDt7g79eNuGIvHGz7u4ahEYJR8v+87WVlTlX2LiEUnjoLVh2udIRfQCPDg4GIIgID09He+88w62b98OAIiMjISLiwsAoK6u90zPz89P7HQIgiAIBfL9pRoInImBcxMUKj+xqP8eOQW4r84XCT4JDsiGj6G2Fl05OUzcbfo0qJys1223NXahrpzVVYcn+kCtkY+vdsm5UxAEViZD4+etQ3QJytSpU1FUVITu7m7cd999AHq73/2HieTm5g7oiBMEQRCELfDkJwAwR4kFuCDwB/B4hPZaECqMspYyXG6+zMRnhM6AWiWfgrTtKL9Lb7P9IKf7DchQfnKGxs8PBdHfuffff/+An4X/tij64pmZmeYO+DQbLXoIgiAIwmQScCiPtR+M9HVFtJ8CpY21l4CmUjYefyMgowEt9mI4TL8E7Dl+Xv7+34IgcPXf7n7+8A0Ld0BGww/RC/Cbb74ZL730Etzc3CAIAtzc3PDHP/4R8+bNAwB888038PLygqenJ2bPni12OgRBEITCyKlqRm1rFxOfmxAgq4mBdmMETb8ELPt/y2kDpmAyoe0om6dTVCScw60vSAWTwO2Aewe5wtNPPptrGyrL0VLLXnWKnjBZmX9zIiDJdI4nnngCa9euRU1NDfz9/eHUTwv11FNP4amnnpIiDYIgCEKB8LrfgELlJwBf/61SA7HzJE9FbAwmA9Ir05n4aJ/R8NfLZ7pp18WLMNay70Nb7QdrSlvQ2drDxCNl1P0GLE+/jJ5I/t/WItl4PK1Wi5CQEKl+HUEQBDFCOJhXzcScNCpMj1Pgxv6eTqCYI3UInQy4yqtIswfnas+hpaeFic8Ik5f8pI03/RK22w9a1H/LrAC/zNN/q1SIHJ8seS7DFYftXsjKysL999+PRYsW4de//jWuXLniqFQIgiCIYUprlwFZxQ1MfGqUL9xdJOsxSUfJMcDADnpBnEKnX1bwC1v56b85eWq1cE1Ns2mdkvNsAa7WqBCWIB8ve0NPD0rOn2HiwXGjoHeXj02i3BG9AH/nnXcQGBiIwMBA/OMf/wAAnD17FrNnz8bOnTvx5Zdf4tVXX8XMmTPR0sKe5RIEQRCEJY4V1MFgYv0HFSs/saT/HkH2gzqNDpMD5eO0YWpvR8eJE0zcNTkZGnc3q9fp7jSgqpD1sg+J94KTi3y87Csu5sDQxe65IPcT2xC9AD969Chqa2tRV1eH6dN7N0y88sor6Or34vWNoe8r0AmCIAjCGnjyE0DJ/t8c+0EXLyBsqvS5iExTVxPO1Z5j4lODp8JZI59BL+2ZmRB6WN22rfKT8rxGmIzsyaT87Af5+u+oCaT/tgXRC/CTJ3tfKF9fX0ycOBEA8NVXX0GlUkEQBLMtIQDs2bNH7HQIgiAIhSAIAtf/O8DDBWNCFHgpvLkSqD7PxmPnABrlyW2OVR6DiTPoZWaozKZffm/BftDGDZgl5/nj5yOT5LWXofgU2+131rsiJH60A7IZvohegJeXl0OlUiEqKgoAUFNTg4qKCgDAhg0bkJeXB3d3dwiCgIsXL4qdDkEQBKEQiuvaUVrP6qGVaz/I6X4DirUfPFzGL2zltgGz9ftDTEzj4wNd0hir1xAEAZfPsQW43sMJ/uHuQ8rPnrTU16LmchETjxw3ERqt8k4CxUT0Arz2v7Y8oaGhAIBLly6Zj91xxx2Ij49HWlrvJoWGBnYjDUEQBEHwOHiRLz8h/ffwxySYcLicLcDD3MMQ4xnjgIz4dBcXo+dyCRN3mzULKo31uu3GK+1oqetk4pFj/aBSy+dksvgUX34SM2mKxJkMf0QvwE2m3stHPf/VRxUUFJiPxcT0/hF5ePReKtTS2RNBEARhJTz5iUoFzI6Xjz+03TAZ+R1wv1GAd6T0+YhMbn0u6jrZjvCssFmyurrReuh7btx9jm2DBXndbwCIGisv+UnRqSxuPCZZeXsQxEb0AtzX1xeCICAzMxPl5eXYu3cvAMDf399ceDc3NwMA/Pzk9UYjCIIg5ElnjxHHCtmiZWK4N3zc5LNBz26UnwA6OFeJ438kfS4SwOt+A8DsMHlNzG79nlOAq1S2j5/n6L9VKnn5fxsNBlw+c4qJ+0dGw8NPgSe9IiN6y3ncuHGoqqpCQ0MDIiN7z9JVKhVSU1PN98nPz4dKpUJwcLDY6RAEQRAK4FhhHTp72A16ipWfXPqKHx91k7R5SMT3ZWxh66R2QkpwigOy4WPq6EB7OjulUzdhPLQ+1vt2d3caUH6pkYkHxXhB5+bEPsBBVOTloLujnYnHJJP85HoQvQO+YsUK8+3+rid33nknAKCoqAglJb36qSlT6EUkCIIgrs2BXL7++8bEQIkzkQheAe7kCkTJyxHEHjR1NeFMLTvoZWrQVLg6uTogIz7tGRkQuruZuPvsOTatU57XCJOBtR+MGief7jcAFHHcTwAqwK8X0QvwBx54ALfddtsAu8FbbrkFP/vZzwAAn376KYDe4nzGDHntbCYIgiDkhyAI+I6zAdPPzRkTwrwckJHItFwBKk+z8Zi5gJNO+nxE5lgF335wVphtsg6xsaj/nmtbAV5iQf8dKTP9d3E2q/921usROjrJAdkMf0SXoGg0Gnz22Wc4fvw4ioqKEBUVNaDQXr58OW644QYAwKhRo8ROhyAIghjmFNS08e0HRwdALSPHCLuR/w0/rlT5STm/sJ0dLh/9tyAIaD3EsR/09YVu7Fib1rnM0X/rPZ0RECEfL/uW+lrUlBQz8ajxk8h+8DqR7H9t2rRpmDZtGhOPiIhARESEVGkQBEEQw5z9FuQnN4weQfITQJEF+GD2g9Ge0dInZIHu4mL0lJYycbdZM6FSWy8uaKji2w9GJfnKyn6wKJsvP4km+cl1I7oEpT8GgwGHDh3Czp078be//U3KX00QQ0alUln1b968eddca9++fVi2bBnCw8Ph4uKC8PBwLFu2DPv27bM6H4PBgH/84x+YPXs2AgICoNfrERcXh9WrV+P8ec60PIJQCN9xCnCNWqXMDZhGA1Cwn40HJCrSfjCnPgf1nfVMXG72g2089xMA7nPm2rSOxemX42QmPyH9t92RrAO+ZcsWPPPMM6ir632zqVQqPProo7j33ntx7NgxODk5ISMjA15eCtTvEcR/MZlMePjhh7Ft27YB8fLycpSXl2PXrl148MEH8cYbb0A9SBeltrYWixYtQmZm5oB4YWEhtmzZgp07d2Lz5s148MEHRXkeBOEoWjp7kFnMFmhTonzgpZePY4TdKMsAuprYuAK734Dl6Zeysx/k6b/VarjNtG0vG8//W6UCIsbIZwOm0WDA5bOnmDjZDw4NSQrw3/3ud3j++ecHbMTs46abbsJ7770HlUqFXbt2YeXKlVKkRBDXzSOPPIJHH33U4nE3NzeLx55++mlz8T1p0iSsX78ecXFxKCgowEsvvYTs7Gxs3boVAQEB+L//+z/uGkajEcuWLTMX33fccQceeugh+Pr6Ij09Hc8//zyqq6uxevVqhIWFYeHChUN4tgQhLw5fqoXBxH6XjDz5yQJp85AInvzEWe0sP/vBjAwmrh9vu/1gRX4jEw+OHSb2g5No+M5QEL0Az8rKwvPPPw8A5stH/Qvx22+/HWq1undX+3ffUQFOyJ7AwECMGzfO5sfl5eXh5ZdfBgBMnToVhw4dgl6vBwCkpKRg8eLFmDt3LrKysrBx40bcf//9iI+PZ9bZuXMnDh/u/ZJ69NFH8frrr5uPpaamYuHChZgyZQqam5vx+OOPIycnh6bMEoqBJz8BlGw/+DUbc3YHItg9VcMdi/aDwfKyH2xLT+faD7rZ6H5SfrGBaz8oN/eTIo77CUDyk6EiugZ88+bN5oI7PDwcYWFhA477+fkhPj4egiDg1KlTYqdDEA7j1VdfhcFgAABs2rTJXHz34erqik2bNgHo1Xe/8sor3HX6inhfX19s3LiROR4fH4+nnnoKQO+Qq08++cRuz4EgHInJJOAAZ/x8qJcOCUHuDshIZJrKgSvn2HjsPECrvGmfRyuODgv7wTZL9oM2+n9fPs9KqQAgSmb6b57/t7PeFaEJYxyQjXIQvQA/9F+bHnd3d2RlZSEtLY25T3R0NACYB/IQhNIQBMHseZ+YmMh1BAJ63YJGjx4NoNcj/2rZVl5eHnJycgAAd911F1xd+V2hVatWmW9TAU4ohfMVzahp6WLiNyQGymqDnt2waD84cuQngLwKcEEQuOPnNX5+0I213g9bEASu/7fe0xn+4fI5mWypq0Ut134wmewHh4joBXhlZSVUKhVmzJiBgAD+DnUXFxcAQFtbm9jpEIRDKCoqQkVFBQBg7tzBd8n3HS8vL0dxcfGAY33Sk2utExwcjISEBADAkSNHridlgpAdluQnI0//rbwNmJbsB8Pdw+VlP1jEtx90nzXLNvvByna01HPsB8fKzH7wlAX5Cem/h4zopy9arRbd3d0wmdjLSn30db6vviRPDI3K3/4WXXmXHJ3GNRHQu7EQABo0GlzvR49LwiiEPPec3fKyxAcffID3338fxcXF0Gg0CA4OxowZM7Bq1SrzUKmruXDhgvl2YmLioOv3P56Tk4OYmJjrXicvLw+lpaVoa2sbdHMoQQwH9nOmXzpr1ZgRL69L9nbB0A0UHmDjQeMAz1DJ0xGbnLrhYj/IDt8BALc5trm08IbvAHLUf1vy/54scSbKQ/QCPCQkBPn5+UhPT0draytzPDs7G6dPn4ZKpaKBPHamK+8SOk5zxhfLmB5HJ2AF/YtgoFdnnZ+fj7feegtLly7Fjh07GDvNsrIy8+3w8PBB1+//d1B6VafletYRBAFlZWVmaQtBDEfqWrtwuqyRiU+P9YOrswIvhZceB7rZ70wldr+B4TH9ErBsP+g+c6ZN6/D8v+VnP9iDknOnmHhAZDQ8fMl+cKiILkHpGzvf0tKCm266CYWFheZjGzduHGCRNn36dLHTIYjrxtXVFXfffTf++c9/4vvvv0d2dja++uorPP300/Dz6+1a7Nq1C0uWLEFPz8BTiZaWFvNtd/fB9X39O9VXn7Taax2CGG4cuFgDjpMtbhitwOE7wIizH+QV4LKzH2xvR/tVsxcAQD9hAjTe3lavY9F+ME5e9oPluTno7uhg4iQ/sQ+itw0efPBBvPXWWwCAjH6+mYIg4P/9v/83YJPZ/fffL3Y6BHHdlJeXw5vzIXvTTTdhzZo1WLhwIbKzs3Hw4EH8/e9/x+OPP26+T2fnD1o/Z+fB3Qv69kQAQMdVH372Wocghhs8+QkA3JgYJHEmEsGzH3TxAsJTpc9FZOo66nC25iwTTwlOgV4rH2lq27FjfPtBG+UnpTn1w8J+sPAk63UOADHJVIDbA9E74LNmzcKqVasGFNp9I7v7bgPAfffdRx1wQtbwiu8+goKC8OGHH8LJqbd70Wcn2IdOpzPf7uZ8gPenq+sHl4er90XYax2CGE4YjCYc4tgPxga4IdJPPv7QdqOhGKjJZePxNwIa5cltvi//HgLYglR28pMDB7hxj3nzbFqn+Cxf/x09Xm4FONvtd3FzQ0jC4PuPCOuQ5C/5n//8J/R6Pd544w1mM6ZKpcJDDz00YJgIYR9cEkY5OgWr6L8JUzPETZiOJDY2FjfddBP27t2L/Px8VFRUIDS0d7OUh4eH+X7XkoP0dwO6WmZy9Tr9C3Jb1iGI4cSJyw1o7jQw8RuV6n5y8Qt+PF6Z+u9DZfyNjXPDB3eMkhLBZEILpwDXBgXBZYz1ftiCScDls7VM3N3HBX5h8vmcrq8oR0NlOROPnjiF7AfthCT/ixqNBq+//jrWrl2Lzz77DEVFRQCAmJgY3HbbbbQ5TCSkcASxByaTCc3NzQAAT09PqG2wcpIbSUlJ2Lt3L4BeyUpfAd5/w2T/jZQ8+m+8vHpj8tXr+Ptb3gjTt45Kpbrmhk2CkDPf5Fzhxm9Q6vTLvH2coEqR+u9uYzeOlLNWqfHe8Qj3kM/nVuf5CzDWcArnefNscmm5crkZHS2s3UD0eH9Zub1Ykp/ETVGeBMpRSHoaM2rUKPz617+W8lcShKRY+gBNSvphQENuLufScj/6Hx9zVWfl6nWSk5OvuU5ERARZEBLDFkEQ8PUFtgD3cNEiJVo+jhF2o7MZKOZ494enAO7K23CadSUL7YZ2Jj4n3LapkmLTun8/N+4+z7YuffEZtogHgCi5yU9OsAW4Sq1GNI2ftxvDt9VIEDKkv0VhX/cb6L3a0/fzwYMHB12jb3psWFiYeUpsH7Nm/TARbrB1qqqqkJeXBwCYaaM9FkHIiYKaNhTXsQXa3NEBcNYq8Cus4FvAxDFkHX2L9LlIwMFS/ufYvIh50iZyDXj6b5VOBzcb967x9N9aZzXCE32uNzW709nWirLc80w8bHQS9O4enEcQ14PdO+B/+MMfhvT4DRs22CkTgpCWoqIifP11r3NBXFwcwsLCzMdUKhWWLFmCv//978jNzcXx48e54+iPHz9u7lwvWbKE6agnJCRgzJgxyMnJwfvvv48///nP3HH0O3bsMN9etmyZPZ4eQTiEby3IT25KUqj7iSX9d8JCfnwYIwgCDpaxBbiXixcm+E9wQEZ8eq5cQedV8x8AwG3aNKgH2YdzNS31nagrY/cAhSf6QuukGVKO9qT41AkInOGJsZPlYwmpBOxegD/77LND0jFRAU7Ikd27d2PhwoXQWth8cuXKFSxfvtzsTPLoo48y91m7di22bNkCo9GINWvW4NChQwPcSTo6OrBmzRoAvRNk165dy/1dTzzxBB544AHU19dj/fr12Lx584DjBQUF+OMf/wgAiI+PpwKcGNbw9N8atQrzEhSo/zYZ+f7f3pFAoPUb/YYLBY0FKG9lN/rNDpsNjVo+BWnrAX6X3t1G9xPe5ksAiJkgr6E2PPcTAIgl/bddkc1WVkEQZLUBgSD6s2bNGvT09GD58uWYPn06oqOjodfrUVtbiwMHDuCNN95AbW3vh+usWbPwi1/8glkjISEB69atw5/+9CdkZWVh5syZePLJJxEXF4eCggK8+OKLyM7OBgCsW7cOo0bxXV1WrlyJN998E0eOHMHrr7+OqqoqPPTQQ/Dx8UFGRgaee+45NDc3Q61W47XXXrN40kAQcqeutQsnLjcw8dRoX3i5ymdgid0ozQA62HHsSFjYOyZRYfC63wAwN0I+7ieAZftB9xvm2bSOJfvBqHHy0X+bjEYUnWLHz3sHhcA3VD6bYpWAKN/MAm9cGUEMcyoqKrBp0ybG47s/y5cvx9atWwcMwenPCy+8gOrqarz55pvIzs7G3XffzdzngQcewPPPP2/xd2g0GuzatQuLFi1CZmYmPvroI3z00UcD7uPi4oLNmzcPmDRLEMON/RdrYOJ8ncwfo8DuN2DB/QSK1X/z7Ae1Ki1mhspn34qpsxNtx44xcZekMXAKsl4G1dNlRFkuezIZEOkBN2/+94UjqMjLQWdrCxOPnZxCTVI7Y/cCfPv27fZekiAczs6dO3Hw4EEcO3YMhYWFqK2tRXNzM9zd3REREYEZM2Zg5cqV1xwmpVarsW3bNixfvhxbtmxBZmYmamtr4e/vj5SUFKxevdqqotnf3x9Hjx7FP//5T7z77rvIyclBW1sbQkNDMX/+fPzyl7/E2LFj7fX0CcIhfMNxPwFGmP7b2QOImsXGhzmNnY04VXOKiU8JmgIPZ/ls9Gs7fhxCvwnEfXjMu8Gmdcpy62E0sLrqaJKfjFjsXoCvXLnS3ksShMOZO3cu5s6132XRRYsWYdGiRUNaQ6vV4pFHHsEjjzxip6wIQj509hhx6BI7/XJUoDui/BRoq1lfCNReZOPxNwJaZ+nzEZnvy7+HSWALUvnZDx7gxm2Wn1iwH5Tb9MsCjv2gs94V4WOooWNvFOjhRBAEQQx3jhfWob3byMR/NJK63wCQoEz5iSX9t5zsBwVB4Oq/NQH+0NlwhVEwCSg+x+q/3bycERApn25/Y1Ul6stLmXj0xMnQaBW458LBUAFOEARByA5L0y9/NEahBfgImn7ZY+rhTr+M9oxGpGekAzLi05WTA8MV9n3oPncuVDZMbK4pbUF7UzcTjxom0y/JflAcJCnAS0pK8D//8z+Ij4+HXq+HRqPh/iO3BoIgCEIQBHybU83E/dyckRzhLX1CYtPZBFw+ysYjUgE3eWmE7cHJKyfR2sP6Yc8Nl5f7SYsF9xMPG+0HLcpPZKb/LuDpv1UqxEyaKn0yIwDRK96LFy9ixowZaGxsJHcUgiAI4pqcr2hGZRO78e3GxEBo1PLpGNqN/G8Bk4GNjzD5ifzsB9k8Vc7Odpl+qXGS1/TLrvZ2lF04x8RDRyXC1dPLARkpH9EL8GeeeQYNDb3WO4NdaqHinCAIggAGkZ8oVf+dZ0H/PVp5NqKCIOBA6QEm7uHsgeTAZKnTsUhPdTU6z5xh4q5paVC7Wb8JuLWhCzUlrK1feKIPnJzlM2yo+PRJmIzsSSC5n4iH6AX4gQMHzIW3IAjw8PCAl5cXNBr5vPEIgiAI+cArwJ21asweJa9L9nbBaLAw/TIKCEiUPh+RKWgsQGkLu9FvVugsOKnls9HPovvJPNu69MVnWCcfAIgeL6/3ckHWcW48jvTfoiF6Ad7a2qvz0ul02Lt3r12t3AiCIAhlUdnUgXPlzUx8Vrw/XJ0VuE+o5BjQwQ5owWhlTr/8rvQ7bvzGyBslzmRwWr79hhv3uNG2PAtPW7IflE8BbjQYuP7fXkHB8IuIckBGIwPRN2FGR0cDAGbMmEHFN0EQBDEo33A2XwIKnn6Z+zk/rlD993clbAGuVWsxK0w+w4aMra1oP8Z2hHVjx8IpJMTqdbrae1DOmX4ZGO0Jdx8ZTb+8eAFd7W1MPH7qNFm5tCgN0QvwFStWQBAEVFRUiP2rCIIgiGGOpemX8xMVqP8WBCB3DxvXeQPR8ilI7UVVWxXO151n4mnBaXB3dndARnzavv8eQk8PE/f40Xyb1rl8vg4mE7u/LTZZPt1vACiyYD8YP3WaxJmMLEQvwNevX4+YmBjk5ubiueeeg8nETr6yN11dXXjyyScRGhoKvV6PtLQ0fP3111Y//j//+Q+mT58ONzc3eHt7Y8aMGfjuO/5lM4IgCMI+NHf24GgBe8l+QrgXgr10DshIZKrOAE2sHhoJtwAa+eih7cX+0v3cuOzkJ998y427z7etAC86xZefxEwMsDknsRAEAUUc+YnewxOho8c4IKORg+iCul/+8pcIDw9HUVERnn32Wfzzn//EpEmT4OfHjl9VqVTYtm3bkH/nqlWr8OGHH2Lt2rUYNWoUduzYgUWLFmH//v2YNWvwrsKzzz6LP/zhD1ixYgVWrVqFnp4enDt3DuXl5UPOiyAIgrDM/txq9BjZjuFNSh2+k8PpfgNA4q3S5iERPPkJILPpl93daD3I2g86RUbCZdQoq9cx9phwmTP90jvIFT7BrkPK0Z501deiraGeicdOSYWazDJERfQCfMeOHVCpVFCpVBAEAWVlZdxiVhAEuxTgGRkZ+Pe//42NGzfiiSeeAADcd999GDduHNavX4+jRznDDv7L8ePH8Yc//AF//vOf8atf/WpIeRAEQRC28dV5vvzk5nHBEmciETz9t1YHxNvWaR0ONHU1Iasqi4lP8J+AQFf56PvbMjJhamWHBHnMn2+THrosrwE9XUYmHjNBXtMv28qKufH4FNu8zgnbkXRLuRRvug8//BAajQYPP/ywOabT6fDAAw/gN7/5DUpLSxEREcF97Kuvvorg4GD88pe/hCAIaGtrg7v79evSysrKBj1eWVlpvt3R0YGOjg6r1zaZTGbvdClkPWLSP//h/lyIgfR/PY1Go03vcUL+dHZ2cm9fD10GI/ZfZDdgRvnqEe6hUdx7R9VQDF01q4c2Rs9Ft1ENOPj52vO1BYDvLn8Hg8D6TM8OmS2r17bxyy+5cefZs2zK81JWFTceOsZTFs+37zVtK7vMHNM6uyBo1GhZ5CkXxPi/kKQAl3LITnZ2NhISEuDp6TkgnpraayZ/6tQpiwX4t99+ixkzZuC1117D888/j7q6OgQHB+Ppp5/GY489ZnMuln4Pj0OHDsHf3/qNGX5+ftDr9VCpVGhuZi27hiutnM4DoQzq6+tx6dIlR6dBiMShQ4eG9PhzDSq0d7OXvON1bTbt4RkuxF3Zh3Gc+OnuSJR+xfEFdyBDfW0B4D9t/+HGtcVafFUqk+drMiH2yy+Zwsjg5oZDV64AVr4uggBUnnTD1dvs1M4mnMo7BpVMPga7m5vQ3cS6tLgEhuA7zhTQkUxtLV/PPxREL8D37+dvuhCLyspKhHBsgvpiltxYGhoaUFtbiyNHjuC7777D7373O0RGRmL79u1Ys2YNnJycsHr1alFzJwiCGKmcqeNfIZ3gq8yrYiFNrBxDgApXvJKlT0ZkeoQeXOphq05/tT8CNPLZkKgrL4eW09BqSxoDqK33rOhuVMPUxd5fH2SQlbV7Wznb/QYAt3Dy/pYC0Qtwqb2/Ozo64OLC+mvqdDrzcR59nde6ujr8+9//xo9//GMAvTaK48ePx/PPP29zAV5aytnd3o/KykpzZ37OnDkIDw+3eu2SkhIYjUZotVqm2z/cMJlM5v9/d3d3qG34oCPkTX8Jiq+vL6ZMmeLAbAh709nZae6Ozpkzx/w5aysGkwnPnj4CYKD1W4C7Mx684wao5VS12IO2Guiy85mwKXI65i1a7oCEWOz12gLA4YrD6D7czcQXJSzCggkLrntde9OwaROaOPFR996LiTbUMpm7L6MGbLNvxi0TEJHkM4QM7UdnZyfe/fozJq5Sq3HbT1dC5+7hgKzky7UkxdeD4saK6fV6dHV1MfE+vZNer7f4OABwcnLCihUrzHG1Wo0f//jH+N3vfoeSkhJERkZanYstBbVer7eYGw+1Wm0ubpRUsKrVakU9H+IHNBqNTe9xYnih0+mu+/U9XliHhnbWd/nmccFwc5WPY4TduLAfACvN1CQtluXfyFBeWwA4cuUIN74gdoGsnm8FR2qj0uvhM28e1DacgJSeb2RiTi4axE4IgtZJHs4i7c1N6KxhNz2HJ46FT4B8NsXKBTHep5IV4AaDAdu3b8fu3btRVFQEAIiJicHtt9+OVatWwcnJPp6nISEhXJeVvg2PoaGh3Mf5+vpCp9PB29sbmqusdwIDe9+MDQ0NNhXgBEEQxLX58jx/w9rNY5XqfmLBfnD0ImnzkACjycj1//bX+2O8/3gHZMSnq6gI3fkFTNx91iybiu+GqjY0Xmln4pFj/WRTfANAcTYrgQKA+BQaviMVkhTgpaWlWLRoES5cuADgh02ZFy5cwOeff46//vWv2Lt3r12K2+TkZOzfvx/Nzc0DpBnp6enm4zzUajWSk5ORmZmJ7u5uODs7m4/16cYDAuSjVSMIglACgiBw7Qc9dVpMi2XnRQx7ulqAwgNsPHgC4KM87e3Z2rOo72R9pm+IuAFqlXyudrZaGLZn6/TLotP8zXrym37JDt8BgDiafikZor/7e3p6sHjxYpw/f95cePf5ggO9H74XLlzA4sWL0cMZ/WorK1asgNFoxJYtW8yxrq4ubN++HWlpaWZnkpKSEuTm5g547I9//GMYjUbs3LnTHOvs7MQ777yDpKQki91zgiAI4vo4X9GM8kZ2b878MUFw0sinQLMbl74GjKweGom3SZ+LBFgavjMspl9qNHC3cR9b4akaJqZWqxA1Tj4nk92dHSg7f4aJB0THwitQoUOvZIjon27vvPMOTp8+PWAYT/9/fYX42bNn8a9//WvIvy8tLQ133nknnnrqKaxfvx5btmzBjTfeiOLiYrz00kvm+913330YM2bgmNXVq1dj7Nix+MUvfoF169Zh06ZNmDNnDi5fvoyXX355yLkRw5vq6mrs2bMHGzZswMKFC+Hv729+X69atcrm9fbt24dly5YhPDwcLi4uCA8Px7Jly7Bv3z6r1zAYDPjHP/6B2bNnIyAgAHq9HnFxcVi9ejXOn2c9hi1RW1uLDRs2YMKECfD09ISnpycmTJiADRs2oK6OneZGEPbCsvxEoYUAb/gOAIxRXgEuCAK+vsxaSLo5uSE1ONUBGfHpuXIFHdnZTNw1JQUab2+r12lt6MSVItZFJWy0N1xc7SOztQdF2VkwGtiGZzx1vyVFdAnKBx98YL4dFRWFdevWYeLEiQCA06dP4+WXXzZrwj/44AP8/Oc/H/LvfOutt/Db3/4Wb7/9NhoaGjBhwgTs2bMHc+bMGfRxer0e3333HdavX48333wTbW1tSE5Oxueff46bb755yHkRw5ugIPsUBCaTCQ8//DAz9bW8vBzl5eXYtWsXHnzwQbzxxhuDbkitra3FokWLkJk58FJiYWEhtmzZgp07d2Lz5s148MEHB80nPT0dS5cuRVXVwELo7NmzOHv2LLZu3Ypdu3aZHXsIwp7wCnAXrRpzEhQo+TN0AZc4XtI+0UBgkuTpiE1ufS7KWln3iNlhs+GsceY8wjG0fP0NN+4x3zb5SUE22/0GgJiJ8nov5x3nb4ol/be0iF6AZ//3rNLDwwPff/89wsLCzMdmzJiBxYsXY+zYsWhubsapU6fs8jt1Oh02btyIjRs3WrzPgQMHuPHAwEDs2LHDLnkQyiUyMhKJiYn46joGZjz99NPm4nvSpElYv3494uLiUFBQgJdeegnZ2dnYunUrAgIC8H//93/cNYxGI5YtW2Yuvu+44w489NBD8PX1RXp6Op5//nlUV1dj9erVCAsLw8KFC7nrlJaW4vbbb0dNTQ20Wi3+93//F7fd1tuJ27NnD/7yl7+gsrISt99+O06cOGGTsw9BXIui2jbkXWGHb81JCICrs+JMuoCC/UAXZ3Ba4m2QlUG0neB1vwHgpqibJM5kcFosTL/0WGBbngUn2UmuUAGxk+RTgPd0daIwm9V/eweHICAqxgEZjVxE/4Srq6uDSqVCamrqgOK7j7CwMKSkpODbb79FfT27UYMg5MKGDRuQkpKClJQUBAUFobi4GDExtn1g5eXlmeVMU6dOxaFDh8z2RikpKVi8eDHmzp2LrKwsbNy4Effffz/i4+OZdXbu3InDhw8DAB599FG8/vrr5mOpqalYuHAhpkyZgubmZjz++OPIycmBVsv+uT/99NOoqent2rz77ru48847zcdmz56NKVOm4Mc//jGqq6vxzDPP0MkpYVdGnPvJhV38eNISSdOQAkEQ8NVltkGh0+gwK2yWAzLiY6itRXsW6wiinzQJTjZc9Wxr6kJlAesiHhLnBTcvdjaJoyg+dRIGjlVzQtpMsySYkAbRNeB9Q3EGK64bGnpHofZ3HiEIufH73/8et91225CkKK+++ioMBgMAYNOmTYy3qKurKzZt2gSgV9/9yiuvcNfpK+J9fX25V3ri4+Px1FNPAQDy8/PxySefMPepqqrCO++8AwC4+eabBxTffdx1111m+dXbb7/NyFQIYijwCnCNWoUfjVGgD7GhG8jdy8Y9QoGwqdLnIzKXGi/hcjM7aXF2+Gy4OsnH273lm297Z8dfhcfNtg0IKsyu4Vm7I26SvN7Leel8+UnCNPmcFI0URC/Aw8LCIAgCsrOz8f777zPHP/jgA5w8eRIqlYrbIScIpSAIAj799FMAQGJiIqZN4+vtpk2bhtGjRwMAPv30U7N7UB95eXnIyckB0Fsgu1oYVNJ/YyivAP/ss8/Mw5wG23vRt47JZMJnn7GT0wjieqhq6kR2SSMTT4vxhberApsxRQeBLs6cxaTFNo05Hy58c5mvq/5R5I8kzmRwWr7iy088b7JRfmJB/y0n+YmhuxuFJzOYuId/AAJj4hyQ0chG9L/6WbN6z6oEQcA999yDGTNmYPXq1fif//kfzJw5E3fffTdzX4JQIkVFRWZP+bnXsLbqO15eXo7i4uIBx/qkJ9daJzg4GAkJCQCAI0fYroe16/Q/xluHIK6HfecqufGRJz9ZKmUWksHTfzurnTEnfHAzBCkxNDSgLZ0tSHXjx8PJhoZgR0s3KvIamHhQjCc8fK0f4iM2l89mo7uDtfyMnTqN5CcOQHQN+OrVq7Ft2zazBWF6erp5KA6AAd29hx56SOx0RhT7385BXUWbo9OwCqPRCADMFFJb8At1ww0/G3PtOzqIvkFUQG8HfDD6H8/JyRmgNbd1nby8PJSWlqKtrQ1ubm7MOl5eXggOtlz0hISEwNPTE83NzebOO0EMlX1nR5D+29jDtx90DwYi0qTPR2QKGwuR35jPxGeEzYC7s7sDMuLT+u23wH+/e/rjaav85FQNT8WCuMkyk59YcD+h4TuOQfQCfOrUqVi7di1effVV7hlWX2H+2GOPkc2ZnamraON6khKOoazsBzuua7mJ9A2MAnqdSoa6jiAIKCsrM0tb+q9jjbNJREQEzp8/z+RCENdDdXMnMi+z+4KmRvkg2Es+HUO7UXQI6GA7pBhzuyLlJ5bcTxZE2VbYik2zBRcrjwW25WlJfhInI/mJ0dCDghPpTFzr6oagWHajPyE+kvzl/+Uvf8Ef/vAH6HQ6ZhCPTqfD7373O/z1r3+VIhWCcBgtLS3m2+7ug3eB+neqW1sH2rTZe51rrdF/navXIIjrYd+5Km7HcNH4EOmTkYILn/LjCnQ/AfgFuFatxdwI26ZKiomxqQltx44zcZekMXCOjLR6nc7WHpTlsidXAZEe8PTXcx7hGErOnUFXG3tF3C0iBioFngQOByQzWn3mmWfw2GOP4ZtvvkFxcTEEQUBMTAzmz58PHx8fqdIgCIfR2dlpvn0tx58+9yAA6LhKs2fvdaxxH+pb5+o1COJ6+PwsX/+9cLwS5ScGIHcPG3cLAKJmSJ+PyJQ0l+Biw0UmPi1kGjydPR2QEZ+W/fuBHnYapKeN3e+iMzUQTOzZZNxk+XS/AcvyE/eIaGkTIcxIOunA29sbK1askPJXEoRs0Ol+uLTe3d096H27+vm0Xm1VePU6/X+2dZ329vZr5tJ/navXIAhbqW7uRGYxKz+ZEuWDEC8Fvr8uHwba69j4mNsB9fXveZErw0V+0vKlJfmJbVOvLctP5KP/NhmNyM9iu/0anR46f/tMeCZsR4Gjxog+/ELdrn0nmWCvTZhyxsPDw3z7WlKOtn6XCq+WiFy9zmAF+LXWaW9vt0pW0reONXIVghiML8/z5ScLxymw+w2Q/ASARqXBDRE3OCAbPsbWVrRxHJ1cRo2CS6z1w9W6OgwovcCeTPqFucM7SD5e56UXzqKzhd0P5k7yE4di9wL8/vvvB9A71e+RRx4x/2wNKpXKPKKbGDpydgTpj8lkQnNz74eDp6cn1Ar9QOi/2bH/Rkoe/Tc79t+QyVvH39//muuoVCpms2V4eDiuXLlyzVz6r3N1LgRhK5bkJ4rUf5uMQM5uNu7qB0Qpz3a3vLUc5+vOM/HU4FR467ylT8gCrQcOQuBc+fO42bbud/GZWpiM8pefXLIwfMctkkbPOxK7F+A7duyASqVCa2srHnnkEfPP10IQBCrACUWTlJRkvp2bmzvoffsfHzNm4InU1eskJydfc52IiIgBGzL71jlx4gSamppQVVVl0YqwsrLSfIJ0dS4EYQs1LV3IKGI7hpMivRHqrUD5SckxoI0jUUi8DdAo7wK0peE7N0XbNtRGbFq+tDB8x0b7wYKT1dy4nOwHTSYjLmUcY+J6D0/oAxR61WmYoMxWI0HIkJiYGISGhgIADh48OOh9Dx06BKB3kmx0dPSAY/0HVg22TlVVFfLy8gAAM2fOZI5bu07/Y7x1CMJavjhfBc5+NdyqxO43AJzfxY8rVH7yVTGrq1ar1Lgx4kYHZMPH2NqG1u+/Z+LOMTFwjrfejq+7w4CS8+zJpE+IG3xD5COHLM85j/amRiYeMzmF5CcORpT//atHZ19tPcj7RxBKR6VSYcmS3i/e3NxcHD/ObooBgOPHj5s710uWLGGuICUkJJg70e+//z7a29u56+zYscN8e9myZczxxYsXm+U+27dvt5h33zpqtRqLFy+2eD+CuBZ7z/DlJ7coUf9tSX6i9wFi5DMN0l6UtZThTO0ZJj45cDL89H4OyIhP6/79EPo5SfXhsWCBTdMgi07XwGgwMXE5eX8DQO7RQ9x4LA3fcTh2vwa2f/9+AEBAQMCAnwmCANauXYstW7bAaDRizZo1OHTo0ABnkY6ODqxZswYAoNVqsXbtWu46TzzxBB544AHU19dj/fr12Lx584DjBQUF+OMf/wgAiI+P5xbgwcHBuPfee/H222/jyy+/xIcffsi4FH3wwQf48r+Xa3/2s58NOjGTIAajtrUL6UWsG8jECG+E+8hnw5rduHwUaOVM+0y8FdA4SZ+PyHxR/AU3vjBmocSZDE7z3r3cuOeiRTatcymLLz+Jnyof+YnRYEBe+lEmrvfwRNiYccit/M4BWRF92L0Anzt37qA/E8Rw5fDhw8jP/2G8cm1trfl2fn7+gI4zAKxatYpZIyEhAevWrcOf/vQnZGVlYebMmXjyyScRFxeHgoICvPjii8jOzgYArFu3DqNGjeLmsnLlSrz55ps4cuQIXn/9dVRVVeGhhx6Cj48PMjIy8Nxzz6G5uRlqtRqvvfYatFr+n/oLL7yAL774AjU1NbjnnnuQlZWF2267DQCwZ88e/PnPfwbQe0L9/PPPW/1/RRBX86VF+YlCT+rOfcSPJy2VNA2p+KKILcA1Kg1+FPUjB2TDx9jUhNbDh5m4c3wcXBL4n7U8Olt7uO4nvqFu8AuVj1NUybnTXPeThGkzobHwnUBIB70CBGElW7duxc6dO7nHjhw5giNX2VrxCnCgt+itrq7Gm2++iezsbNx9993MfR544IFBC16NRoNdu3Zh0aJFyMzMxEcffYSPPhr4he/i4oLNmzdj4ULLHaiIiAjs3r0bS5cuRVVVFV588UW8+OKLA+4THByMXbt2WTWyniAssdfS8J1xCtR/G3v49oN6XyB2nuTpiE1hY6HF4Tu+Ol8HZMSn5Ztv+MN3Fi2ySX5SkF0NE+dsctRUeXlqX7QgPxk9Q3kSqOGI6Ap8QRDQ3t6O9vZ2GAwGc/yzzz7DjTfeiKSkJKxYsQI5OTlip0IQskCtVmPbtm34/PPPsWTJEoSGhsLZ2RmhoaFYsmQJ9u7di61bt17TjtHf3x9Hjx7F3/72N8yaNQt+fn7Q6XSIjY3FQw89hBMnTuDBBx+8Zj5paWk4e/YsnnnmGYwbNw7u7u5wd3fH+PHj8cwzz+DcuXNIS0uz19MnRiB1rV04Xsh2DCeGeyHCV4Hyk8IDQAf7fJG0ZETJT26JuUXiTAan+XML8pNBmhQ8hoP8xNDdzXU/cffxRVhiEucRhNSI3gHfsmULHn30UQDAX//6Vzz22GM4fPiwWZMqCAJyc3Px/fff4+zZswgMlM8bmCD6s2PHDkZmMhQWLVqERTbqDq9Gq9XikUcewSOPPDKkdfz9/fHcc8/hueeeG9I6BMFj77kqGDkdw4VKdT+xJD8Zt1zaPCRAEATsK9rHxJ3UTrgxUj7uJ4baWrRxNr7rkpLgEmO9H3ZbUxfK8xqYeGCUB7wD5XMyWXQqC90d7Ab9hOmzoVbgBNbhiOgd8KysLLPLyYIFvR6bmzdvNsf6LvvU1tbi9ddfFzsdgiAIQmJ2n67gxhVpP9jTCeTsYePuwUDUDOnzEZmLDRdR3FzMxGeFzYKns6f0CVmg+csvARPrWuJ5q21NkPwT1QBnL0O8zOQnuUdZq0UASCT5iWwQvQDv21AWGBiIhIQEAMB3330HlUoFtVoNV9cfzhi/+or1ECUIgiCGL5VNHcgsZuUYyRHeypSf5H8NdLew8XF3AArsPPK634Ac3U/4eXreYptMJj/rCjceP0U+V++7OztQeCKDiXsGBCE4PsEBGRE8RC/AKysroVKpEBkZaf65zz3ilVdeQWlpKXx9fSEIwgCHCYIgCGL4s+d0JXijHhZPDJU+GSkYYfITnvuJXqvH3HD5OKD1VFai48QJJq6fNAlOYWFWr9Nc24GqQtZVJCTeCx6+uiHlaE8KTmTA0N3FxBNnzLZpsykhLqIX4HV1vb6vISG9lxovXbpkPjZ//nx4e3sjJSUFAMzjrgmCIAhlsPsMKz9RqYBbJyhQftLVClzkbEj0jgTCpkifj8icqT2Dijb29Z0bPheuTvK5utG8j79J1Fbv7/wT/M2X5H5CXA+iF+B9Z1ttbW0AMKDL3TdiW6frPXN0cXEROx2CIAhCIopq23CmrImJT4vxQ5CnfDqGduPiPsDQwcbHLe8961AYvO43IEP3E97wHbUanrfcbNM6lzjyE5UKiJssH/lJZ2srirLZbr9vaDgCoqzfbEqIj+gFeEBAAARBQHp6Oo4cOYL3338fQG9HvG8CYGNjIwDAz08+42oJgiCIoWFp8+XiZJKfDHeMJiO+LP6Sibs7uWNW2CwHZMSn+/JldJ47x8RdU1OhDbB+bHxDVRtqS1uZeNhoH7h6Og8pR3uSn3kMJqOBiY+eMYfkJzJDdBvC5ORklJWVoa2tDXPm9F7+UKlUmD59uvk+Fy9ehEqlQmioQj+UCYIgRhiCIOAzTgGuVatwy1gFTr/saADyv2Hj/glA0Djp8xGZk9UnUdNRw8RvjLwRLhr5XM1u3mdh8+Ui2zaJWpSfpMhLfpJrUX4yW+JMiGshegf8Jz/5ifm2IAhm+8F7770XAHD+/HlUVVUBgFkLThAEQQxvcqtakF/NdgznJATAx00+HUO7kbMHMLFTFpUqPxk27ie84TtaLTxuusnqNQRBwKVMVn6i1qgQm2x9F11s2psaUXLuNBMPiI6FX1iEAzIiBkP0Avzuu+82D+LpY/Xq1Vi6dCkA4NNPe8f1CoKAGTOU55FKEAQxEuF1vwFyP1ECPaYefH35aybu7eKNtBD5TM3tzMtDVz/jhz7cZs6A1sfH6nXqylvRUMUOtYlM8oXOTT6TTfOOH4HA8Ton7295IroEBegdvPP000+juLgYUVFRA6Qmv/rVr/CLX/wCAODh4SFFOgRBEISICILA1X+7aNX4UZK8LtnbhdYaoOggGw+eAPiPkj4fkTlafhSNXY1M/Kaom+Cklk9B2rybMxAJgJeN7id56Xzvb7nJT3IOH+DGR08n+YkckaQAB3o3XfZZEfZHr9ebN2MSBEEQw5/s0kaUNbBuID8aEwR3F8m+dqTj/MeAwHYeldj9BoA9hfzCVk7yE8FkQtMeNk+Viwvc58+3eh2TSUAeR36idVIjeoL/kHK0J41XqlCRl8PEQ0aNhlegvE4UiF5El6AQBEEQI4vPTvHlJ7crVX5y5j/8+Nhl0uYhAa3drdhfup+JB7sFY0qQfLzO27OyYKisZOLuN94Ajbu71etU5DWgrZEdahOTHABnnXxOJnMOs68JAIyZfYPEmRDWIsm7p7m5GX/729/wzTffoLy8HF1d7JsZ6HVHKSgokCIlgiAIQgSMJgGfn2ULHw8XLeaNls+GNbtRVwCUs77LiJwO+ERJn4/IfFPyDbqM7Hf4rTG3Qq2ST0+vefdubtzr9sU2rXMxgy8/SUiVT1dZEATkfH+Aias1GpKfyBjRC/CKigrMmjULly9fBgCzCwoP8qgkCIIY3hzJr0VNC1ugLRgbDJ2TxgEZicyZ9/nxCXdJm4dEWJKf3BZ7m8SZWMbU1YXmL1iPco23N9xnzbR6HUO3EQUnWftBvYcTIpJ8h5SjPblScAkNleVMPDp5Clw9vRyQEWENohfgzzzzDIqLiwH0FtiWiuzBCnOCIAhiePBJNlsIAAodviMIfPmJ2glIWip5OmJzpe0KMiozmHiibyLifeIdkBGf1gMHYWppYeKeixZC5Wy9BWbRmVr0dBqZePzUIGg08un2X/ieLz9JIvmJrBG9AN+3b5+56KYimyAIQrm0dRnwxbkqJu7v7oKZcQqcdFyWBTQUsfGEmwFX+XRI7cW+on0QwH6Py6n7DQBNuz/jxj1vv92mdfIsyE9Gp8pnkJTRYOAO33HW6xE7JdUBGRHWIvopXENDAwBAo9Fg+/btqKurg8FggMlkYv4ZjeyZJkEQBDE8+OpCFTp62M/xJcmh0MqoY2g3LG2+HH+ntHlIBE9+ooJKVu4nxsZGtB5kC1KnyEjok5OtXqejtRsl5+qYuHeQKwKj5WOZfPlsNjqam5j4qLSZcHKWz0RSgkX0T8Q+z+8ZM2Zg5cqV8PHxgVqtwA9igiCIEc7HJ/nyk2WTwiTORAKMPfzhOy6eQMIt0ucjMnkNebjYcJGJp4WkIdA10AEZ8Wn+4kugh51I6nX77TbtM8vPqobJxHb7E1KDZLVfjbf5EiD5yXBA9Er49ttvhyAIaG1lRxITBEEQyqC6pQtH8muZeEKQO8aGejogI5HJ/xboqGfjSUsAJ530+YjM54Wfc+Pyk59Ycj+xLc+8DFZKBQAJMpKfdHe0Iz/zOBN39/VDeNI4B2RE2ILoBfhvfvMb+Pn5ITs7G2+//bbYv44gRKNvE/G1/s2bN++aa+3btw/Lli1DeHg4XFxcEB4ejmXLlmHfvn1W52MwGPCPf/wDs2fPRkBAAPR6PeLi4rB69WqcP3/e6nVqa2uxYcMGTJgwAZ6envD09MSECROwYcMG1NWxl2AJgsfnZ6+A0zDEsknhsuoY2o2zltxPfixtHhJgEkzcAlyn0WF+pPVDbcSmu6wMHSdYS0jdxAlwjo62ep2mmnZUFTYz8eBYL3gFyGdw4KWMYzB0s45DiTPnQq1WoOOQwhB9E+Ybb7yBtLQ07N27F6tWrcLf//53pKSkwM+PvyFnw4YNYqdEEA7DZDLh4YcfxrZt2wbEy8vLUV5ejl27duHBBx/EG2+8MahUq7a2FosWLUJmZuaAeGFhIbZs2YKdO3di8+bNePDBBwfNJz09HUuXLkVV1cBuz9mzZ3H27Fls3boVu3btQmoqbeYhBuezM2zHUKUClk5SoPtJZzOQy+kIe4YBUdbb3A0XTtacxJV2dkPiDRE3wN3Z+qE2YmM3728Lo+dHp8nH+xuwPHqe5CfDA9EL8GeffdbcGRQEAenp6UhPT7d4fyrACbnzyCOP4NFHH7V43M3NzeKxp59+2lx8T5o0CevXr0dcXBwKCgrw0ksvITs7G1u3bkVAQAD+7//+j7uG0WjEsmXLzMX3HXfcgYceegi+vr5IT0/H888/j+rqaqxevRphYWFYuJC/Qaq0tBS33347ampqoNVq8b//+7+47bbey7R79uzBX/7yF1RWVuL222/HiRMnEB4ebtX/DzHyqGgDcq+wMsPpsX4I8ZJPx9Bu5O4BDJ1sfPydgAL3OO27zL8yd1ucfOQngiCg6TNOAa7RwHOR9ZtEBUFAXjp7MqlWqxA/RT4FeGt9HUrOnmbiAZHRCIiKcUBGhK1IOkd1sMuQgiAo8zIloTgCAwMxbpzt+rq8vDy8/PLLAICpU6fi0KFD0Ot7i5OUlBQsXrwYc+fORVZWFjZu3Ij7778f8fGst+7OnTtx+PBhAMCjjz6K119/3XwsNTUVCxcuxJQpU9Dc3IzHH38cOTk50GrZP/Wnn34aNTU1AIB3330Xd975g3PD7NmzMWXKFPz4xz9GdXU1nnnmGezYscPm50yMDDJr+UXnUiVuvgQsu58oUH7SI/Tgu7LvmLiPiw+mh053QEZ8Os+dR3cRawnpPmsWtL7WW0JeKW5GU00HE48c5wedu9OQcrQnuUcOQhBMTJxGzw8fJDlVFwThmv8IQum8+uqrMBgMAIBNmzaZi+8+XF1dsWnTJgC9+u5XXnmFu05fEe/r64uNGzcyx+Pj4/HUU08BAPLz8/HJJ58w96mqqsI777wDALj55psHFN993HXXXbj55psBAG+//TYjUyEIADAJwIkatnniolVj4Tj5bFizG82VQOFBNh40DghKkj4fkbnYcxFtPW1M/JaYW+Cklk9BatH7e7GN3t8W5Sfyei9f4MlPVCokzpwreS7E9SF6B3z79u1i/wqCkD2CIODTTz8FACQmJmLatGnc+02bNg2jR4/GxYsX8emnn2Lz5s0Drgzl5eUhJycHQG+B7Orqyl1n1apV5iL8k08+YQrszz77DCZTb/fk5z//ucW8V61ahS+//BImkwmfffYZHn74YSufMTFSuNSkQlMPW4AvGBsMD518CjS7cfZ9gDOMRqmj57O7s7lxObmfCD09aN7DavLVrq7wuPFGq9cxGky4lMkW4M46DaLHy2eQVM3lItQUFzLxyLHj4eHn74CMiOtB9AJ85cqVYv8KgpA9RUVFqKioAADMnTt4h2Lu3Lm4ePEiysvLUVxcjJiYH/R8fdKTa60THByMhIQE5OXl4ciRI8xxa9fpf+zIkSNUgBMMWbV86eAdSpSfCAKQ/Q7ngAoYt0LydMSmxdSCS4ZLTDzSIxLj/cc7ICM+rYcOwVjPWkJ63HQT1Hrr9yAUn61FZxvrIR47ORBaZ/m4ipw/+A03njhrnrSJEENCebtFCEJkPvjgAyQlJcHV1RUeHh4YNWoUVq5cif3791t8zIULF8y3ExMTB12///G+bvdQ1iktLUVb28BLyH3reHl5ITjY8qXVkJAQeHp6cnMhiPZuI07XsQW4v7szZo9SYCeu/CRQyw6jQew8wEt5Jxynu0/DBFZnvDhusaz2bDVyZHYA4LVsmU3r5B7jy+zGTJeP/MRoMODC9weYuNbFBaOnzZI8H+L6kXQTZnZ2Nnbv3o2ioiK0t7fjP//5DyoqKmAwGKDRaBAWprwPMEfy1Ruvobb0sqPTsAqDoXd8tVZ7/V0G/4goLFj9uL1Sskj/Ihjo1Vnn5+fjrbfewtKlS7Fjxw54eXkNuE9ZWZn59rXcRCIiIsy3S0tLh7yOIAgoKyvD6NGjmXWscTaJiIjA+fPnmVwI4uucanSZ2ELs9okKHT1/itf9BpB8r7R5SIAgCDjZfZKJq6DC4jjbbP3ExFBfj9YDrCbfKSwMrqkpVq/T3tyNy5zR857+OoTEew8lRbtSdOoEd/R8QuoMOOv5kkRCnkhSgHd2duL+++/Hf/7Tu3O8v+PJr371K3z44YdQqVQoKChAVFSUFCmNCGpLL6PyEqdbQ1wXrq6uWLx4MebPn4/ExES4u7ujpqYGBw8exD/+8Q/U1dVh165dWLJkCb7++ms4Of2gf21paTHfdncf3De3v43h1RNk7b3Otdbovw5NsyWu5uNTldz4HZMUaFnZ0wmc+5CNu3gCY+Sjh7YXOQ05qDZVM/G0kDSEuIc4ICM+zbt3A//d3N4fr6VLobLBEvJiehUEziSpxOkhsur2nz/Al5+MnfcjiTMhhookLYrly5fjP//5D9fxZOXKleb4xx9/LEU6BHFdlJeX47333sODDz6IWbNmITk5GTfddBOef/55nD9/HpMmTQIAHDx4EH//+98HPLaz8wfPYGdn50F/j4uLi/l2R8dAOyx7r3OtNfqvc/UaxMimpK4dGcWNTHx0kAfGhSlw9PzFz4FOtvOIcXcATsrzOt9TtIcbXxK/ROJMBqfxk13cuNdS6/MUBAG5x/gnk6OnyUd+0t7chMKTGUzcMyAQEUny0eQT1iF6Af7RRx8NOl57/vz55i/4Q4cOiZ0OQVw33t7eFo8FBQXhww8/NHe9++wE+9DpdObb3d3dg/6erq4fRgtfbVVo73WutUb/da5egxjZfHiyjBu/c6pCR89zN19CkfKTLmMXvir9iom7O7nLavR8Z04OunJzmbhrSgqc+0n5rkVNSQvqK1irxbDRPvD0k8/nXu7hAzAZjUw8ac58m7r9hDwQ/RXrP7zj1ltvNXcJ+3BxccGYMWMgCALOnz8vdjoEIRqxsbG46aabAPTqwvtcTwDAw8PDfPtaUo7+GyavlojYex1rZCV961gjVyFGBiaTgI9OsAW4Vq3CMiW6nzRXAIWcTdZ+o4Bw63XGw4X9pfvR3N3MxG+Ovhl6rXwK0saPLWy+vOMOm9bJPcrvfo+ZIR+pDQCcO/gtNz52rnxOigjrEV0DnpWVBQAICwvDrl27cPfddyM7e6CvaGhoKE6dOoXKSv4fAXF9+EcMHz29vTZhOpqkpCTs3bsXQK9kJTQ0FMDAzY79N1Ly6L/ZMeKqLs7V6/j7W3aa6FtHpVIxmy3Dw8Nx5cqVa+bSf52rcyFGLkcL6lDeyEqSbkwMhJ+7C+cRw5zT/wY4UweR/BNAgd3+T/M/5caXxi+VNpFBELq7e/XfV6FydYXngpusXsfYY0Iex/vbSadBbHLAkHK0J9XFhVzv7/CkcfAOko9MhrAe0Qvw+vp6qFQqJCcnQ6PhF1d9A0H6XzInho4UjiD2wGQyobm5t9vi6ekJ9TC+lGbp0ntS0g8T8nI5l0z70//4mDFjBl0nOTn5mutEREQM2JDZt86JEyfQ1NSEqqoqi1aElZWV5tfm6lyIkcsHJ/iOOHdNVeBJmiDw3U9UamDi3dLnIzLV7dU4WnGUiUd7RmNiwEQHZMSn5eBBGBsbmbjnzTdDfdXn3WAUnalFVzu7iTN+SiCcXGTk/W1p8+Vc2nw5XBG90umb1NfQ0GDxPn2FQp/fMEEMV/pbFPZ1vwEgJibG/PPBg5wx1v3o2wsRFhaG6OjoAcdmzfrB53WwdaqqqpCXlwcAmDlzJnPc2nX6H+OtQ4w8mjp68MU51i/Z380Z80bLp2NoN8oygbp8Nh53I+AZysaHObsLdsPE6fYviV8iK21/kwX5ifcdtnp/W5CfTJeP/MRo6EEOZ/S8k4sOCdPoc3m4InoBHhMTA0EQkJ6ejosXWUu8t99+G8XFxVCpVIiPjxc7HYIQjaKiInz99dcAgLi4uAG+9iqVCkuW9O7Kz83NxfHjx7lrHD9+3HxCumQJ+4WXkJBg7kS///77aG9v567Tf+/FMs4wisWLF5uvNGzfvt3ic+pbR61WY/Fi+Xj/Eo5j9+kKdBk4w1kmBo8w7++fSJuHBAiCgE8LWPmJCipZjZ431NailWPa4BQRAf2UKVav09bUhZLzrPe3V4AewXFenEc4hsLsLHS0sJr8hGkz4ayTjyafsA3RPy3nz+/dHGA0GjFz5kykp6ebj9166624//77zT/feOONYqdDENfF7t27YeB4zfZx5coVLF++3Owq8uijjzL3Wbt2rVmGtWbNGsbWr6OjA2vWrAEAaLVarF27lvu7nnjiCQC98q7169czxwsKCvDHP/4RABAfH88twIODg3Hvvb3uDV9++SU+/JD1N/7ggw/w5ZdfAgB+9rOfDToxkxg5fMDZfAkAdyTLp2NoN7rbgXMce1ydFzD6VunzEZkztWdQ1FTExFODUhHsJp+//6bPdgMcNxCvpUts8/4+XgWBtf4m729CEkTXgD/yyCPYtGkTenp6UF9fb5aiCIKAL774wuwL7uzsjIcffljsdAjiulizZg16enqwfPlyTJ8+HdHR0dDr9aitrcWBAwfwxhtvoLa2FkCvvOMXv/gFs0ZCQgLWrVuHP/3pT8jKysLMmTPx5JNPIi4uDgUFBXjxxRfNG5TXrVuHUaNGcXNZuXIl3nzzTRw5cgSvv/46qqqq8NBDD8HHxwcZGRl47rnn0NzcDLVajddeew1aLf/P/IUXXsAXX3yBmpoa3HPPPcjKysJtt/V2ufbs2YM///nPAICAgAA8//zzQ/4/JIY/eVdacLq0kYlHuQuIC7BedztsuLAL6GI7jxi3AnDSsfFhzkd5H3Hjt8fcLnEmlhEEAY0ffMA95r10qU3rXDhSwR5Qycv7u7W+DoUnM5m4V2AQwhPHOiAjwl6IXoDHxsbiL3/5Cx577DHzGSXvzPLll19m9K4EIScqKiqwadMmxuO7P8uXL8fWrVsHDMHpzwsvvIDq6mq8+eabyM7Oxt13s5u4HnjggUELXo1Gg127dmHRokXIzMzERx99hI8+GvjF6eLigs2bN2PhwoUW14mIiMDu3buxdOlSVFVV4cUXX8SLL7444D7BwcHYtWuXVSPrCeXzQRZ/8+W0QI5DiBI4sZMfV6D3d2t3K74o/oKJ66DDnNA5DsiIT8eJE+guYrv0rtOmwSnMegvMirxGNFWzTj4RiT7w8JXPydW5A99AMLF/X+T9PfyRZBT9o48+ioCAAKxbtw4lJSUDjoWFheGll17CPffcI0UqBHFd7Ny5EwcPHsSxY8dQWFiI2tpaNDc3w93dHREREZgxYwZWrlyJ6dOnD7qOWq3Gtm3bsHz5cmzZsgWZmZmora2Fv78/UlJSsHr16kGL5j78/f1x9OhR/POf/8S7776LnJwctLW1ITQ0FPPnz8cvf/lLjB177e5IWloazp49i7/+9a/YtWsXiouLAfTu3ViyZAnWrl0LPz8/q/6PCGXTbTDhk+xyJu6kFjDJj3Mdf7hTnQOUcvZqBI0DwiZLn4/I7C3aiw4DW5AmOydDp5VPQWqx+33nCpvWOX+Y0/0GkDRLPj72gsmEs9+xA5FUKjXG3WC91SIhTyQpwAHgzjvvxIoVK3Dy5EkU/ffsNSYmBpMnT5aV1oogeMydOxdz586123qLFi3CokWLhrSGVqvFI488gkceeWRI6/j7++O5557Dc889N6R1CGXzTc4V1Layk1Mn+ArQS/ZNIiEn3+LHJ69UpPf3R5f48pOpLlMlzsQyxqYmNH/xJRPXeHvD4ybrC9LO1h4UZtcwcb2HE2ImWp6tIDWXz55Ccw3rUR6dPBme/gp0HBphSPqxqVKpMGXKFEyxYZcyQRAE4XjeyyjhxqcFKrD73dMJnH6PjWt1wIS7pM9HZC7UXcCFugtMPFwTjmCNfPTQTZ/thsCZF+K1ZAnUzs5Wr3MxvQpGjpPP6Gkh0GjlI+s4+y17sgEAE+bfInEmhBjI551GEARByJKSunZ8f6mWiUf66jHKU4EFeO4eoIMzu2LsMkDvLXk6YmNp8+VUZ/l0vwfdfHnXnTatY0l+MnaWfHzd2xobkJ/FSqDcfHwROznFARkR9kaSDnhLSwv+9re/4euvv0Z5ebnFiZcqlQoFBQVSpEQQBEFYyXuZ/O73XZNDoWpj5zsMe07s4Mcnr5Q0DSlo72nH50WfM3FXrSvGO493QEZ8Os+cQdd/h4v1Rz9lClzi4qxep6qwGQ2VbUw8dJQ3vINch5SjPTl/8FuYOFaL4+b9CGoLU8WJ4YXoBXhVVRVmz56NwsJCADDbDvIgLThBEIS86DaYuO4nThoVliaH4MQRhRXgdQVA8fds3H80EDlN+nxE5sviL9HWwxakN0feDJd6vpuTI2iw0+bLC4fZjcQAkCSj7rcgCDi3n918CQDjb1wgcTaEWIguQXn66adRUFBgLrxVKhX3H0EQBCE/vrWw+XLB2GD4uVmvux02nLRgPThlZG2+XBK7ROJMLGNsbUXz3n1MXO3hAc+bb7Z6na4OA/Kzqpm4i6sWcZPls6mx7MJZNFSyMpmoCZPgFSgfTT4xNEQvwPft22cusgVBsPiPIAiCkB/vWth8eW9qpMSZSIChGzj1LhvXOAMTWM/+4c6lhks4XXOaiY/xHYMxPmMckBGf5j2fQ2hvZ+JeixdDrbd+FHteehUMPbzNl8HQOslH1nHGwubL8Tdaf7JByB/RC/C+yZeurq745JNP0NzcDJPJxP1n5OidCIIgCMdgafNltJ8rpsUq0B/+4l6gjbWnw5jFgJvynq+l7vfyUctldWXaXpsvuZMvIS/5SUdLMy6lH2Hiek8vxKekOSAjQixEL8D7plvOnDkTS5Ysgbu7u9i/kiAIgrAD/7aw+fLu1Eio1fIp0OzGYPIThdFl7MLugt1MXK/VY1Hs0GYU2JPOCxfQef48E9dNmADd6NFWr1NT0oLa0lYmHhzrCb9Q+dQlFw7th9FgYOJj586HRuvkgIwIsRC9AP/Zz34GQRCQm5uLnp4esX8dQRAEYQd6jCa8n1XGxJ00KqyYEu6AjESmvggo2M/GfWOB6NnS5yMyXxV/hebuZia+IGoBPJw9HJARn4b/vM+N2zz58tDw2Hx55tsvuMdIfqI8RC/A161bh+nTp6O0tBSLFy/GkSNH0NTUJPavJQiCIIZA7+ZL1jJ2QVIw/N3l445hN7K2AeDsR1Lo5Mt/5/6bG1+RYFthKybGlhY07Wa79GpXV3jZMEm4s60HeRnsRElnnQbxU4KGlKM9KT1/BvXlrONQRNJ4+IaGOSAjQkxEL8CdnJywfft26PV6fPXVV5gzZw58fX2h0WiYf1qtfVwRu7q68OSTTyI0NBR6vR5paWn4+uuvbV7npptugkqlwmOPPWaXvAhiJEKbrIcn76Tz5Sf3KHHzZU8HkP0vNq52ApJ/In0+InO+7jzO1J5h4vHe8ZgYMNEBGfFp2vUpd/Ol5+23Q+3mZvU6F4/zN18mpAXDyUU+my9PfcX6sQPA+B/R5EslInoBXlRUhFmzZqGjo2NQFxR7uqGsWrUKf/nLX3Dvvffir3/9KzQaDRYtWoTDhw9bvcbHH3+MY8eO2SUfMVCre186o9FIBQ4hWwRBgMlkgiAI5vcsIX+Ka9ssTL50xYw45W1GxLmPLUy+XAq4B0qejtj8J/c/3Pg9iffIZvOlIAhoeO897jGfn9xj/TomAWcPslIqABg3Vz5d5Za6WuRnspMvXb28kZA2wwEZEWIj+jfiM888g9ra3g9ySx7g9vyDz8jIwL///W/88Y9/xMaNG/Hwww/ju+++Q1RUFNavX2/VGp2dnfj1r3+NJ5980m552Rtn517/XUEQLE4WJQhH0/7f7pXRaISTE20gGi786/hlbvwepW6+zNzKj6c8KG0eEtDU1YS9RXuZuJuTG26NvdUBGfFpT09H938H+PVHP2WKTZsvy3Ib0FTdwcRDR3nLavPlmW+/hGBiu/Tjb7yZNl8qFNEnYX799ddmD3AA8Pb2hoeHh2jdsA8//BAajQYPP/ywOabT6fDAAw/gN7/5DUpLSxERETHoGi+99BJMJhOeeOIJbNiw4bpzKSvjn3X3UVlZab7d0dGBjg72Q8ISTk5OMJlMUKlUaGxsRGDg8O3SmPp96Jg4H0DE8EQQBNTX15ttRp2cnGx6jxOOoaPHiPctTL68fZz/gNews7OTe3s4oarMhq7iJBM3BY5Fl/8EQGHv2Q8ufoAuI9u0WRS1CGqDGh2G3ufr6Ne29q23uXG3FSts+hw59R3/ZHL0jEDZfB4ZDT048w07aEilUiFh1jxR8nT06zvcEOM1EL0A7+uA+fv74+DBgxgzRlxz/+zsbCQkJMDT03NAPDU1FQBw6tSpQQvwkpIS/OlPf8Kbb74JvQ0G/zyuVej359ChQ/D397f6/hqNBn5+fnB2dkZtbS16enrg5uY27C/zt7ayNlHE8KLvqkxrays6OjrQ1dUFQRBw4sQJkksNA45dUaG5k9XFTvQx4sSRAxYfd+jQIRGzEo9Jl/8Jnqr9jEsqLl/H3iE5YxJM+FcLR+sOIORKCL76ij/+XOrXVtvYhJgDB3D1tRaDuzuOmoyAhTyvxtChQtU5N+CqldQuJuRVncAl65YRnZbLBWhvamTirmGROHaCPTm0N8P1b1dK+pQc9kT0AnzcuHHIzMzElClTRC++gd6uckhICBPvi1VU8I34+/j1r3+NSZMm4e675T31zGg0orW1Fe7u7uYueFNTE9RqtWw0fMTIo0/zDfRezejq6kJPTw+ampqo+B4GCALwfRX/JH52sPKuTjkZWhDWwOpuezSuKPNRnu62wFCAOlMdE4/RxiBQI5+rqF4Z6VBxroY2paYCNpg1tJU64eriGwDcInqgklGvqunSBW7cK2GsxJkQUiJ6Af7YY4/hvvvuQ3Z2NlpaWuDhIa6/aEdHB1xcWIssnU5nPm6J/fv346OPPkJ6erpdciktZS/j9qeystLcmZ8zZw7Cw23z1hUEATU1NUzXeLgVOoIgmC+B6XQ6OoEY5qjVagiCAI1GA71ej9raWnR3d2POnDnmv0NCnpwsaUT5cbbjNjbEAw/dMZX52+zs7DR3z4bj66tNfx0agZ1PoUq+F/N/dLsDMhKXLw9/CbSx8dWpq3Fj+I0DYo56bYWeHpS+tBFM+a3RYOL6ddAGWWcbaDSY8J/vTwAYONRGpQZu/ekMuHo52yXfoVJXehn57/6TiXsHh2LJz1aJ9n043P92peZakuLrQfQCfM6cOVi6dCl27dqFOXPm4IknnsD48ePh7e3NvX9k5NAsrvR6PXdTYl+BZ0lWYjAY8Pjjj+NnP/sZUlJShpRDH7YU1Hq9/rokL1FRUejs7ERjYyPa29thNBptXsPRmEwm84mRu7v7sJfRjHQ0Gg2cnZ3h6ekJjUaDgoICAL0nV0OVdRHi8p+Tudz4ypkxcHV1HfSxw+71NZmAU29xD2mnr4Z2OD0XKyhvLcfhCtYJLFAfiAVxC+CktrzRT8rXtnn/fpjq2C69x403wOO/k7WtIS+jCp2t7ETJ2OQA+AV7DSVFu5J76DtufNLNt17zb85eDLu/XQcgxv+P6AV4dHS0+Qzu9OnTuO+++yzeV6VSwcAZwWoLISEhKC9nJ171bXgMDeVPvXrrrbdw8eJFvPHGGyguLh5wrKWlBcXFxQgMDJTsD8IWdDodgoODHZ3GddPR0YHc3N4v/ilTptAHgYKQyyYn4tpUt3Ri37lKJu7t6oTFE+UzLdBu5H8DNHI26MXOA/xHSZ6O2Hxw8QMInEFDK0avGLT4lpr6d9/lxn1+Ypsf+9kD/MmX4+fKZ4prV3s7LnzPTl/Vurggae58B2RESIlkrcY+u0GxfcCTk5ORl5eH5uaBI3b7ZCXJycncx5WUlKCnpwczZ85ETEyM+R/QW5zHxMRY3KBCEAQx3Pl3Ril6jOxn8I+nRkDnJJ9hJXYjYws/rkDrwS5jFz6+9DET16q0WDFKPpMvOy9eREfWCSbuHBMD12nTrF6npqQFVYXsxG2fEDeEJngPJUW7cv7gt+jpZJsUY2bNg85NPhaJhDiI3gHvY7Diur9N4VBZsWIFXn75ZWzZsgVPPPEEgN7JmNu3b0daWprZmaSkpATt7e1ITEwEANx9993c4nzZsmVYtGgRHnroIaSlpdklR4IgCDnRYzThnXS2G6xSAT+dFuWAjESm9hKQz3E48QwDEhZKn4/I7C3ci4YudtDQ/Kj5CHANcEBGfOrf4kuCfO6xbUDQme/4+6/Gzw2TzR4jwWRC9hefcY8lL5CPHzshHpJowKV8w6elpeHOO+/EU089herqasTHx2Pnzp0oLi7Gtm3bzPe77777cPDgQXPhn5iYaC7GryYmJgZLly6VIn2CIAjJ+frCFVxpZvfO3Dg6EBG+8pPdDZn0f/DjU34OaCTrS0mCIAh4O4fvqf3j0T+WOBvLGOrq0Lx7DxNXubrCa+kSq9dpa+pCXtYVJu7kosHoNPlINQuzs9BYxUq+QhPGIDA61gEZEVIj+ifNgQMHxP4VDG+99RZ++9vf4u2330ZDQwMmTJiAPXv2YM6cOZLnQhAEIXd2HCnmxu+bES1pHpLQ0QCc4uiMNS7A1J9Ln4/IZFRl4FLDJSae6JuIqUFTHZARn4Z//xtCdzcT9162DJqr5noMxrlD5TAZ2CvqY2aGwFkvn5Ork3s/5cYnL7L+ZIMY3sjn3WhHdDodNm7ciI0bN1q8j7UnBsPN0o8gCMIWzpY1IaO4nolH+7lidrz1w8GGDSffAnra2fjEHwNuynu+b1/gd79/lvQz2cgxTN3daHjv39xjvj/7qdXrGHqMOH+Is/lSBUy4QT6bL2suF6Hk3Gkm7uEfgFGp0x2QEeEIyO+NIAhiBLPtcCE3ft/0aKjV8ijQ7IbRAKRb2HyZ9oi0uUjA5ebLOFh2kIn76fxwS/QtDsiIT/PevTByJg26z5sHZxusBy9lXkFHC+vrHjPBH14B8pFSndzH135PuuV2qDUK3PBMcLF7B/wPf/gDACApKQkrVqww/2wtGzZssHdKBEEQBIeqpk7sOcPqUD1ctLgrJcIBGYlM7m6gmTNQI3YeEJQkeTpi807OO9z4jxN/DGeNPAbRCIJgcfOl70rLtsW8dU5/yx+WMvFG+byX25sakXP4ABN3ctFh/A0LpE+IcBh2L8CfffZZqFQqLF++HCtWrDD/bC1UgBMEQUjDW8eKYTBxrAdTIuDuokCF4vG/8+PTHpU2Dwlo7m7GrvxdTNxJ7YS7Eu6SPiELtGdmoutCDhN3SUiwyXqw/GID6spbmbh/hLusrAdPf7MPxh62Sz923nzo3Ml6cCQhGwkKaa0JgiCko73bgHczSpi4WgWsVOLmy7ITQGk6G/eNA+Jvkj4fkfnk0ifoMLAe07fG3go/vZ8DMuIzWPfblubd6e8sd7/lonU39PTg9Fd7uccm3bJY4mwIRyNKi+PqYpqKa4IgCHnx0clyNLaznbhbxgUr1HrQUvf7EUAtm16UXTCYDHg3hz9R8qdjrN/UKDbdpaVo/ZYdxa7x8YHnbbdZvU7jlXYUn2U15HoPJ4yaGjSkHO1J3rHv0dbI+rHHTk6Bb2iYAzIiHIndC/Dt27cD6B1B3/9ngiAIQh6YTAK2Hy7iHntgVozE2UhAcwVw/hM27uIFTLxH+nxEZn/pflS0VTDxtOA0jPYd7YCM+DT8618Ap0Hnc8/dULu4WL3OmQNlAKfPN25uODRO8ji5EgQBJz4n60HiB+xegK9cuXLQnwmCIAjHciCvGoW1bUx8YoQ3Jkf6OCAjkcn4J2AysPEp9wEuytPdWrIe/GmSfLrfxpYWNH74EXvAyQk+91h/UtTZ1oOco+xGYrVWhXFz5NNVLs85j+riAibuHxGFyHETHZAR4WjkcWpIEARBSMa2QbrfctHL2o2uFiBzGxtXqYHUh6XPR2Syq7ORXZ3NxCM8IjAnXD7D6Br/8x+Y2tiTQK9Fi6ANCLB6nfPfl8PQZWTiCanBcPWUh9MLAGTu5pxsoLf7rbi/OcIqqAAnCIIYQeRUNuNIfh0TD/HSYeE4+YzqthsndgJdTWx8zO2Ad6T0+YjM9nN82ee9Y+6FWiWPr3xTdzfqd/I3X/rc9zOr1zH0GAfZfCmfwTu1JcUoPJnJxPUenkicNdcBGRFywO4SlNjY2Ot+rEqlQkEBe4mGIAiCsA9bv+d3v1fOiIaTRh4Fmt0wdAPHXucfm/G4tLlIQGFjIfaX7mfiXi5eWBa/zAEZ8WnevRuGmhom7jp9GvRjx1q9zsXjVehoZsfXRyT5wj/cY0g52pPM3R9z45NuuR1OztZr3QllYfcCvLi4GCqV6rqcT+gyDEEQhHhUNHbg01PsqG69kwb3pCivG4xzHwIt7GZERM0CwqdKn4/I7Di/gxu/e/TdcHWSh7ONYDKhbtub3GN+Dzxo9Tomk4BT35Ryj01aIJ/3cnNtDXKPsNNItS4uSL75VgdkRMgF0SYt2FpMk1UhQRCEuGw7XMQdvHPn1HB4uTo5ICMRMZmAI6/xj838pbS5SEB1ezV2F+5m4i4aF9yTKB+nl9b9+9FdWMjEXcaMgdvMGVavU3S6Bo1X2pl4QKQHwkfLZyPxyb2fwmRkNerjb1gAvYenAzIi5IIkPuAABu2K9xXrVIQTBEGIQ2N7N97jDN7RqFV4aPb1SwdlS/7XQA07YRGBScAo5Q3e+VfOv2DgOL0sjV8qq8E7dVs5G2IB+D3wgNWNO0EQcPJL9r0M9Ha/5XI1vbO1FWe+/ZKJq9RqTLl1qfQJEbLC7oI/k8nE/HviiScgCAJuvPFGHD58GI2NjWhsbMSRI0cwf/58AMADDzwAk8lk73QIgiAIAG8fu4z2brYTd+v4EGUO3jn8Kj8+85eATAo0e9HS3YIPLn7AxNUqNVYmyccKuP3kSXRksw4tTqGh8LzlZqvXqcxvRHVxMxP39NchbpL1Dipic/rrvejpZKeRjp4+G16B8hkQRDgG0SQofXz88cd4+eWXERoaij179kCn05mPTZ8+Hbt370Z8fDzefPNNzJ07Fz/9qXx8SgmCIJRAR7cR248Wc4+tnqvA7ndpBlBylI17hgPjlkufj8h8kPcBWntamfhNUTchwjPCARnxsdT99v35z6HSWl+OnPyK3/1O/lEk1DLZSGzo7sbJfZ9xj6UsVt57kLAd0d+pr776KgBgwoQJA4rvPnQ6HcaPHw9BEPC3v/1N7HQIgiBGHB+cKEV9G+sWMTchAGNDvRyQkcgc+Ss/Pv0XgEZZWvduYzf+deFf3GM/H/dzibOxTFdBAVq/44yd9/aG9/I7rF6nrrwVl8+yNpo6dyckzggZUo725MKh79De1MjEoyZMQmC0Ak96CZsRvQA/ffo0VCoVLly4ACNnI4LBYEBOTq9O79y5c2KnQxAEMaIwGE3Ycojd9AYA/zM3TuJsJKAmD8j9nI3rvIHJ90mejtjsLtiNmg7W0i8tJA1j/ay39BMbS91vn3vvhdrVeglUtoXu94QbwuHkrLmu3OyNyWi0OHgndckKibMh5IroBXjfxsrS0lLcc889uHTpkvlYfn4+7r33XpSU8P+gCIIgiKHx+dlKlDWwOtSJEd6YFuvrgIxE5vuXAXA29Kc8qLix8waTAVvPbv3/7d13fFPV+wfwT3bSvfeidDDLbNl7yAYFcTAVRQX1C4oKKCK4foKCOMCJuEVBFBGQIXuvMktboKV77zY75/dHoRJy06ZtVsPzfr1C03PuvXmSm5Qn9577HM6+x9s/buVojFNlZaF8q+FwDJ5UCs8pj5q8nfLCGqScyjdoF4r56DjAfibeST56EGV5uQbt/pFRCG0fZ4OIiD2y+Bjwbt264eDBgwCAzZs3Y/PmzRCLa6eHVan+OyXK4/HQtWtXS4dDCCH3DMYYPjvAffT7mQGt7aZahNmU3AAuGl6MCKEU6PGU9eOxsO1p25FVZTgTZKxnLHoF9bJBRNyKv/gS4DgD7vHAAxB6mf4l8MzOm2AcZTTb9QmC1MU+hhYxnQ7Ht/zK2Rc/bqLjfeZIk1n8CPiLL76oV16QMQalUgmlUmlQdnDBggWWDocQQu4Z+5MLkZRrWC0i0tcZw9s5YBWGQ6sAxlFNq+sMwMXP+vFYkFanxZcXvuTsezLuSbtJ9NS5uSjbssWwQyiE9yzTj9JXFMuRfCzPoJ0v4KHzMPuZeCflxFGUZBtOEOQZFILoHqbXOSeOz+IJ+JgxY/D2228DqE2+eTye3u1227JlyzBmzBhLh0MIIfcExhjW7E3l7HuqfyT4fPtI0MymLAM4/7NhO18E9HG8aed339yN9Ip0g/ZI90gMC7efOufFX30NqNUG7e4TxkMUHGzyds79kwEdx9HvNr0D4eplWODBFhhjOPH7L5x9PSY8CD7fPsaoE/tglXo9ixYtwv79+zF69GjIZDIwxsAYg0wmw6hRo7Bv3z689tpr1giFEELuCYdSi5CYWWbQ7u8mwYQupic+LcaRNQDHRDToMgVwt5/xweagYzp8fuFzzr4n454En2cfpfjUBQUo+41jSJBAAJ/Zs03eTlWpEleO5hi08/g8dLsvvDkhmtX1MydRmJFu0O7uH4C2fQdaPR5i3yw+Bvy2fv36oV+/ftDpdCgqKgIA+Pj4gM+3jz8UhBDiKOo7+v3MgNaQCB3sSFxFLnD2e8N2ngDoO9/68VjYvox9uFZ2zaA9zDUMIyJG2CAibiXrvwFTGZa/dB8zGuIw04eNnNt9EzqN4dHv2B7+cPORNStGc2GM4fhm7qPfCeMfBF/gYJ850mxWS8Bv4/P58PNzrLF4hBBiT45dL8aZm6UG7b6uEjycYD/jZc3m6MeAVmnYHvcQ4Blh9XAsiTFm9Oj3Ex2fgJBv9f/WOWlKSlC6caNhB48H76dMvyC2pkKFK4c4jn7zgG4jIpoRoXmlnz+L/BuGX3pdfXzRfsBgG0RE7J3ZP6nfffcdACAiIgL9+/e32TYIIeReVd/Yb6nIwY7EVRUCp9cbtvP4QL8XrR+PhR3KPoSkkiSD9mCXYIxpbT/XUZVs+BZMblj+0nXEfZBEmj4RTeKeDGjUhhfWRnX3h4e/6fXDLaneo9/jJkEgtI8KLcS+mD0BnzlzJng8HiZOnNjk5Nkc2yCEkHvR8RvFOJFWYtDu4yLGlB72M17WbI59AmgMEz20fwDwibJ+PBZU39Hvxzs8DhHfPhI9bVkZSn/8kbPP5+lnTN6OokqNiweyOfu6jbSf93Lm5YvISTH8UuTs6YUOg+znglhiX2gANiGEOJCP/+U++v1kv0jI7GSmQLOpLgJOcU9E44hHv4/mHMWFwgsG7X5OfpgQNcH6ARlR/O230FVXG7S7DB0CaWyMyds5tycDGqVh/fDWXXzhHWQfkyoxxnBs00+cffFjH4Dw1rwnhNzNYoPFbt68WTeUhBBCiOWdTi/BkWvFBu2eTiJM7Wk/RwzN5siHgKrKsL3tWMC/ndXDsSTGGD459wln3+MdHodYYB+Jnqa0FKXfcv/f35ij3zUVKlzYZzjJEAB0GxXRlNAsIuPieWQlXTJol7m5I26o/VwQS+yPxRLw06dP47HHHrPU5gkhhNzlo38NK2MAwBP9IuEssY+L88ymMg84yT0RDfo53qRu+zP341KxYaLnLfXGxOiJ1g/IiOKvvoKupsag3XlAf8g6tDd5O2d33eQ8+h0R5wPfUNdmxWgujDEc2chRfQdA9zH3QySxj/rkxD5Z9C/y3TNdmspeZvAihJCW4nR6CQ6mFBq0u8tEmN7LAY9+H1oFaBSG7W3HAkGdrR6OJemYDp8kch/9fjLuSUiF9pHoqQsKUPoj93AM3+dMnwypqlSJS0bGfieMadWk2CzhxtlTyL2WbNDu5O6BLvfZzwWxxD5ZJAFvauJtrvUJIeRewhjDin8MEwEAmNW3FVyl9nFxntmUZQJnvuHo4AEDF1s9HEvbdXMXUkpTDNr9nfwxKWaSDSLiVvzFl2AKwy9FrsOGNuro95md6dByVD5p3dUXvmF2cvRbp8ORX3/g7EsY/yBEUvv4UkTsl9kT8G++4fqj2DQRERFm2xYhhDiqQ6lFOMlR+cRNKsSM3hHWD8jSDr0PaA0neEGHiQ439lur02Jt4lrOvqc6PQWJQGLliLipc3NRZqTut8+zz5m8nYpiOa4cNqz7DR6QMMb08oWWlnrqGArTbxi0u3h5o9OwkTaIiLQ0Zk/AZ8yYYe5NEkIIMYIxhvd3cR/9fmpAa7jLHOzod8kN4BzHkUceHxi4yPrxWNj2tO1IK08zaA9xCbGryidF6z4DU6sN2t1GjmxU5ZPT29Oh0xqeBY+J94dXkHOzYjQXnU6Lo79yl1ns+cBDVPmEmITKEBJCSAu260o+LmSVG7T7uIjxWJ8I6wdkaQdWADqNYXunRxyu7rdapzZ69PvpTk/bTd1vVWYmyn7/3bCDz4fPs8+avJ2yghpcPZZn0M7j8xA/2n7GficfOYjirAyDdjdff6r7TUxGCTghhLRQWh3Dql2GY4MBYM7AKDiJHazySWEycIFjmANfCAx42frxWNgf1/5AVpVhKb4ItwiMjhxtg4i4FX3yCaAx/FLkPn48JJGmJ84n/0oD0xke/W7TK8BuZr3UajQ4aqTud6+JD9Osl8RklIATQkgLte1CDpLzKw3ag9yleLRHmA0isrA9ywBmeHEeuk4HPCOsHo4l1ahrsC5xHWff3M5zIeTbx5crxdWrKN/6l2GHUAifuXNM3k5hRiVST+UbtPMFPHS3o7rfF/f+g7K8XIN2z8AgtOs/2AYRkZaKEnBCCGmB1FodVu3mPvr9/JBoSEUONutlxnEg+W/DdoHEIet+/5D0AwrlhmUloz2jMTxiuA0i4lbwwSqAo3KZx8SJEIeEmLydY1u4a9i36xsEN29Zk+MzJ5W8Bsc2/8zZ12vSo+ALHOwzRyyKEnBCCGmBfj2diZvFhhOeRHg7YWI30xOfFoExYNcS7r6EJwH3YOvGY2ElihKsv7Ses+/5Ls+Dz7OP/7qrjx9H9aFDBu08qRQ+c0yf9TLzSgkyk0oN2oVivl0d/T711xbUlJcZtPuGRSC2dz/rB0RaNPv4FBNCCDFZlVKD1btTOfvmD4uBSOBgf9qvbgOyThq2S9yBfi9aPx4L+/z856hWVxu0d/XrigEhA2wQkSGm06Fg5fucfV7Tp0Pk72/idhiOGjn63XloGJzd7aPMYnVZKc5s28LZ12/KY+Dz6eg3aRwH+ytNCCGO74uDN1BUpTRoj/V3xdi4IBtEZEFaNbDnDe6+fvMBJy+rhmNpmRWZ+DXlV86+F7u/aDczRVfs2AHF5csG7QIPD3g/+YTJ20k5lY+izCqDdqmLCF2G2c91DMc2/QS10nCSobAOnRDRqasNIiItHSXghBDSguRXKPDlQcMJQADglZGx4PPtI0Ezm7PfAcUcR0jdgoEeT1s/Hgv76NxH0HCUWRwWPgxxvnE2iMiQTqVC4eoPOft8nnkaAlfTZqvUqLU48Sf3ezl+dATEMvu40LQkJwsX9v7D2dd/ymN286WItCwWS8AvXLiAy3d8O05KSkJiYqKlHo4QQu4Jq3enQK7WGrT3ivTGoFg/G0RkQcoqYP//cfcNehUQ2cfFeeZyqegSdqbvNGgX8oT4X9f/2SAibmW//AJ1lmF5RFFwMDweecTk7Vw6kI3KEsOjym6+MrTvZz/j+g///B2YzrD6Tps+A+Af6Vi154n1WCQBz8nJQffu3bFgwX9Xpi9YsAAJCQnI4vjQEkIIaVhKfiV+PZ3J2bd4VFvHOxJ37FOgusCw3a890Olh68djQYwxrDqzirNvYsxEhLuFWzkibtrKShSt5S6P6DtvHvgmzgKprFHj9I50zr6e4yMhENrHCfqclCSknjxq0M4XCNH34Wk2iIg4Couc3wkKCsLDDz+MH3/8EcePHwcA7NixA1OmTEFII8oSEUII+c+725PAMU8J7u8SjI4h7tYPyJIqcoAja7j7hr4BONhFb/sy9+FU3imDdiehE57uZD9DbYo++wzasjKDdmm7dnAbPcrk7Zzang5lteFQG79wV0R1tY8zOUynw/5vv+Ls6zx8FNz9AqwcEXEkFhtgtXz5cvz6669YsmQJeDwexGIx3nzzTUs9HCGEOLSj14qwL9mwLrRYyMeLw2NsEJGF7VkGcFQCQUQ/INqxpvtWaVVYeWolZ9/M9jPhI/OxckTcVOnpKPnue84+vwUvgsc37ah1aV41Lv7LfTa81wNR4NnJdQxJh/cj91qyQbtY5oQeDzxkg4iIIzF7Ap6RkQEA4PP5uP/++7Fx40bweDw89NBD4PP5df1hYfZzdTMhhNgznY7hnR1JnH2P9YlAiKd9TNNtNlmngQu/cPcNWwY42FCb7698zznlvI/MBzPaz7BBRNzy31sBqNUG7c59+8K5d2+Tt3Nk0zXoOE7lhHfwRkisZ7NiNBeVQo6DP23g7EsYPwlObg52xolYndkT8IiICINxiIwxbNy4ERs3bgQA8Hg8aDSGp54IIYQY+u1MJi5lVxi0ezqJMGegg10EptMBO17h7uv0CBDczbrxWFiRvAhfXPiCs+9/Xf8HJ5F9fLmqOnQYVfv2GXYIBPBfaGR/cUi/WISbl4oN2vl8HvpMsp/38sk/NqG6tMSg3c3XH91GT7B+QMThmD0B79+/f10CnpWVhevXr4PH4yEyMpLGfxNCSCNVKNRY+Y/haXAAeG5wNNxlIitHZGEXfwWyTxu2i5yBIUutH4+FrTm7BjUawxlN23u3x7jW42wQkSGmViP//7ir0Xg++igkUaYlzlqtDkc2cU+603FQCDwDnJscozmVF+Th9LbfOfsGTpsFoYkXmhJSH7Mn4Pv376+7369fP+Tl5QEA/P39sY/r2zMhhBCjPtqTiqIqlUF7hLcTpva0j8oYZqOsqmfSnRcAt0CrhmNpl4su449rf3D2LUxYaDdTzldu2gzV9esG7QIPD/g+O9fk7Vzan42yfMMvG1IXEeJHRzQnRLM68MN6aDmG2oS264iohF42iIg4Iot9urdt24ajR49izpw5ePbZZ3Hs2DFs27bNUg9HCCEO51pBJTYcTefsWzKmHcR2UqrNbA6vBipzDds9woBez1o/HgtijOH/TnIfVR7VahQ6+3W2bkBG8KurUbaOu+ygz/PPQeBu2lhoeaUKJ7elcfb1GBcJiZN9nMnJvHwBqScMyw7yeHwMnPGk45X6JDZjkb/ejDG8+uqrcHZ2xssvv4wFCxbA2dkZixcvBmMcNbQIIYToYYxh+bYkaDguVhsY64vBbeyjVJvZlN4Ejn7M3Tf8LUAktW48FrYjbQcSCxMN2mVCGeZ3m2/9gIzw2b0buspKg3ZJdDQ8J082eTsntt6ASm547Zd3sAva9Q1qVozmotNpsW8D93j8uKH3wS8i0soREUdmkQQ8Pz8ffD4fc+bMgbe3N7y9vfHss8+Cz+fXDUkhhBBi3N6kAhxMMSw7KOTzsGRMO8c7EvfPYkCrNGwP7wu0tY+x0OZSra7GB2c+4Ox7rMNjCHC2j/rSkpwcuB8/wdnnv3gReELTRrEWZlTiyuEczr5+k6PBt5Oygxd270RhRrpBu8TJGb0nT7V+QMShWaQOeEBAAM6ePQul8r8/pq+//jrefvttx/tPgxBCzEyh1uLNv69w9j3WJwKtfV2sHJGFpfwDXOUYosjjAyPedbiyg2sT16KgxnCGz0DnQMxsP9P6AXFgOh38tvwBHsdZa9dhQ+Hcy7Sx0Dodw/4fr4Lr5Hfrrr4ItpOyg9VlpTj8y3ecfb0mPUplB4nZWWwiHh6PB6n0v1OGt+8XFRXh5MmTqKqqQlBQEHr06AGRyD7GfhFCiD1Yt/86bhYbXqzm4yLGc0OibRCRBalqgO0vcfd1nQ4Exlk3HgtLLknGj0k/cva90O0FyIQyK0fEreqPPyC7NW/HnXgiEfxeftnk7Vw5nIOCm4ZDWARCPno/YD9lBw/8sB7KGsOJnzyDQtD5vtE2iIg4Oosl4HdTq9V49tlnsX79euh0urp2Dw8PLF++HHPnmn4lNSGEOKobhVVYt9+w4gQAvDyiDdykDnbA4tAHQNlNw3aZJzD4devHY0E6psNbx9+ClmkN+hICEnBfxH02iMqQpqQEpWs+4uzzemIWxKGhJm2npkKF439wv5e73hcGNx/7+LKRcekCkg5xV2kb/NhTEJg41IaQxjD7uyoxMRHr168HAMyfPx+tWrUCAMyYMQMbN240uAiztLQUzz//PAoLC/HGG2+YOxxCCGkxGGNY8uclqLQ6g75OoR6Y1NXB5lIoSgWOrOHuG7oMcPa2bjwW9se1PzgvvBTyhXi156t2M0Sz4P0PoKswnPhJFBoKn6eeMnk7R3+/BmWN4YWX7r4ydB1hHyU0tRo19n69lrMvtlc/RMR1sXJE5F5h9osw165di08++QRfffUVQm99S96/fz9++aV2WuE7/8DweDzweDwwxvD222/j4sWL5g6HEEJajK3nc3DkGscsgTzg7Qkd7OZiNbNgDPj7BUBnWG8ZIQlAl2nWj8mCShWlWHVmFWffY+0fQ6S7fVTYqDlzBuW/c09CE7DkNfClplWjyU4pRfJx7qIL/R+JgVAkaHKM5nT6ry0oyckyaBfLZBg4/QkbRETuFWZPwI8fPw4AiImJgfDWaZsvvqgt68MYg7+/P4YNG4YBAwbAy8ur7oi4TqfDZ599Zu5wCCGkRSivUePNbdwXXs7s3Qodgh3sIrBLm4G0g4btPAEwZhXAd6wa5x+e/RDlynKD9mCXYDwZ96QNIjLE1GrkvbGMs8912DC49O9v0na0Gh0O/JzC2de6qx/C2tnHmY3ygjwc3/wLZ1+fh6bBxcs+4iSOyex/4TIzM8Hj8RAQ8F8Zpd27d4PH4+F///sfbt68iX/++Qf79u1DZmYm5s2bV7fcwYMcf4wJIeQesHLXVc4ZLwPcpHhheIwNIrKgmhJg5yLuvh5PAwEdrRuPhZ3OO43fU7mPKi9KWGQ3F14Wb9gAZWqqQTtPJoP/YiP7i8O53RkozTW8oFEkEaDvg/ZxETFjDHu/XgeN2vAz5xsRic7D6cJLYllmT8CrqqoAADJZ7R+U7OxsFBcXIzIyEqtXr9areCKVSrFq1SpER0eDMYYMjiuuCSHE0Z3NKMWPJ7j//r0+th1cJA52Edg/rwLVhmX44BoIDDI90WsJFBoF3jj2Bmff4NDBGBA6wLoBGaG8kYaijz/h7PN4+mmIAgNN2k5JbjVO/W18xksXT0mTYzSnpEP7kJZ4xrCDx8OwJ+aCL7CPITLEcZk9Ab897OR2pZPTp08DAAYPHmx0nYiICACAQqEwdziEEGLXlBotXt50gbNO8sBYX4zsYB+TspjNtT3A+Z+4+0a8C0hcrRuPha09vxY3KwyrvMiEMixMWGiDiAwxnQ65S5aAqQyPBisD/OH2yMMmbUenY9j3fRJ0GsM3s3eICzoODG52rOZQXVaKfd9+ydkXN+Q+BEbHWjkici8yewLu7e0NxhhOnz6N/Pz8uvHfxcWGFxYBQGFhIU6dOgWgtiQhIYTcSz759xquFVQZtEuEfCwf18FuKmOYhbIS+Gsed1/0cKDdBGtGY3GXiy7j28vfcvbN7TwXgS6mHVW2tNJffoH8jOHRYMbjIf+BB8Azca6OSweykHfDsHoKjwcMnBILvsA+xvX/u+ELKKoMa5M7e3ii3yMzrR8QuSeZ/dPQvn17AEBeXh6CgoKwc+dO8Hg8bNmyBZMmTcLhw4dRWFiIzMxMbNmyBUOHDkVZWRl4PB46dOhg7nAIIcRuXcoux1ojNb+fHxKNMG8nK0dkYXuXA+WZhu1iV2DMaoea8VKtU+P1o69DxwxLSnb06Yipbe1janN1djYK3/+As6+sd28owk0rF1hRJMexP25w9sUNCUVAK/u4iDj11DGkHDvE2Tdk1jOQujjYLLPEbpl9YOG4ceOwe/duALUXOdw+esMYw5YtW7Bly5Z61yWEkHuBWqvDy5suQKszPF3fPsgNs/vbR1k6s7l5DDjJfdofw5YB7o5V4/ybS98gpdSwEoiQL8Sy3ssg4Nt+jDFjDLlvLIOuxnDWVWFQEIruG27ydvb/eBUapeEEQ24+UvQYZx/vZUVVFfZ+xV3zO6ZHH0Qn9LZyROReZvYj4E888QTi4+PrygvyeDx88cUX6NChAxhjBrfbQkJCMGvWLHOHQwghdunzA9dxJdfwdL2Qz8OKSXEQ2cnperNQK4CtzwHgGOge3hfo9pjVQ7KkG2U38Nl57rK6szvORrSnfVQCqdi6FdWHuI8Gey9ZAiYx7YLJq8fykJlUytk3aFpbiMS2/7IB1E43X11mGKfU2QWDH3/aBhGRe5nZj4BLJBIcPHgQmzZtQnZ2NgYOHIiEhAT06tULgwcPRkFBgd6YRsYYPD09sXnzZrjQqR9CyD0gJb8SH+29xtk3Z2BrtA+yj9P1ZrPvbaDYsLwdhFJg3EcOVfNbo9PgtSOvQc0xwVCURxSe6Ggfk7uo8/OR9867nH3uEx+ArGcPYNeuBrdTWaLAkU0c+xZAu75BCIn1bFac5pKWeAaX9nE/n4EznoSzh33ESe4dFqltJZFIMGXKFL22du3aITExEa+99hq2bduG8vJyBAcHY/To0XjllVcQFBRkiVAIIcSuaLQ6vLTpAud08zH+Lpg7OMoGUVlQ+hHg6MfcfYMWA96trRuPhX158UtcLDKc1ZnP42N57+UQCUy7oNGSGGPIXfwqdOWGEwMJfH3g//LLMKyHwrEdHcO/3yVxTjfv7C5G74n28V6WV1bgn3UfcvZFdO6Gdv2NV2kjxFKsWlw2ICAAX331lTUfkhBC7Mqn+67jfGaZQTufB6yY1AkSoX2crjcLRQWw5WlwDj0J6gL0nGv1kCzpctFlfH7+c86+aW2noaOvfUwwVPrTT6g+coSzL3DpUgjc3QG5vMHtXNifhayr3ENPBkxpA4nM9vXrGWPY89VazqEnIqkMw56Y61iVhkiL4Tjn/QghxM4lZpbho3+5T9c/2S8SnUM9rBuQpe1cBJRzTDAkEAPjPwUEtk/QzEWukWPR4UXQMsMLESPcIjC3i3182VDeSEPByvc5+9xGjYLr0KEmbacktxrHtnBX8IlJ8EerOJ8mx2hOVw/vR8rxw5x9A6Y+BjdfPytHREgtSsAJIcQKalQazN+YyFn1JNLHGfOHOdh081f/BhJ/4O4b8jrg39668VjYh2c+RFq54QyQAp4A7/R9xy6mm2dqNXJeeQWMY9I7ob8/Al5fYtJ2tFod9nxzBVq14TAqF08J+j9sH+/liqJC7F3PfTFsq87dEDd0pJUjIuQ/DpmAK5XKunHlMpkMPXr0qCuNWJ/ff/8dDz30ECIjI+Hk5ITY2Fi8+OKLKCsrs3zQhBCH9s72JKQVVRu0C/g8rHqoM6QiBxp6UlUAbH2euy+8r8MNPTmacxQ/XeWe3fOpuKfsZuhJ0edfQHHRcHw6AAS+8zYEJk6Gd/rvdBRmGE5kAwCDZ7SFxMkOxrnrdPhn3Wooaww/c1JXNwx/+n809ITYlEMm4DNnzsSqVaswZcoUrFmzBgKBAKNGjcLhw9ynoW6bPXs2kpKSMHXqVHz00UcYMWIEPvnkE/Tq1QtyE8bDEUIIl31XC/DDcY6hGACeHxztWENPGKtNvmuKDPvErsD96xyq6km5shxLjnAfOe7g3QFPxNlH1RP5hQsoWreOs89z6lS49Olj0nbybpTjzI50zr5Og0MR2sarqSGa1dkdfyHj0gXOvmFPzoWLp33ESe5djjMA75aTJ0/il19+wcqVK7FgwQIAwPTp09GhQwe8/PLLOHr0qNF1N23ahIEDB+q1devWDTNmzMCPP/6IJ56wjz+khJCWo6BSgZc2nefs6xzqgbmDHKsKCE6vB1J2cPeNWgF4hFk3HgtijGHZsWUoqCkw6JMKpHin3zsQ8W1/NFhbVY3sl14CtIbj08WtWsHvxRdM2o5SrsHu9ZfBOK6p9QxwQs8J9jHhTkH6DRz6eQNnX7t+gxDTw7QvG4RYksMl4Js2bYJAIMDs2bPr2qRSKWbNmoXFixcjMzMToaGhnOvenXwDwP33348ZM2YgKSmp0bFkZWXV25+bm1t3Xy6X37NH2RV3jEdUcIxNJC3Xvb5vtTqG539KRFGVYVE3mYiPd8e3gVqlhGHF6Jbh7v3LK7gMyc5F4Dqxr40ZDVXMBJOqa7QUm65twu6b3MMbn4t7DgHiAJv/XWeMoWjJEqhvcpyBEQrh/eabUAIG++XufcsYw/7vU1FRZPg55vF56Pdoa6i1KqhtvHvVCjn+Wv1/0KoNP1Uu3j7o9cgMm+8Te3Cv/21uLEu8ZxwuAT937hxiYmLg5uam156QkAAASExMNJqAc8nLywMA+Pg0/oruxjzOwYMHm/QYjubgwYO2DoFYyL24b3dl8XA8k3ts97hQNVLOHIbhZOUt05F9uzAgeSmkWqVBn0Lojn2SUVCZcC1OS5GrzcXnldwlB6OF0XC74YZdaQ1PZGNpbqdOIWAH9xmJokEDkZKdBWTXf7Do4MGDqMoUoeySlLPftbUCZ5OOAo0/TmV2+cf2ozIvh7PPrXMPHDjMXX7xXnYv/m1urKIijiF1zeQ4A/Fuyc3NRWBgoEH77bacHO4PpjHvvfceBAIBJk2aZJb4CCH3husVwPZM7j+xHTx16OXHcR6/BYvL+g6uylzOvnNhT0AldLVyRJajZEpsrN4IDQwnoHHiOeF+p/vt4gI/cX4+/P7cytknDwtDyaBBJm1HXclH2RXuaenFnhq4RpoybY/lVaSlojKNu8ynR9s4OPnThH/EfjjcEXC5XA6JxPAPhVQqres31U8//YSvv/4aL7/8MqKjoxsdS2ZmZr39ubm5dUfm+/fvj5CQkEY/hiNQKBR138D79+9ft69Iy3ev7tvSGjXe/fwkGAyPBge6SfDlkwnwkNl+bHBz3d6/ISVHEFbCfZG7OuEZdB70kpUjs6xlJ5ehqJz7iNg7fd9B78DeVo7IkE6hQO606VBzDMXgu7oiet1atK1nBurb+1anBRQp3oDOcJiCxEmI8c91hYsnd3JuTaW52fht83ecfX6RUbj/xYUQCFv+Z85c7tW/zU3V0JDipnC4BFwmk0Gp5DgFemuMk0xmWi3WQ4cOYdasWbjvvvvw9ttvNymWxiTUMpnM5NgcmVQqpdfBQd0r+1anY1iy8RLyKgz/Dgn4PHz8aFcEerlxrNkyuShy0ClzA3dncDeIhi+HSCi2akyWtPX6Vvyd/jdn38z2MzEkcoiVI+KW+867UF+7xtkX9O47cG1t2sW/ZVckqCngHiM8ZEZb+AZ5NDVEs1GrlNjz2RpoOP7vlzg5Y9z8hXBxdZzPnLndK3+bm8MSr4/DDUEJDAzUu7jxttttQfV847/t/PnzGDduHDp06IBNmzZBKHS47ymEEAtZu/8a9l41rIoBAC8Mi0H3CAcqf6asQkLaRxDqDBMfSNyAiV8DDpR8J5ck481jb3L2dfTpiOe7GKl9bmVlm39H2W+/cfZ5Tpli8myX1Zki1GRx77+4wSFo1cm3yTGaC2MMe79ah8KbhpMgAcDwp56Du1+AlaMipGEOl4B37twZKSkpqKio0Gs/ceJEXX99rl+/jhEjRsDPzw/bt2+Hi4uLpUIlhDiY/ckF+GA392WV/aJ98MwAByo5yBjEO+bBVWHkuppxHwFerawbkwWVK8sxb988KLSGR4NdRC54r/97EAlsP8RBfuky8pYt4+yTtG0Lv5dNGw5UmFGF0svcQ0t8w1zR+/6oJsdoThf27MDlA3s4+zoNG4mYnn2tHBEhpnG4BHzSpEnQarX44osv6tqUSiW++eYb9OjRo64ySUZGBq5evaq3bl5eHoYPHw4+n49//vkHvr62/3ZPCGkZMopr8L9fEjlrJPu4SLBqcmfw+ba/MM9sjn4MQfI27r5ujwHt77duPBakYzosOrQIWVXc40Df6P0GQl1Nr3plKZrSUmQ//zyYyvCiSJ6TE4JXfQA+xzVSd5NXqvDvN8kAM3y/iiQCDH+iPQQi26cPOSlX8e83X3D2+YRFYMB0mruD2C+HG1vRo0cPPPjgg1i0aBEKCgoQFRWFb7/9Funp6fj666/rlps+fToOHDgAdsf/liNGjMCNGzfw8ssv4/Dhw3ozZ/r7+2PYsGFWfS6EkJZBrtLiqR/OoFxueMGbgM/DJ492ga+r7S9UM5u0g8Cepdx9gZ2AEe9aNx4L++z8ZziUfYiz79E2j+K+iPusHJEhptUi58UFUBup9BX09luQtGr4jIROq8Oury+juoy7ssng6W3h4efUrFjNobqsFH+tfhc6rWElGrHMCWPnL4JI7ECfOeJwHC4BB4DvvvsOS5Yswffff4/S0lLExcVh27Zt6N+/f73rnT9fO1vdihUrDPoGDBhACTghxABjDK9uuYik3ArO/kUj26BnpLeVo7Kg8izgt8cApjPsk3kBD/0AiBzngq6DWQex7jz3FO5d/LpgQfcFVo6IW+FHH6PayEzPXjNnwm3kSJO2c2LrDWRdLeXs6zIsDFHd/Joco7notFr8vWYFqkqKOftHzn0BXkHBVo6KkMZxyARcKpVi5cqVWLlypdFl9u/fb9DGuM4dE0JIPb4+nIbfz2Vz9o3tFIRZfR1nHDRUNcDGqUCNYQk+xuODN+lrh5pq/kb5DSw8uJCzz0fmgw8GfGAX474rdv6D4s+5JwVyio+H34IXTdpO6ul8nP2HY8ZMAMGxHnYz1fz+779C5pWLnH097p+MqPieVo6IkMaz/SAuQghpofZcycfb27mn/4v1d8V7EzvaxYQsZqHTAX88A+Sc4+zW9FsItB5s5aAsp0xRhmf3PotKdaVBn5AnxAcDPoCvk+2vE5JfvISchdxfEoT+/ghevQo8Eyp55adVYO+33O9lZw8xhs/qAL7A9inD+d3bcW7HX5x94XFd0HvyFCtHREjT2P7TRAghLdCVnAo8/8s5zosuXaVCfDatG5zEDnSScf+7wJU/OLty3btB0/M568ZjQWqtGvP3z0dmJfdkagviF6Crf1crR2VInZeHrDlzwBQcdbpFIoSs+RBCH58Gt1NZosDf6y5Aq+YYVsRjGDwzBk5uti8nefNCIvau/4yzz83XD6Offwl8vsDKURHSNJSAE0JIIxVUKvDEt6dQo9Ia9PF4wIcPdUYrH2cbRGYhF34DDhpeGwMAlZJAnA2fXfvEHQBjDG+deAun809z9o+OHI1H2zxq5agM6WpqkDVnLjSFhZz9Aa8uhqyBsrsAoFJo8PfaC5BXcF906dFeCd9w1+aEahYlOVn468N3wXSGXxKEIjHGvbAYMppsh7QgDnR4hhBCLE+h1uLJ784gp5x7dsBFI9tgSFt/K0dlQZkngT/ncnYxqQdOtJoPjcBxLrr87sp3+D31d86+OJ84vNHrDZsPK2I6HXJeWQjFlSuc/Z6PPgrPhx82YTsMe765guKsKs5+l3AVXEINK/tYm7yyAlveWwZldTVn/4i58+EfaR91yQkxFR0BJ4QQE+l0DC/+dh7nM8s4+x/qHoon+9nHhWpmUZYB/PIooOWY6ZIvhOr+r1EtdZxZBvdn7scHpz/g7AtwDsCawWsgFUqtGxSHwjUfoXL3bs4+5z594L94kUnbOf7ndaSdN7ygFgCC23jAvQ3HfrcyrUaNv1a9i7I8wxmuAaD3g1MQ26uflaMipPkoASeEEBMwxvDW30n4+wJ3ItCjlRfenNDB5kdHzaa6GPj+AaCae4gDRq+CLqyPdWOyoMSCRLx04CUwGA7qlwll+GTwJ/CRNTye2tJKf/7ZaMUTcWSkyRddXtiXabTiiWegMwZNjwbPxhkC0+mwc+2HRiuetOkzAD0nNnyknxB7RAk4IYSYYN2B61h/JI2zL8LbCZ9N7Qax0EH+pKqqgZ8mA8Wp3P29ngW6zbBuTBZ0o+wGnv33Wc5p5nngYUX/FYj1irVBZPoq/tmFvOVvcvYJPDwQ+tk6CNwaHgedejofh37l3rdSFxHGzI2DWGbbEaqMMez//mtcPXKAsz8wKhbDn37ecb7wknuOg/xvQQghlvPr6Uys2JnM2ecmFeLrmfHwdLZ9lQiz0KqBX2cA2dwXISJmBDBsuXVjsqD86nw8tecplCvLOftf6PYCBoYOtG5QHKpPnkTOggXgLLsjEiHk448gDmu4BntWcin2bLgCjgP94At5GPl0R7j52H5M/6mtm3F2+5+cfa7evhj/0ms00yVp0SgBJ4SQeuy5ko9Fv3OfAhcL+PhsWje09nWxclQWwhiw9TngGvf4YgR0BCZ+BThIqbdyZTme3vM08qrzOPsnxUzCjPa2P9KvSE5G1py5YGruCyID31wOp/j4BrdTmFmJ7esuQKfhnnRu8LS2CIryaE6oZnH5wF4c+mkDZ59Y5oQJLy+Bs4endYMixMwoASeEECNOpZdg7k9nodUZJiw8HvDhw53Ru7XtxwWbzZ6lwPmfufs8I4ApmwGJ7UvSmYNCo8Dz/z6Pa2XXOPsHhQ7Cqz1etfkQB1VWNjKfeBK6Ku5KJb4vvgCPCRMa3E5FkRzbPj4PtcKwdCYA9H4gCrE9bH9Bbdq50/jnszWcfQKhEBNeeg1+EQ50oTO5Z1ECTgghHC5ll2PWhlNQajgmJwGwfHwHjOoYaOWoLOjImtobF2dfYOrvgKtjlFdU69R46eBLOFtwlrO/q19XrOi/AkK+bcdBawoLkTlrltFa357Tp8H7iSca3E51uRJb1ySixkit705DQ9FleMPDVywt6+plbF3NXesbPB5GPbcAoe3jrB8YIRZACTghhNzlal4Fpn19AhUKDWf//4ZEY1rPcCtHZUEnPgd2v87dJ3YBpvwGeLe2bkwWotFpsPDgQuzP3M/ZH+URhY8Gf2TzcoOakhLcfOwxqG7e5Ox3GzUK/gsXNniEvqZChT9Xn0N5oZyzPybBH30esH0N7dxrydjyf29Ao+QufTjksacR07OvlaMixHIoASeEkDtcK6jElC9PoLSGe7ztlB5hmDc02spRWdDpb4AdL3P38UXAQ98DQV2sG5OFaHVavHbkNey6uYuzP8A5AOuGroO7xN3KkenTlpUh4/FZUF27ztnv1KsnAv/vXfD49f8XrqhSY+uacyjNq+HsD23nhcHT24LHt+0wm/y069j8zutQybm/JPR84CF0vm+0laMixLIoASeEkFtuFFbhkS9PoLia+1T9yA4BWD7egWp9J/4EbJtvvP/+z4DWg60XjwXpmA7Ljy/H3zf+5ux3E7vh86GfI8DZtuOgtZWVyHjiSSivXuXsl7Rri5CPPwZfXH/VHWWNGls/SkRxNvfskb5hrhgxuwMENi6dWZSRjk1vLzE6y2XHwcPRe/JUK0dFiOVRAk4IIQDSiqrx6JcnUFjJfQp8QIwvPny4MwQ2PlpoNhd+uzXFPHdFDIz+AOg4yaohWYqO6fD28beNTjHvLHLGZ0M/Q6SHbS/u01ZWIvPJ2VBcusTZL46MRNiXX0LgUn/VHWWNGn99fB6FGZWc/Z6Bzhj7XCeIpbYd416clYHf3noNisoKzv6Ynn0x9Im5jvOFl5A72PbTRwghdiAlvxJTvjKefPeJ8sbn07pBInSM8ns4+31tuUFjyfd97wLxDV/c1xJodVosP77caPItE8qwdshadPTtaOXI9GnLy5HxxJNQXOQueSkKD0PYN99A6O1d73YU1WpsXZNoNPn28HfC+HmdIXO1bd36gvQb2PTWa5AbSb5bd++JUc8tAF/gIJ85Qu5CCTgh5J52Kbsc09efRImRYScJrbzw1fR4SEUOkgic+hr4+wXj/UOWAr3mWC8eC9LoNFhyZAm23djG2S8RSPDx4I/R1b+rlSPTpyktRcbjs6BMSuLsFwUHI3zDBoj8/erdjrxShT8/TERxNnfJQjcfKcbP6wxnd9tOYJN3PRWb314CRTV3nBGdu2HMvFcgEFKKQhwXvbsJIfescxmlmLH+pNFqJ93CPbF+ZjxkYgdJvo+tBf5ZZLx/wEKgXz3JeQui1qmx8OBCoxdcivgifDjoQ/QI7GHlyPRpioqQ8dhjUKZy1yMX+vsj7NsNEAXWX/KyulyJPz9MRGku91hqF08Jxs/rAhdP21Z3yUlJwuZ3lkIl574wNKxDHMa9uBhCkcjKkRFiXZSAE0LuSceuF+OJb0+hWsU9MUnXMA9881g8XCQO8GeSMeDwKmBvPVPI93sRGLjQejFZkFKrxIIDC4yWGhTxRVg9cDX6Btu2rJ06N7e22klaGme/0N8fYRu+gTgkpN7tVJYosHVNIsryuZNaF08Jxs/vYvMp5jMvX8CWFW9CreCudhLSrgMmvPQ6TTFP7gkO8D8LIYQ0zvaLuZj3SyJUWu5JdnpGeuHrGfFwdoTkW6cD/lkMnFhnfJlBrwIDjJQibGEqVBV4bu9zRifZkQgkWDNoDfoE97FyZPqU164h44knocnL4+wXBQUh7NsNEIeG1rud4uwq/PXxeVSXcV+/4OotxQQ7SL5TThzB9o9WQqvhPtsUHtcF4xe8CpHEtkfoCbEWB/jfhRBCTPfdsXQs3XoZzMj1hwNifPH5tG6OMeZbowL+eAa4tMn4MkOXAX3nWS0kSyqoKcDTe55GamkqZ79MKMMngz9BQmCClSPTV3P2HDKfeQa68nLOflFYGMK/WQ9RcHC928m5Vobtay9AWcOd1Lr7yjB+fhe4etk2qT2/ezv2fL0Oxj50kV3jMXb+IggbKK1IiCOhBJwQck9gjOGDXSn4ZB/3WFsAGNbOH5882sUxqp0oK4GNU4Eb+40vM+I9oOfTVgvJktLK0/D07qeRU53D2e8scsbaIWttfsFl5b/7kP3CC2AKBWe/ODISYd+sh8jfv97tpJ0vxD9fXYZWzX0WxzPACePnd7HpBZeMMRzb9BOObfrZ6DJR8b0wZt7LEAhpzDe5t1ACTghxeGqtDq9uuYhfT2cZXWZcpyB8MLkTRAIHmB6hqgD48UEgN9HIAjxgzGqg+2PWjMpiLhRewNy9c1GmLOPsdxO7Yd3QdYjzjbNuYHcp27wZua8vBbTc1x1IYmIQtv5rCH186t3O5UPZOPBTstGzON4hLhj3fGc4udnuiLJOq8Xe9etwYc9Oo8u06TMAI+bMp2on5J5E73pCiEMrq1Fhzo9ncfR6sdFlHu/TCq+Nbgu+I0yyk3cJ+OkhoMLIlw2BGJj4FdBuvHXjspCdaTvx2pHXoNRyj4H2d/LH58M+R2uP1laO7D9Mp0Ph6tUo/vIro8s4de+OkLWfQuDmZnQZnY7h2JbrSNydYXSZ4BgPjHwmDhKZ7f57V9ZU46/V/4ebF84ZXabLyLEYNP1J8PgO8IWXkCagBJwQ4rBuFFZh1renkVbEXZoNABaNbIPZ/SMdY7a95B3AplmA2sjzlbgBD/8EtOpn3bgsgDGGz85/hrXn1xpdprV7a3w27DObTi+vq65G9iuvoGrPXqPLuA4biqD33wdfYny4iEqhwe71V5B+ocjoMq27+mLoY+0gtOH1C2V5udiyYjlKsjONLtP3kRlIGD/JMT5zhDQRJeCEEId05FoRnvnhjNEa30I+DysmxeGBrvWXeGsRGAOOfQLsWgKjs1u6+ANTNwMBtp3x0RwUGgVeP/o6dqTtMLpMZ9/O+GTIJ3CXuFsxMn3qvDxkPjPH6AQ7AOAxeTIClr4OXj0zPlaWKPD32gsozuKeuAYAOvQPRr+HY2x6Ficr6RL+/OAdo1PL8/h8DJ/9HDoMGmblyAixP5SAE0Iczo8nbuL1Py9Dq+NORmUiAdZN7YqBsfXPLNgiaFS1M1ue+974Ml6tgWm/A54RVgvLUorkRfjfv//DhaILRpcZEDIAKweshExou9J78osXkTVnLjSFhUaX8ZkzBz7PPVvvkeC8tHJsX3cR8grumVoBIGFsK3QfFWHTI8qX9u/B7i8+gU5r5AuvWIIx815B6262rUBDiL2gBJwQ4jAUai2W/nkZG08bP/0d6C7FVzO6o32Q7Y6Mmk15FvDbTCDrlPFlwvsCD30POHlZLSxLOZt/FgsOLECh3HhSO7XtVLzY/UUI+bb5740xhrLffkP+m2+BqdXcC4lECFy+HB73T6h3O5cP5eDQrynQabi/SPKFPAye2gaxPeufJdOSNGo19n/3Fc7v+tvoMs6eXpjw0hIEtI62YmSE2DdKwAkhDiGjuAbP/HgGl3O4T38DQKdQD3w5rRv83Bxgso8b+4FNjwM1xi8uRZdpwOhVgLBl11dmjOH7K99j1ZlV0DLuCiICngCLeyzG5NjJVo7uPzqFAnnLlqN8yxajywg8PBDyycdw6t7d6DJqlRYHfkpG8nHuSXoAQOYqwsinOiIwyqM5ITdLRVEB/lr9f8i7lmJ0Gb+I1pjw8hK4etdf2YWQew0l4ISQFu/fq/mY90ui0fHeADAmLhDvP9ip5U+wo9PVTiu/722AcdeABnjA8DeBXs8CLfxCt2p1NZYeXYp/0v8xuoyr2BWrBq5Cz8CeVoxMnyojA1nP/w/Kq1eNLiOOao3Qdevqnd2yrKAGOz+/hOJs4+O9vYKcMXpOnE1nt0y/cA5/f7TS6HhvAIhO6I2Rc1+ASOoAX3gJMTNKwAkhLZZWx7BmTwo++tf45DoAMG9oNP43JLrlV12QlwFbngZSjF98CJEzMOlrIHak1cKylOtl1zF//3yklacZXSbMNQyfDPkErdxbWTEyfZX/7kPOK69AV1lpdBnnvn0RvHoVBK6uRpe5kViIvRuuQKXgPsoPAGHtvXHfE+0htlGZQabT4cQfv+HIrz8YndkSABImPIi+D02jMoOEGEEJOCGkRcouk+OFjYk4kVZidBkXiRArJ8VhZEfbjZE1m/QjwJangHLj49vh1bp2vLd/e+vFZQGMMWxK3YSVp1ZCrpEbXa5vcF/8X7//s1mlE51CgYIPVqH0+3ougAXgNetx+M2fD56RCWc0Ki2O/n4dF/cbnygKALreF4Ye4yLBt9FkUZUlRdi59kNkXEw0uoxQIsHw2c+hbd+BVouLkJaIEnBCSIvzZ2I2XvvjEirrGXIS4++CdVO7obWvixUjswCNCtj/LnB4NYyWGASANmOACWsBacu+uLREUYKlR5dif+Z+o8vwwMOcznMwO242+DzbJKOK5GTkLFgAZarxsy98Z2cE/t+7cBtmvOxeYWYldq+/gtJc47XqxVIBhsxsh8jOvs2KuTlSThzB7i8+gaLK+FF+z8BgjHtxMXxCw60YGSEtEyXghJAWo1yuxut/XsKfiTn1Lje+cxDefaAjnMQt/E9cUSqw+Yl6ppQHwOMDQ98Aej/f4sd7H8o6hCVHlqBYYfzCUneJO97r9x76BPexYmT/YTodSr79DoWrVhmvcgJAEh2N4I/WQNKKe2gM0zEk7snE8T+vQ6c1/sXKO9gFI57qAA8/p2bH3hQ6tQr/fvUprh7eX+9y0T16476n50HiZJs4CWlpWvj/ToSQe8WJG8V44dfzyC4zPiRBJOBhyZh2mNYzvGWP92YMOL0e+OdVoJ4hGHD2Ayatb/EzWyo0Cqw6swo/X/253uU6eHfABwM/QJBLkJUi06fOz0fOwoWoOXa83uXcxo1F4BtvgG8kGa0sUWDvt1eQnVxW73ZiewZgwKOxEIltc+GwvDAf+cf2QVPPUW8en4/+Ux5Dt9ETWvZnjhArowScEGLXalQafLArBeuPpNV3zRdCPGX46JEu6Brmab3gLKEsE9g2H7i2u/7lIvoBD3wJuLXs8e3nCs7h9SOvI70ivd7lHo59GC/FvwSxwPolFRljKP/jT+T/3/9BV15udDmeRAL/RQvh8dBDnMkoYwxXj+XiyKZrUNYYHz4lFPHRd3I02vUNsklSq1YpcezXH5C95696L7R08fbB6OcWIKRtBytGR4hjoAScEGK3jl4rwsLfLyKjpKbe5R7oGoxl49rDVSqyUmQWoNMBp78G9rwBqIyXoANfBAxZAvR6DmjBFSZq1DVYc3YNfr76M1g9Y9u9pd5Y3mc5+of0t2J0/1FlZSNv6VJUHzlS73KSdm0RvHIlJK1bc/ZXFMmx74eryLpaWu92fMNcMezxdvAMcG5yzM2RlXQJuz7/GKW52fUuF9u7P4bOmgOpSwu/xoIQG6EEnBBid8rlary7PQm/nKqn4gcAN6kQ7zzQEWPibDMkwWyKrgFbnwMyjta/nE8sMPFLILCTdeKykKPZR7Hs2DLkVNc/ln9gyEC80fsNeMu8rRTZf5hWi9Kff0HBqlVgNfV8AeTx4P3ELPg+9xx4YsOj8zodw8X9WTj+x3VoVMbqtgPgAV3vC0fCmFYQCK3/xUolr8HBn76td0ZLABDLnDBk1jNo23cgDTkhpBkoASeE2A3GGLacy8Y726+iqEpZ77K9Ir3xweROCPKw3WQkzaaqqZ1U58gaQKuqf9n4J4FhywFxy73ILb86HytPr6x3Uh0AkAqkeCn+JTwY86BNkjz5xYvIW7YcikuX6l1OGBCAoPfeg3OPBM7+/LQKHPg5GYUZxsdQA4CLlwTDHmuHoGjrD59ijCH56EEc+P5rVJUaL+kJAMFt2mHk3Bfh7udvpegIcVyUgBNC7MLVvAos+eMSTqXXf4peLODjxeExeLJfJPj8FnoEjjEgeTuwYyFQnlH/ss5+wPhPgZjh1onNAtQ6NX688iPWnl9bb11vAGjv3R7v9nvXJhPraEpLUfjhGpT9+mu9Y58BwG3UKAQsfR0Cd8Oyj4oqNY79cR1XjuTUWzkSAKLj/THgkRhInKw/fKo4KxP/frMOGZcu1LscXyBAr0mPImHCJPD5LXwmWULsBCXghBCbKper8dHeVGw4mg6trv5spVu4J96bGIcovxY87rT4OrBzEZBa/1FgAEDnqcB9bwGylnth6YncE3j3xLu4Xn693uUkAgnmdp6Lae2mQci37n9NTKtF2e+/o/CDVdCWldW7rNDXFwFLX4fr0KEGfTodQ9KRHBz74zqU1cYvsgQAZ3cxBjwai1adrF/bW1lTgxNbNuLM339ApzU+6yYASLx8MWH+KwiJaWOl6Ai5N1ACTgixCZVGhx9P3MSavakoqzFeTxkAnMQCvDKiDab1DG+5R71rSoADK4BTXwK6+pMzeIQBY9cArQdbJzYLuFF2A6vOrMKBrAMNLtvNvxuW9V6GcDfrT+BSdfgIClasgDIlpcFlPR6cBL+XXoLAzc2g7+blYhzdfA0lOcYn1LmtXb8g9H4gChIrTyev02pxYe8/OPrbj5BXGK/mAgBCsRju7bvAI7YDvGliHULMjhJwQohVMcbwz+V8vLfzKtKKGk5WBsT44q0JHRDq1ULHPmuUwInPgYPvA8r6kx7w+EDCU8Dg1wBJyzzKXywvxtrEtdicuhlaVv/RVVeRK+Z1m4dJMZOsPqOlIiUFBStWovrw4QaXFYWHIfCNN+Dcq5dBX1FWFY7+fg2ZV+ofPw0A7n4yDJzSBiGx1j2jwRjDjbOncPCH9SjJqX+6ewAI69AJ/abNwonzF60QHSH3JkrACSFWczKtBCv/udrgOG8ACPaQ4fWx7TC8nX/LrLag0wIXfwP2vQ2UNTDOGwBCewCjPwACOlo+NguoUlfh25RvseHyBlSrG/5iNa71OLzQ7QWrVzhRZ2ejcN06lP++pbb0Yz14Egl8nn4KXo8/Dr5EotdXUSTHqe3puHost8Fx3kIRH91GRaDL0DAIRNb9opGTkoTDv3yPzMv1j/MGABdPLwyc8SRievaFQqEAQAk4IZZCCTghxOLSKoHHvz+HYzcaTrxFAh5m94/E3EFRLXMqeZ0WuLwF2P9/QHFqw8s7+dRWN+n0SIus661kShxXHseKv1egQlXR4PIxnjF4tcer6Orf1QrR/Uedl4eizz9H2abNQD1TyN/mMngw/BcvhjgkWK+9skSBMzvSkXQkF7oGrlkAgFadfNB3cjTcvK1brSfvWgqO/vYj0hLPNLgsXyBA11Hj0WviwxDLWuiZJkJamBb4vxshpKW4kF2Bz5L4SCrjA2g4+R4U64vXxrRDa98WOPxCpwOS/qxNvAuvNrw8Xwh0nwUMWtQiL7KUa+T44eoP+KriK9Sw+idKAgB3iTue6fQMHop9yKoXWarzC1D85Zco27gRzITEW9yqFfxefgmugwbptVeVKnF2ZzouH8mBTtNw4u0Z4ITeE6MQ0dGnybE3RX7adRz97UfcOHPSpOXDOnbGoOlPwCcswrKBEUL0UAJOCDErxhiO3SjG5wdu4EBKIYCGj+q2DXTDa6Pbok+UdZMVs9CogEubgaMfAQVXTFunzRhg6DLAJ8qysVlAubIcvyb/ih+SfkCJouFxzyK+CI+2eRRPxj0Jd4lhyT5LUWVkoGTDBpRt/h1MWX9NeQAQeHrC59m58Jw8GTzRfyUBywpqcH5PJpKO5kKrqX/ICgDIXEVIGNMK7foGgS+wzhkNxhiyk6/g1NbNJife3iFhGDBtFiI6dW2ZQ7wIaeEoASeEmIVWx7DzUh4+P3gdF7IauNjwlgA3KRbcF4v7uwRD0NKqmygrgTPfAsfXAhX1T9tdJ6gLMPxtIKKPZWOzgNyqXHx35TtsTt3cYC3v20ZEjMDzXZ9HqGuohaP7j/ziRRR/vR6Vu3Y1OMYbAHhiMbxmTIf37NkQuLrWteenVeDc7pu4fq6wwTHeACAQ8dFpSCi63RcOsZWqm+h0Wlw/fQKntm5GbmqySes4uXugz0NT0WHgMPAFVNObEFuhBJwQ0ixylRabzmTiy0NpyChpeCgCAHg4ifBkv0g83qcVZOIWlgRU5tVWNTn1dcNVTW7zjgYGLgTaP9DixnknlyRjw+UN2JG2o8GqJrf1DOyJZ7s8i06+nSwcXS2m06H68GEUf70eNSdOmLaSQAD3CePhO2cORMHBt7bDcPNyMc7tykBOaplJm+HxeWjbKwDdR7eCq5e0ic+gcTQqFa4c/Bent21Baa5pX/4kTs7oNmYCuo2eALG0Bc8eS4iDoAScENIk1wur8OPxDGw6k4kKRQN1rW9xkwrxZL9IzOwTAVep9Wf+azLGgJtHapPupK0N1/G+zSsSGLAQ6DgJaEEzCKq0Kuy5uQcbkzfibMFZk9eLD4jH3M5z0c2/mwWj+4+2vBxlW7ag7OdfoLp507SV+Hy4jx0LnznPQBxeW99aUa3G1WO5uHQgG+WFph3d5/GA2J4B6D4qAu6+1rlwsSwvF+f37MCl/XugqGz4glcAEMtk6DpqArqNHg+pcwu8toIQB0UJOCHEZGqtDnuu5OOHEzdx5FqxyetJBQyz+rbC7IExcJe1oMRbUQ6c/wU4vd60Cytv8wgHBrwCxD0ECFrOn9nsqmxsStmE31N/N2l8923hgnC80u8V9AvvZ8Ho/iO/eBGlP/2Miu3bTRrfDQDg8eA2Zgx8nnkGkshWYIwhL60clw9kI/VMAbTqhoer3NoMohP8ET+qFTz8LZ9467Ra3Dh7Cud3b0f6edO/DIkkUnQdNQ7dxtwPmYtrwysQQqyq5fzPQAixmcySGmw6k4VfTmUgv8LEhAeAt7MIPb0U6OPPcP/ASMhaQvLNGJBztnZ898XfALVpw2oAAL5tgT7PAx0fBAQt4LkCUOvUOJp9FL+l/IaDWQfBTBnwfEvPgJ5oW9kWkcJIdPfrbsEoAW1VFSp37kTpz79AcfmyyevxRCK4jR8H78cfhyQyEkq5BlcO5+DSwWwUZlSavB2+kIc2PQLQeVgYPAOcm/IUGqWiqBBXDuzF+b07UVVcZPJ6Ulc3dLlvNDrfNwZObta76JUQ0jiUgBNCOJXL1dh+MRdbzmbjZLrpR0MBoJWPM57o1wqj2nrj4L69ForQzEpvAhd+BS5sNK1+953C+wJ9/gdED6s9RGrnGGO4VHQJ225sw870nY062i3gCTCy1UjMbD8TYbIw7Nq1y3JxqtWoOnIEFVu3onLvv6Yf7QbAd3WF58MPwXPqNPB9fJB5uQTJX15C2oUik492A4BYJkSHAcGIGxQCZ3dJwys0g7KmBiknDiPp0H5kXrlY+2XQRO5+/ug25n50GDgUIol1xqITQpqOEnBCSB2VRof9yQXYci4be5MKoNKanqgAQKdQDzwzIBLD2gVAwOdBLjdtPK3NyEuBy3/UJt4ZRxu5Mg9oNw7o/T8gxDpjnpsrqzILf9/4G9tubEN6RXqj1pUJZZgYPRHT2k1DkEsQAFhk/zLGoLh0CeV/bkXF9u3QljTuy5/Q3x9eM2bA/cFJKC5iOLYvD6mnk6GoargG+J1cPCXoNCQU7foGQSy13H+VWo0G6efP4sqhfbhx+gQ0alWj1vePjEL3sQ8gpkcfqmpCSAtCCTgh9ziVRocTacXYeSkPf1/MRVlN4xIVsZCPMXGBmNozHF1CPey/prCiHEjdDVz5A0j5B9A2LuGBkzfQdTrQbSbgGWGBAM0rrzoP/2b8i3/S/2nUBZW3tXJvhYdiH8LY1mPhJnazQIS1SbcyORmVe/ai4u+/oUpLa/Q2nBIS4PHII1DFJuD65TKkvn8ZZfmNGD50S3CsJzr0D0arzj4QWKiOt1ajQfbVy0g9eRTJRw9BbuIFlbcJhEJE9+iDTsNHITi2nf1/5gghBigBJ+QeVKXU4EByIXZdycO/VwtQaWIVkzuFezthao9wTOoWAk9nsQWiNKOKHCB5O3D1byDtEKBr3JcMAEBYr9qZK9uNA4SWHYrQHIwxpJalYl/GPvyb+S+uFJs4OdAdhDwhhoQPwUOxD6G7f3eLJHhMo0HN2bOo2rsXlXv2Qp1tYi31O/BdXeE6fgKUfcYjo1CEA4eKUPlnYqO3I5YJ0aZXADr0D7bY+G6VQo7082dx/dRx3Dh7CorqqkZvw83XH52GjUSHQcNofDchLRwl4ITcIwoqFdhzpQC7ruTh6LXiRg8vAQABn4fBbfwwrWc4+kb5gG+vk+cwBhQmA1e31Sbe2Weath2xKxA3GYifBfi3N2+MZqTVaZFYmIh/M/7Fvxn/Iqsqq0nbCXAOwKToSXgg+gH4OvmaOUpAJ5ej+sgRVO7Zi6r9+6EtK2vSdoTt4iAf8ijyJa1wM6kMyo35TdqOb5grOgwIRnR3f4gk5h++UVNehutnTuLaqWO4eTERWnXjv/jxeHy06tINnYaPQkSnruC3oHKWhBDjKAEnxEFptDqczyrDwZQiHEwtRGJmWWOu6dITF+KO+7sEY0xcEHxd7fTor7Kqtlb39X9rh5iUXG/adngCIGpIbQnB2FGA2Do1nhurSF6EYznHcCznGI7kHGnUhZR3chY5Y1j4MIyNHIvuAd3B55lv2AVjDKr0dFQfOYrqw4dRffw4mELR+O0AUIW1R3WPsSh2iUZOlgraizoAplcHuc3FU4KYhADE9PCHd5B562LrdFrkX7+G9AtnkZ54FjmpVxt1IeWd/CJao22/gWjTZwBcPL3MGichxPYoASfEQTDGcKOoGseuF+NwahGOXC9q0tCS24I9ZLi/SzAmdAlGlJ8dTuCh1QC554G0A7VJd8bxpg0tuS2oCxD3MNBhIuBi/qO/zVWjrkFiQSKO5x3HsZxjuFrSiLrkdxHwBOgT3AdjI8diYOhASIXmq5qhKS5GzalTtUn3kSNQ5+Q0aTsqkSvK/Tugsv0gFApDUF3NgEIAhY1P4EVSAaK6+iGmRwCCoz3AM9OZG8YYyvJzkXn5Am6eP4eMS+ebNLTkNhdvH7TtOxDt+g2CT2i4WWIkhNgnSsAJaaFuJ9zHbxTj+I0SHL9RjMJK08u0cfF0EuG+9gG4v0sw4iO87GuIiVZdm3CnHwLSD9cm3KqmJzsAameqbP9A7dFu3xjzxGkmtxPuU/mncCrvFC4XXYaGNf0LFQDE+cZhVKtRGBExAt4yb7PEKaiqguzGDRSfOQPl2bNQXWvamQeVyBWlHtEo84pFeWAcqnDrgk8lAGXjjyILhHyEtvVETI8AtIrzgVDc/KEbjDGU5eUg88pFZF6+iKwrF1FV2rQzD7dJnV3QOr4n2vUbjNB2HcDjW+bCT0KIfaEEnJAWokalwYWscpzNKMXZm2U4l1GK4upGVvDgEOolw33tAjCsnT+6hXtCaKHKD41WXQRknQIyT9b+zD7TuElxjAnqCrQZDbQZA/jG2kXdbsYYsqqycL7wPM4XnMf5wvNIKU2BlmmbtV0RX4QegT0wOGwwBoYMbPa4bqbVQpmaCnliIuTnzqH67Dm0zswEAJg+pQ2g4/FR7RyEcrdWqHBrhXKP1pBLfZoVGwBInIQI7+iNyE6+CG3n1ezygWqVEvnXU5GTchW5qVeRk3IVNeVlzY7TzdcPUd17Iiq+J4LbtKfygYTcgygBJ8QOqbU6pORX4nJ2BS5ml+NcZimSciuh1TVxEPddOgS7YXi7AAxv749Yf1fblzFTVgF5F4HcRCAnEcg6CZTcMM+2+UKgVf/apDt2FOAWZJ7tNkOxvBhJJUm4UnwFl4ou4Xzh+SaP4b6bq8gVfUP6YnDYYPQN6gsXcdOGDzHGoM7OhuLSZSguX4b84kUoLlyArqZxX4IYAIXUG5WuYah0CUW5WwQq3SKgFZjnWgIXTwladfZFZCcfBEZ7NLl0oE6rRXFWBvLTriP/xjXkpiaj8OYN6LTN+xJ0m29EJKK690BUfC/4hrey/WeOEGJTlIATYmMKtRap+VW4lFOOS9m1t6S8Sqg0ja9SYoxUxEePVt4YFOuLYe0DEOwhM9u2G62mBChI+i/Zzj0PFKUAjZgCvUFO3kDkICB2JBA1FJB5mG/bjcAYQ35NPlJKU3Cl+ErdLb+maVU7jAlzDUPvoN4YFDYI8f7xEAlEjYtTq4UqIwPKq1drk+3Ll6G4kgRdeXmjtqPj8SGX+qDKJaQ24XYNRaVLKDQiM5b24wF+4W4Ia+eFyM6+8Al1aXQyq1YpUZKdhYK068hPu46CG9dQeDOt0ZPg1EcoEiO4bXu06twdUfE94e7nb7ZtE0JaPkrACbEStVaHtKJqJOdVIiW/su7nzZKaJlcnqU/bQDf0j/FB/2hfdAv3hFRk5dPcyirwcs4jrPggXOVZEG9cDxQnA5W55n8svggI6wm0Hlx7C4gDrDyWtlRRimtl15BamoprZddqb6XXUKluzOAM07iKXNEjsAd6BfVCr6BeCHUNNWk9xhg0ublQpqbW3RSpqVBdv9Goad4ZAIXEC9XOgah2DkKVcxCqnQNR4xwAHb9xyb8pXDwlCG3nhdC2Xght4wWpi2mPodVoUJaXi6LMmyjKvIniWz/L8nLBmPm+4N7mExaB8LguiIjrguC27SES22nFIEKIzVECTogZMcZQWKlEWlE10ourcaOoGulF1Ui7dVNrLZBp3xLr74qekV7oGemNhFZe8Haxwn/+Oi1QllFb8q/41q3kOlCUCpTdhBRAl9vLFprxcfkiIKQ7ENEXCO8DhCYAYstMoHInpVaJzIpM3Ky8iZsVN5FRkYGbFTeRVp6GYkWxxR7XReSCrv5dEe8fj/iAeMR6xULIN/7nW1tZCVX6Tahu3oTqZvp/969fh6662uTH1QikqHHyQ43MF3KZP2qcfCGX+aHayR9aoeXOoji7ixEc64ngGE8ExXjA3Vdm9Cg3Yww15WUozc1GaV4OynJzUJqbU/t7bja0muZduFof75AwhLTriNB2HRHStj2cPTwt9liEEMdCCTghjaTUaJFbpkB2mRzZZXJkFNcgrbg20U4vqka1yjxjRusjEvDQIdgdXcM80T3c07IJt7ISKMsEyrOA8gygJO2/RLskrXml/0wlcatNuEMSgPBetT8tUJ+bMYYyZRlyqnOQW5WLnKocZFRm1CXbudW5YOYcKmOEn8wPnfw6oZNvJ3QP6I42nm0guGMCFqbVQp2fD3V2DtQ5OVBnZ9cm2OnpUN28CW2xaV8GGHhQStyhlHhCLvWCQupTm2zfSrrVFpp6/m6eAU7wj3RHYKQ7Z8Kt1ahRWVSEiqICVBQVorwgD6U5txLuvByo5HKLx8gXCODXqjWCotsgKLYdJdyEkGahBJyQOzDGUKHQILu0NrnOuZVk3/49u0ze7FJ/TRHoLkXnUA90DfNE13APtA9yN8+QEp0OqC78L7muS7Qzb93PBBRlzX+cRuEBPtG1SXZofO1P3zZmGVKi1qlRWFOInKoc5FbnIre6NsnOq85DTnXtT7nG8sncncR8MWK9YtHJt1PdzU/gAU1eXm1yfeUKSnL3/pds5+ZCnZcHmHBkV8sXQSHxhFLqBYXUCwqJFxRSz7r7SoknmJVnVhTLhPALd0VApDsCIt3hF+EKPl+NisICVBRlIe3cWVQUFqCyqLAu4a4uK23yhDZN5eLphYCoWATFtEFgTBv4R0bRkBJCiNlQAk7uCXKVFkVVShRUKlFYqURRVe3Pwqq7fq9UQmnGix+bIthDhg7BbugY7I4Ot24+jTm6zRigrACqCoCq/Fs/77hffVd7M0vdNQuPD/jEAkGdgcBOQGBnIKAjIDG9coeO6VCmLEORvAjF8mL9n4ran7fbypRlVjmCzUWgZfBViBEnDEdbFoBIrRcClTK4VzPozpZAW3gJmqL9qCguRlml8XHjOh4fapErlC5uUInvvrnW3VeK3Sw6TKQhjKkhlqjg7svg7K6BxEkNoUgBjaoKNeWluH6yFBd3l6G6rAwalfW/1N7J1dsX/pGt4deqNfwjo+DfKoqObhNCLIoScNKi6HQMlUoNKuRqlNdzK6tRoahSVZdgVyktNw60qZzEAsT4uyLW3xUxAa6I8XdB+yB3eDmL/1tIqwEU5UBxFiAvAxSlt36W6f+sKdFPsDWNny3Q0piTN3j+7QG/doBf29qf/h30hpIotUpUKCtQUZaPSlUlKlQVKFeWo0JVUXtT1v4sUZSgWF5ce1MUN7teduOeCINEDbgoACdF7U9nBYPzXff9NDL4KaXwqAKcKpQQVFQDkAO4CuAqGACNQIJ8oQwaoRPUQidoRG5QOwdA4+5U2yaq/akSu0Ilqk2u1WJX6z1X1J4VAlOCMSXAFHf8VOi1i8Rq8AUKMF011MpKaJRyKAFUmrfgS7MIJRL4hITBOzQcPrdufq1aw8nN3dahEULuMZSAE6tgjEGtZZCrtVCotZCrtFBoan+WVNbgXDEPcg1w8/BN1GiAcrmaM8muUKitfSa6iRgkUEMKFXylWkR5ChDpzkNrDwFau2kRKlPBk18DvqK8NokuKgOyyoDDZbW/K8prE2uV+StoWIIOgILHg4LHg9LFF3KPMCg8QlDpEoSz+eUoFroguF0byJm8NpGuSUFFymlUXPovqa5QVUCpteyRUJ6uNnmWaACxGrX31YBEfWcCXZtE/3ff8Hc+40PHF0HHF0MrEEPLF0MnEEErkPyXTAudoBLJkCNzgsbVCepwJ2huJdS1/TKwei6kNAfGtAA0AFODMQ0ANcA0YEx1K3lW1CbTuruT6zuTbBVMKRFp4V3XKGKZEzwDg+AZGAyf0PC6hNvd149mmiSE2AWHTMCVSiVef/11fP/99ygtLUVcXBzeeustDBs2rMF1s7OzMX/+fOzatQs6nQ6DBg3C6tWrERkZaYXIbUOj1d1KjHW1yfGtBFl+677ijvtylfaOZWrXU6qN9N9a5vbv9U8ic2sc6o2mTWNtOgYRtJBBCSlUkPGUkEFV+zuv9qcMqro+6a0+2a0+Y+s48VRwEajhxFNDwpQQ6RTg3Zm0lN66WRkDoOIBCh4f8lsJsoJf+1PO40HB59clzvK6vv/a9Je9o08ghFwgrF0fDEqDI9D5tYc+K8/U/qoCkLjdaJw8xiBWA66a/5JicV2SzAwSZrHmVrv6Vvut9URqHiRaEYRaEYQ6MUS3fgqYGAKdCDze7WS59qdW8F8Srf9TVLucVAy1kwjFfDEK7uhjzSy1V1sCTwPoqvUSYzA12K2EGUxz6z5XO/fygAbsjvu1X40ck1AsgWdAIDxuJdqeAUG19wOC4OTuQRPdEELsmkMm4DNnzsSmTZswb948REdHY8OGDRg1ahT27duHvn37Gl2vqqoKgwYNQnl5ORYvXgyRSITVq1djwIABSExMhLe3t8Vi/nLOs/BwMn9VB0sRAnC9dbsXKAEoIUTtM285+6mpeABkt25W0dSzGrzaSh5yAQ9yIQ+QmZp0qW/dTIhLe+vWrGIv2luJ9q2EGjYcd99CSJyc4erjCzcfX7j6+MHNxxduvrd++vjB2cOTjmYTQlosh0vAT548iV9++QUrV67EggULAADTp09Hhw4d8PLLL+Po0aNG1127di1SU1Nx8uRJxMfHAwBGjhyJDh064IMPPsA777xjsbh1rBI6Zn/jlAmxa8zIfWK3eHw+nNw94OzuCWcPDzh5eMLZ3QMu3j5wuyPRljhZvq47IYTYisMl4Js2bYJAIMDs2bPr2qRSKWbNmoXFixcjMzMToaHcs8Zt2rQJ8fHxdck3ALRp0wZDhgzBr7/+2ugEPCsrq97+3FwLzAhICCHWxuNB6uICJ3cPOLl5QObuUXv/9s3Nve6+1MW1wSPXOgByK9T2JsYpFArO+8Qx0P5tHEv8PXK4BPzcuXOIiYmBm5v+BBIJCQkAgMTERM4EXKfT4cKFC3j88ccN+hISErBr1y5UVlbC1dX0QRfGEn1CCLE7fD4EYgn4YgkEYjH4d94XScAXi+/or/399n2eUKg35poBqL51Q5Wi9pZjR+VQSKMcPHjQ1iEQC6L927CioiKzb9PhEvDc3FwEBgYatN9uy8nJ4VyvpKQESqWywXVjY2PNGC0hhDQOTyAATyAEXygETyAETygEXyCsbb99/46fdy575887E2i+WFK7Pl24SAghVuFwCbhcLodEYjhpiVQqres3th6AJq1rTGZmZr39ubm5dUfmhTwvCHk2GPNI/9/e4lgvBE//H/32u37jXMJcLwe7XfED4PH4d22eV3uHx+O+D17t7zyAZ7S/dkwxnw/weDzw6n7yalfl33W/7ievdp1b93kWvpaPx+dDJJZAKJFAKBZDKJbU3m79Lqr7/c6+2vu1fWIIJRIIRCLwrTxzZX0UCkXd0bP+/fvX/a0kLR/tW8dG+7dxGhpS3BQOl4DLZDIolYYFaW+PcZLJuOs63G5vyrrGhISEmLzsrLWrG7W8I5HL5di1axcAYPjw4Y1+nYn9on1775BKpbR/HRTtW8dG+7dhlnh9HK6GU2BgIOfFjbfbgoKCONfz8vKCRCJp0rqEEEIIIYSYyuES8M6dOyMlJQUVFRV67SdOnKjr58Ln89GxY0ecPn3aoO/EiROIjIxs1AWYhBBCCCGEcHG4BHzSpEnQarX44osv6tqUSiW++eYb9OjRo64ySUZGBq5evWqw7qlTp/SS8OTkZPz777948MEHrfMECCGEEEKIQ3O4MeA9evTAgw8+iEWLFqGgoABRUVH49ttvkZ6ejq+//rpuuenTp+PAgQNg7L/ZO+bMmYMvv/wSo0ePxoIFCyASibBq1Sr4+/vjxRdftMXTIYQQQgghDsbhEnAA+O6777BkyRJ8//33KC0tRVxcHLZt24b+/fvXu56rqyv279+P+fPn46233oJOp8PAgQOxevVq+Pr6Wil6QgghhBDiyBwyAZdKpVi5ciVWrlxpdJn9+/dztoeEhOC3336zUGSEEEIIIeRe53BjwAkhhBBCCLFnlIATQgghhBBiRZSAE0IIIYQQYkWUgBNCCCGEEGJFlIATQgghhBBiRZSAE0IIIYQQYkWUgBNCCCGEEGJFlIATQgghhBBiRZSAE0IIIYQQYkWUgBNCCCGEEGJFDjkVfUuh0Wjq7ufm5towEtuSy+UoKioCAGRlZUEmk9k4ImIutG8dG+1fx0X71rHR/m2cO3O0O3O35qAE3IYKCwvr7ickJNgwEkIIIYQQ0pDCwkJEREQ0ezs0BIUQQgghhBAr4jHGmK2DuFcpFApcvHgRAODr6wuh8N48IZGbm1t3BuDkyZMIDAy0cUTEXGjfOjbav46L9q1jo/3bOBqNpm7UQseOHSGVSpu9zXsz47MTUqkU8fHxtg7DrgQGBiIkJMTWYRALoH3r2Gj/Oi7at46N9q9pzDHs5E40BIUQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArool4CCGEEEIIsSI6Ak4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk5avBUrViA0NBSurq7o0qULKisrbR0SMaNjx46Bz+fjrbfesnUoxEyUSiUef/xxhIWFwc3NDT179sSxY8dsHRZpgsLCQowePRrOzs6IjY3F3r17bR0SMRP6nFqW0NYBENIcn376KXbu3IkjR44gNDQUFy9ehFgstnVYxEx0Oh3mz5+P+Ph4W4dCzEij0SAiIgKHDx9GSEgIfv31V4wdOxbp6elwcXGxdXikEebOnYuAgAAUFhZiz549mDx5MlJTU+Hl5WXr0Egz0efUsniMMWbrIAhpCq1Wi9DQUBw6dAitW7e2dTjEAj777DMkJSWhvLwcUVFReO2112wdErGQoKAg/PXXX+jWrZutQyEmqqqqgpeXF27cuIGQkBAAwMCBAzFjxgw89thjNo6OWAJ9Ts2HhqCQZquqqsLSpUsxYsQIeHl5gcfjYcOGDZzLKpVKvPLKKwgKCoJMJkOPHj2we/fuJj1uVlYWampqsGnTJvj7+yM2NhZffvllM54JuZut9i0AFBcX48MPP8SyZcuavA1SP1vu3zulpqaipKQEUVFRZtke4Wbu/Z2amgoXF5e65BsAOnbsiMuXL1vyaRAjLP15ps+peVECTpqtqKgIy5cvR1JSEjp16lTvsjNnzsSqVaswZcoUrFmzBgKBAKNGjcLhw4cb/bjZ2dkoLy9HSkoK0tPT8dtvv2Hx4sU4dOhQU58KuYut9i0AvPrqq5g3bx48PDyatD5pmC33721yuRxTp07FokWL4O7u3qxtkfqZe39XVVXBzc1Nbz03NzdUVVVZJH5SP0t+nulzagGMkGZSKBQsNzeXMcbYqVOnGAD2zTffGCx34sQJBoCtXLmyrk0ul7PWrVuzXr166S3bp08fBoDz9uqrrzLGGDt79iwDwNLT0+vWe/bZZ9nChQst8CzvTbbct127dmUajYYxxtiMGTPYm2++aaFnee+y1f69TaVSsdGjR7NHH32U6XQ68z9Bosfc+/vs2bPM09NTb91nn32Wvfjii5Z5AqRelvg8M0afU0uhizBJs0kkEgQEBDS43KZNmyAQCDB79uy6NqlUilmzZmHx4sXIzMxEaGgoAJh0VC0mJgZisRg8Hq+u7c77pPlstW8PHDiA5ORkBAcHAwDKy8shFApx/fp1fPPNN018NuRuttq/QO0FttOmTQOPx8O3335Ln10rMPf+jo6ORlVVFbKzs+s+q5cuXcL06dMt9hyIcZb4PNPn1HJoCAqxmnPnziEmJsbglGVCQgIAIDExsVHbc3Z2xqRJk/D2229DqVQiKSkJGzduxKhRo8wVMjGRufft7Nmzce3aNSQmJiIxMRHjxo3D3LlzsXr1anOFTBrB3PsXAJ566ink5ubit99+g1BIx4Lsian728XFBePHj8fSpUshl8uxbds2XLhwAePHj7d2yKQRGvN5ps+p5dCrSawmNzcXgYGBBu2323Jychq9zU8//RSzZs2Cj48PfHx88Oabb6Jfv37NjpU0jrn3rZOTE5ycnOp+l8lkcHFxofHgNmLu/Xvz5k189dVXkEql8PHxqWvfsWMHfX7tQGP299q1azFjxgx4e3sjJCQEGzdupBKEds7U/UufU8uiBJxYjVwuh0QiMWiXSqV1/Y3l4eGBzZs3lJEfdgAAFU5JREFUNzs20jyW2Ld3MnYlP7EOc+/f8PBwMKqAa7cas799fX2xfft2q8VGms/U/UufU8uiISjEamQyGZRKpUG7QqGo6yctE+1bx0b7995C+9ux0f61D5SAE6sJDAxEbm6uQfvttqCgIGuHRMyE9q1jo/17b6H97dho/9oHSsCJ1XTu3BkpKSmoqKjQaz9x4kRdP2mZaN86Ntq/9xba346N9q99oAScWM2kSZOg1WrxxRdf1LUplUp888036NGjR13ZI9Ly0L51bLR/7y20vx0b7V/7QBdhErP45JNPUFZWVnf19F9//YWsrCwAwHPPPQd3d3f06NEDDz74IBYtWoSCggJERUXh22+/RXp6Or7++mtbhk/qQfvWsdH+vbfQ/nZstH9bEFvPBEQcQ3h4uNHZ79LS0uqWk8vlbMGCBSwgIIBJJBIWHx/Pdu7cabvASYNo3zo22r/3Ftrfjo32b8vBY4xqzBBCCCGEEGItNAacEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEEIIIYQQK6IEnBBCCCGEECuiBJwQQgghhBArogScEGJTAwcOBI/HQ3p6uknLr1q1CjweD56enlCpVACAiIgI8Hg8gxufz4erqyvatGmDadOmYe/evRZ8JtzS09M5Y+PxeJg5c2ajtnX7tbp9u/M1u/txBg4caNbn4WjufK0iIiJsHU4dR9iPiYmJZnvPE+KoKAEnhFhVbm4udDpdvctkZ2cb7du0aRMAYOzYsRCLxfVuhzGGqqoqJCcn44cffsDQoUPxwgsvND5oQgghxIyEtg6AEHLv0Ol0GDlyJHQ6Hd5++22MHTtWrz89PR2vv/46fv75Z5w6dQqdO3fW68/JycHx48cBAJMmTTL6OP3794evry8qKipw+vRplJaW1vWtXr0akyZNQu/evc33xBohPDwc3bt3BwDEx8ebbbvOzs6YOHFi3e/t27c327Yd0Z2vlZ+fnw0jcTweHh51r29NTQ127Nhh44gIsT+UgBNCrEapVGL48OFYu3Ytxo0bhz59+iAvLw8AsHDhQmzZsgUqlQrDhg2DQCAwWH/z5s1gjMHV1RXDhw83+jjLli2rO3VfXl6Orl274saNG3X927dvt1kCPnDgQGzYsMHs2/X19a07O0AaRq+V5URERNS9vunp6WjVqpWNIyLE/tAQFEJIo6WlpcHDw6NuXKePj09dIn3b5MmT9cZ+fvrpp5DJZFixYgXS0tLw0ksvITExEdevXwcAbNy4EX379sXhw4exa9cudOzY0eBxb/+nPnr0aEilUpNidXd3x5gxY/TaioqKOJfVaDT46aefMG7cOISEhEAqlcLV1RUdO3bESy+9hKysLJMeszmuXLmCyZMnw9fXFzKZDO3bt8d7770HtVpd73oNjR1+44039Po3bNiAEydOYPTo0fD09ISbmxsGDRqEffv21a3zyy+/oFevXnB2doa7uztGjhyJkydPGo2hrKwMK1euxIABA+Dj4wORSAQvLy/07dsXq1evRnV1tUlxK5VKvP/+++jUqRNkMhnc3d0xYsSIurMfdztx4gRmzJiB2NhYODs7QyQSwdfXF+3atcPkyZOxcuVKg/enKWPAMzMzsXjxYsTHx8PT0xMikQje3t7o06cP3n77baPvo7u3rdPp8NVXX6Fnz55wcXGBi4sL+vXr16wjw9evX8eCBQvQpUsXeHh4QCwWIyAgAGPGjMGmTZvAGONc759//sHkyZMRGRkJJyenuvXi4uIwbdo0rFmzBpWVlXrrJCUl4ZlnnkH79u3h6uoKoVAIb29vxMbGYsKECXjrrbdw7dq1Jj8XQu5JjBBCmmDTpk0MQN1t5MiRdX3r16/X63vwwQf11i0sLGSvvPIKc3Z21ltuyJAh7OjRo5yPl5eXx/h8PgPANm3apNcXHh6ut519+/bp9T/33HN6/cuWLTPYfk5ODktISNBb7u6bq6sr+/PPPxv1OqWlpeltY8aMGUaX3bNnD5PJZJyP3b9/fxYfH6/XlpaWZvRxBgwYoLftpUuX6vWPHTuWCQQCg8cRCARs69atbN68eZxxSKVSdvLkSYPYDx06xAICAup9/aKjo1lycnK9r0+HDh1Y165dOdeXSCTs+PHjeutv3Lix7n1R3+2vv/7SW+/OvvDwcIPn8+OPPxq8P++++fj4sD179hise+cy/v7+bPjw4Zzr83g89vvvv9f7ety9Hxlj7NNPP2Visbje2EaOHMmqq6v11lu5cmWDrxMAdvHiRb39KpVKG1zn448/NoiT6/nU9/4n5F5CCTghpMnmzp2r95/rp59+yq5du8ZcXFzq2lq3bs3Ky8sZY4zV1NSwRYsW1fX36tWLtW7dmgFgDz30EBOJRHXJw6VLl/Qea926dQwAc3JyMkgs6kvAS0pKWEREhF7Sc/78eb31VSoV69y5s942QkJC2KhRo1ifPn30EjypVMoSExNNfo1MTUBKSkqYr6+v3rIeHh5s6NChrG3btpxJT3MScABMJpOxQYMGsaioKL12JycnBoC5u7uzYcOGGSTWw4cP19v2tWvXmJubm0EiPWbMGNa+fXu99sjISL39d3fct28RERFs2LBhBtsdNmyY3mPHxMTU9fH5fNajRw82btw41qdPHxYREcF4PF6jE/B9+/YZfDlp1aoVu++++1hQUJBeu7OzM7t69arRbd++BQYGsmHDhjEfHx+99ujo6HrfL3fvx19//VWvXyAQsN69e7PRo0ez4OBgvb6HHnqobj2VSqX3uRSLxaxfv35s3LhxrGfPniwkJIQzAb/7y0OXLl3YuHHjWP/+/VlUVFTd60QJOCGNQwk4IaTJFAoF69Kli17iFhcXV/e7RCJhZ8+erVteq9WyuLg41q5dO/bHH38wxhgbMGBAXTJ5/fp19uijjzKBQMDOnDmj91hDhgxhANjEiRMN4rg7Ae/fvz+bOHEiGzZsGPPw8NDre+uttwzW/+qrr/SWmTNnDtNqtXX9R44cqUvkALAxY8aY/BqZmoC8//77estFRUWx3Nzcuv6FCxeaNQF3dnZmFy5cYIwxJpfLWWhoqF5/cHAwy8zMZIwxlpubyyQSid5+ValUddueOnWq3ro///yz3mO/8847ev3vv/++0bgBsMcff5xpNBrGGGNXr17VO9orFov1Hvv2lzYAbPny5Qava15eHvvuu+9YUlKSXnt9CXjPnj31+p955pm694NcLmejR4/W63/44YeNbhsAGzFiBKupqamLx8/PT6//5s2bJu1HrVbLwsLC6vo8PT3ZlStX6vrVarVBbKdPn2aMMZadna3X/t133xm8Vunp6eyLL77Qe99FR0fr7Ze7lZaWst9++40dO3bMoI/r+VACTkgtSsAJIc2SmprKXF1dOY/6ffrppwbLZ2Vl1SVXjOkn4LfdmZAwxlhRURETCoWcyR1jhgk4183Pz49zuABjzCBpGTZsGJs4caLe7e4EVKFQmPT6mJqA3HfffXrLffbZZ3r9NTU1Bq9zcxLwu5OpCRMm6PXfnczePSwkJyeHMVabFN55lFosFhu8dncfRb0ztrvjlkqlrKSkRO+xO3bsyPnYjDG9o/exsbHsww8/ZDt27GCpqal677O7GUvA8/Pz9b5sicViVlZWprfu5cuX9dZ3c3PT+8J293vv7uR/7Nixev13Druqbz+eOnXK4EvS3a/1nV+IAbClS5cyxhhTKpV6Q2oSEhLYunXr2O7du1l6ejrT6XScr9PQoUPr1gkKCmLvvfce++uvv9iVK1eYUqk0+voaez6UgBNSi6qgEEKaJSoqCp999hmmTJmi137//fdjzpw5BssHBwc3uM2wsDC93//44w9oNBpIpVKMHj26SXEWFBTgmWeewa5duwwuuktLS9P7fffu3fVuS6lUIicnx6zVHW7evKn3+90XocpkMrRu3RqJiYlmeby7t+/q6qr3e4cOHertVyqVAIDi4mJUVFTUtatUKmzevLnex7779b5TVFQUPD099drc3d05HxsAli9fjilTpoAxhuTkZMybN6+uTyaToVevXpg5cyamTp0KHo9Xb1xA7X5gd1zAGBYWZvD4bdu2hVgsrpsIqqKiAsXFxfD19TXYnouLC9q0aWPy86nP3a9bdna2ya+1WCzGkiVLsHDhQgDAyZMn9S6odXNzQ//+/TF79my98qCvvfYaDh06VPeef+WVV+r6xGIxunXrhkcffRSzZ89usC4/IeQ/VAWFENJsFy5cMGi7cuUKqqqqGlx3//79YIzVOxvh7eonw4cPN0gEuezbtw8qlQpnzpxB165d69pTU1MxceJEaLXaBrfREK6KHi2Jh4eH3u98vv5/B3cnweZU32vn7e1t0MZVkvK2Rx55BCdPnsSTTz6J6Ohovechl8vx77//Yvr06XjxxRdNiu3O5BuASUl7fRr7fMztztf6lVdewd69ezFlyhSEh4frPbeKigps27YN48aNw0cffVTXPmDAAFy4cAH/+9//0KFDB4hEoro+lUqFY8eO4bnnnsPDDz9snSdEiIOgBJwQ0iw7duzAihUrDNqTk5Px9NNPN3v7ZWVldVPI1zf5zt1EIhG6du2KrVu3wsXFpa797Nmz+Prrr/WWvftI9vHjx8Fqh+gZvd19hLi57j7qf+nSJb3fFQqFXi1ze+Ht7a33pcjNzQ1KpbLe185Y+b6m6t69O7744gukpKRALpfj+vXr+O233xAUFFS3zNq1a6FQKBrc1t1fBDMyMvSO8APA1atX645+A7VnB7gSbXO7+306YsSIBt+nd9c7Hzx4MH744Qekp6ejuroaycnJ+Oabb/Q+I6tWrdJbJyYmBh9++CEuXryImpoaZGRk4K+//tKb7GnLli1IT083/5MmxEFRAk4IabKsrCxMnz697qhhWFgYHnzwwbr+H3/8EV999VWzHmPr1q1Qq9UQi8UGM2eaIjg42ODo55tvvql32n/cuHF6/fPnz0dBQYHBtq5du4b33nsPy5cvb3QcDRk6dKje7x988AHy8/Prfn/rrbcMEkF7wOfz9eqsV1RU4IUXXjAYVsEYw4kTJzBv3jxs2bLFbI//0UcfYf/+/dBoNABqh0VERkbigQceQOvWreuWUyqVKCsra3B7fn5+SEhI0Ftv8eLF0Ol0db/fHsZx26hRowzOIFhC165d9YZw7dq1C999953BcgqFAtu3b8fkyZP1ate/8847OHnyZN3nVSaTISYmBo888ojebKB31kzfsGEDtm/fXrc/hUIhQkNDMWbMGHTq1Envce+utU4IMY7GgBNCmkSj0eCRRx6pO5rJ5/Pxww8/oHPnzjh79mzdBDvPP/88evTowTmxjiluH8EbMmSIwbAJU82bNw9r1qypS8CysrLw5Zdf4tlnnwUAzJw5Ex999BEuX74MADh27BjCwsLQrVu3uintk5OTkZOTAwCYMWNGk+Koz6xZs7BixYq61zMlJQVt2rRBfHw8srOzceXKFbM/prm88cYb+Ouvv+qGHH366af4+eef0alTJ7i6uqKoqAiXL19GeXk5AKBz585me+z169fj/PnzcHNzQ9u2beHn5wfGGC5fvqw3ZtrHx4dzjDaXd999F8OGDatLuj/99FPs2LEDMTExuHjxIrKzs+uWdXJywtKlS832fOrD5/OxYsWKuustdDodZsyYgaVLl6JNmzbg8/nIyclBUlJSXcJ859mpFStW4NVXX4W3tzfatGkDb29vaDQanDt3Drm5uXXLtW3btu7+H3/8gT///BNOTk5o27YtAgICIBAIcO3aNb33pFAoRHR0tKVfAkIcBiXghJAmee2113D48OG63xcuXIh+/foBAH766Sf06dMHGo0GcrkckydPxunTp+Hs7Nyox6isrMSuXbsANG74yd08PDwwf/58vUTp3XffxRNPPAGpVAqxWIydO3fi/vvvx+nTpwHUHuk8evQo5/aEQvP/6fTy8qqbhfP2UImysrK6C0K7du0KrVaL8+fPm/2xmysmJgbbtm3Dww8/XHcUtKSkRG9WzTtZ4vWrqKjAiRMnOPsEAgFWr15t8tjrwYMHY8OGDXjqqacgl8sBADdu3DAYAuTl5YWff/5ZL2G1tEcffRTFxcVYsGBB3TCY9PR0o8M/uJ5zcXExjhw5wrm8TCbDBx98YNBeU1ODM2fOGI3rzTfftMowHEIcBQ1BIYQ02t3jvuPj47Fs2bK63xMSEvDmm2/W/X716tUmjQfftm0blEolhEIhxo8f36yY582bp3dhYU5ODj7//PO630NCQnD8+HH88ssvuP/++xEWFgapVAqRSAQfHx8kJCRg7ty52Lp1K9atW9esWIwZNmwYTp06hUmTJsHb2xsSiQSxsbFYunQpDh061OQzANYwYMAAXL16FatXr8aQIUPg5+cHkUgEiUSC4OBgDBo0CK+++iqOHz+OqVOnmu1xP/zwQ7z22msYOnQoIiMj4e7uDj6fDxcXF7Rv3x5PPvkkTp8+3ejHnDZtGpKSkvDKK6+gW7ducHd3h1AohKenJ3r27Illy5YhKSkJw4cPN9tzMdVzzz1XF1t8fDw8PT0hEAjg5OSE1q1bY9y4cXj//fdx48YNhIaG1q33/fff46WXXkK/fv0QEREBV1dXCAQCuLu7o3Pnzpg3bx4uXryIwYMH163z2muv4c0338SoUaMQHR0NLy+vuseKiYnB1KlTsX//foNhOYSQ+vHY3Zd8E0KInZg4cSJ+//13DB06tMHSgPYqPT1d7+K5GTNmYMOGDbYLiBArovc/IdzoCDghxG717NkTS5cuxZIlS2wditl8++234PF44PF4mDlzpq3DIcTsEhMT697j5qyVT4gjoTHghBC79dJLL9k6BEIIIcTsKAEnhBALcnZ2xsSJEzn74uPjrRwNIZbn4eFB73lCGkBjwAkhhBBCCLEiGgNOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogVUQJOCCGEEEKIFVECTgghhBBCiBVRAk4IIYQQQogV/T/BSR71MpZtZQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Redefine Re in same function from before within a for loop.\n", + "\n", + "### BEGIN SOLUTION\n", + "dspan = [0, 1] # range of normalized d*\n", + "Mult_Re = np.array([1, 10, 100, 500, 1000, 5000]) # values from above in array\n", + "n = 300 # number of steps in linspace below\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "### END SOLUTION\n", + "\n", + "fig = plt.figure(figsize=(4,3),dpi=200) # formats the plotted figure to be larger and clearer\n", + "\n", + "# loop the integration for different values of Re\n", + "# plot each iteration inside loop\n", + "\n", + "for i in range(len(Mult_Re)):\n", + "\n", + "### BEGIN SOLUTION\n", + " re = Mult_Re[i]\n", + " e_Re_lambda = lambda x, d: entrance(x, d, Re = re)\n", + " soln = integrate.solve_ivp(e_Re_lambda, dspan, xo, t_eval= tspan) #this is to solve our ode\n", + " d = soln.t # d = independent variable\n", + " x = soln.y[0] # x = dependent variable solution\n", + " # Use semilogx\n", + " plt.semilogx(x, d, linewidth=2, label = Mult_Re[i]) #we want the normalized x axis to see where d crosses 1.\n", + " Le = np.array(x[n-1])\n", + "### END SOLUTION\n", + "\n", + " #print values for Le\n", + "print(\"\\n\")\n", + "\n", + "# labels and publication quality details\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=8,fontweight='bold')\n", + "plt.ylabel('\\u03B4* [dimensionless]', fontsize=8,fontweight='bold')\n", + "plt.xticks(fontsize=6)\n", + "plt.yticks(fontsize=6)\n", + "plt.grid()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "source": [ + "#4. Air Tunnel example\n", + "Wind tunnels are devices used to test and study the aerodynamic properties of objects, such as aircraft, cars, buildings, and more. They work by creating a controlled flow of air over a model or prototype, simulating the conditions that the object would experience in the real world. Here's how a wind tunnel typically works![edu_wind_tunnels_1.webp]()" + ], + "metadata": { + "id": "UYkvpkbdbdRb" + } + }, + { + "cell_type": "markdown", + "source": [ + "Calculating the entrance length is a critical aspect of wind tunnel testing, particularly in the context of aerodynamic research. Understanding and accurately determining the entrance length, which is the distance required for the flow to transition from an initially turbulent or non-uniform state to a fully developed, stable flow, is vital for ensuring the reliability and validity of aerodynamic measurements. It helps researchers establish a controlled and consistent testing environment by allowing them to place the object of interest in the fully developed flow region. This not only enhances the accuracy of aerodynamic data but also ensures that the testing conditions closely resemble those experienced by real-world objects, such as aircraft or vehicles, enabling engineers and scientists to make informed design decisions and improvements.\n" + ], + "metadata": { + "id": "mg16UomofuEv" + } + }, + { + "cell_type": "markdown", + "source": [ + "1 Let's explore a scenario with a wind tunnel that has a length of 200 meters and a diameter of 3 meters. If the wind is flowing in this tunnel at a velocity of 30 m/s and the air viscosity is given as 1.5×10−5 m²/s, the objective is to calculate the entrance length of this wind tunnel\n" + ], + "metadata": { + "id": "z3yBcyTEgEq2" + } + }, + { + "cell_type": "markdown", + "source": [ + "\n", + "\n", + "1. Find the Rynolds Number\n", + "\\begin{equation}\n", + "Re=V*D/Viscosity,\n", + "\\end{equation}\n", + "\\begin{equation}\n", + "Re=30*1/1.5*{10^-5}\n", + "\\end{equation}\n", + "2. check if it is laminar or turbulent\n", + "\\begin{equation}\n", + "Re>3500 terbulant\n", + "\\end{equation}\n", + "\\begin{equation}\n", + "Re<2000 laminar\n", + "\\end{equation}\n", + "\\begin{equation}\n", + "3500>Re>2000 Transition\n", + "\\end{equation}\n", + "3. use the coresponding equation if transition average it\n", + "2. report the data\n", + "\n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "DrOFgFQ6hRHv" + } + }, + { + "cell_type": "code", + "source": [ + "# Given values\n", + "wind_speed = 30 # m/s\n", + "tube_diameter = 3 # meters\n", + "air_viscosity = 1.5e-5 # m^2/s\n", + "\n", + "# Calculate Reynolds number\n", + "Re = (wind_speed * tube_diameter) / air_viscosity\n", + "\n", + "# Determine the flow regime\n", + "if Re < 2000:\n", + " flow_regime = \"Laminar\"\n", + " Le = 0.005 * Re * tube_diameter\n", + " equation_used = \"Le = 0.005 * Re * D\"\n", + "elif Re > 3500:\n", + " flow_regime = \"Turbulent\"\n", + " Le = 4.4 * (Re ** (1/6)) * tube_diameter\n", + " equation_used = \"Le = 4.4 * (Re^1/6) * D\"\n", + "else:\n", + " flow_regime = \"Transition\"\n", + " # For transition, use the average of laminar and turbulent equations\n", + " Le_laminar = 0.005 * Re * tube_diameter\n", + " Le_turbulent = 4.4 * (Re ** (1/6)) * tube_diameter\n", + " Le = (Le_laminar + Le_turbulent) / 2\n", + " equation_used = \"Average of laminar and turbulent equations\"\n", + "\n", + "# Output the results\n", + "print(f\"Reynolds number (Re) is {Re:.2f}, the flow is in the {flow_regime} regime.\")\n", + "print(f\"Entrance Length (Le) is {Le:.2f} meters, calculated using the equation: {equation_used}\")\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "G9_ZPXR0bcxL", + "outputId": "0ee206c3-0651-4582-8916-3e2a4a3689aa" + }, + "execution_count": 16, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Reynolds number (Re) is 6000000.00, the flow is in the Turbulent regime.\n", + "Entrance Length (Le) is 177.94 meters, calculated using the equation: Le = 4.4 * (Re^1/6) * D\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "#5- water flow example\n", + "You have a water tank connected to a pipe with a diameter of 0.5 meters. Water flows out of the tank and into the pipe with an average velocity of 2 m/s. The kinematic viscosity of water is 1.004×10−6 m²/s. Draw the entrance length (Le) vs Water velocity." + ], + "metadata": { + "id": "DYH3Yxkrpcne" + } + }, + { + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# Given values\n", + "pipe_diameter = 0.5 # meters\n", + "water_kinematic_viscosity = 1.004e-6 # m²/s\n", + "\n", + "# Initialize lists to store data\n", + "speeds = np.arange(0, 100.01, 0.01) # Water speeds from 0 to 100 m/s with a step of 0.01 m/s\n", + "entrance_lengths = []\n", + "\n", + "# Calculate entrance lengths for different speeds\n", + "for speed in speeds:\n", + " Re = (speed * pipe_diameter) / water_kinematic_viscosity\n", + " if Re < 2000:\n", + " Le = 0.05 * Re * pipe_diameter\n", + " elif Re > 3500:\n", + " Le = 4.4 * pipe_diameter * (Re ** (1/6))\n", + " else:\n", + " Le_laminar = 0.05 * Re * pipe_diameter\n", + " Le_turbulent = 4.4 * pipe_diameter * (Re ** (1/6))\n", + " Le = (Le_laminar + Le_turbulent) / 2\n", + " entrance_lengths.append(Le)\n", + "\n", + "# Create the plot for Entrance Length vs. Water Speed\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(speeds, entrance_lengths, label='Entrance Length', color='r')\n", + "plt.xlabel('Water Speed (m/s)', fontsize=12, fontweight='bold')\n", + "plt.ylabel('Entrance Length (m)', fontsize=12, fontweight='bold')\n", + "plt.xticks(fontsize=8)\n", + "plt.yticks(fontsize=8)\n", + "plt.grid(True)\n", + "plt.title('Entrance Length vs. Water Speed', fontsize=10, fontweight='bold')\n", + "plt.legend()\n", + "\n", + "# Show the plot\n", + "plt.show()\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 561 + }, + "id": "BVKz4iFdpens", + "outputId": "ffb60800-8b6f-4f0f-800b-22ce12cbe339" + }, + "execution_count": 17, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0oAAAIgCAYAAAC7wpllAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuEUlEQVR4nO3dd3xUVf7/8fdNL6TRCYSE3kKvglQBWct+QcWGNHtf1LWtBdAV67piW10RcGVFscDPFZCmIChVKVIEA0E6ASkBElLP74/rDJk0MkOSmSSv5+NxHzNz7507n5k5hnl7zj3XMsYYAQAAAACc/LxdAAAAAAD4GoISAAAAAORDUAIAAACAfAhKAAAAAJAPQQkAAAAA8iEoAQAAAEA+BCUAAAAAyIegBAAAAAD5EJQAAAAAIB+CEgCgQlu6dKksy5JlWdq9e7e3y4EPc7STCRMmeLsUABUAQQlAldCvXz/nj6T8y5w5c9w6VmX/YZ6QkCDLstSvXz9vl+JizJgxPllXSV1++eWyLEvdunVzrsvKylJ4eLgsy1LPnj0LXT9+/PgSv0Z5f0YnT57UI488ombNmik0NFQxMTFq1aqVrrvuOu3bt69cagCAshLg7QIAoDwFBQWpY8eOLuuqV69epq+ZmZmpoKCgMn0N+L7evXtr3rx5Wr9+vc6cOaPw8HD9+OOPSktLkyT9+OOPSk9PV2hoqNatW+dc36dPH2+WXWz7HTVqlL788ktZlqVWrVpJknbv3q1ffvlFDz/8sBo0aFCepQJAqaJHCUCVUq9ePa1atcplcfwQnT59urOn6Ntvv1WnTp0UGhqqTp06adWqVZKkCRMmqH///s7jNWrUSJZlacyYMZLO9cY8/PDDuvnmmxUdHa1LL71UkvTYY4+pTZs2io6OVmBgoGJjYzV69GgdPHjQebwJEybIsiwlJCTo008/VcuWLRUeHq4+ffpo+/btLu9l0aJFGjhwoKKiohQSEqKWLVtqxowZzu2//PKLhg8frlq1aikoKEitWrXSv/71r1L5HE+ePKm//OUvio+PV1BQkBo0aKAHH3zQ+eNecu3deOutt5SQkKCIiAhdccUVOnTokHO/jIwM3XnnnYqMjFTt2rU1ceJEjR492vk5OD7XDz74QJK0bNky5/e0dOlSl7q2bdumAQMGKDQ0VC1bttRXX31V5HtYtWqV8zgbN250rn///fdlWZZCQ0N14sQJHTp0SCNGjFC9evUUHBysunXrasCAAZo3b55bn1nv3r0lSdnZ2Vq5cqUkafny5ZKk2rVrKzMzU6tXr3ZZHxAQoB49emjfvn267LLLFBcXp9DQUIWGhioxMVGvvfaajDEl+owOHDigm2++WbGxsQoKClLjxo317LPPKjs721mjo+d15MiRevjhh1W7dm21aNGi0Pdz5swZ5+f7/vvva8uWLdqyZYtOnjypBQsWuIQkRy2vvvqqRowYoYiICNWqVUtPP/20s36pZO1KkubPn6++ffsqIiJCoaGh6t27t7799luXfTZt2qQePXooJCRE7du314oVK0r6VQGAzQBAFdC3b18jycTHxxe5z7Rp04wkI8kEBwebFi1amICAAOfzsrKyzHvvvWdatWrl3K9Dhw6me/fu5plnnjHGGBMfH28kmaCgIBMaGmratm1r/vSnPxljjGnfvr2JiooyiYmJpmXLlsayLCPJdO3a1VnD+PHjjSQTEBBgAgMDXfbr2bOnc79Zs2Y514eGhprExEQTGRlp/vKXvxhjjNmxY4eJiooykkz16tVNYmKic/+JEycW+1k53kPfvn0L3Z6RkWE6dOhgJJmQkBDTrl07ExISYiSZAQMGmNzcXGOMMaNHjzaSTGBgoAkJCTHNmjVzfm433nij83gPPvigc33jxo1NdHS0CQ8Pd/m+hg4damrWrGkkmYiICNO9e3fTvXt38+OPP5pvv/3W+fzQ0FDTrFkzExoa6tz3999/L/K9Nm/e3Egyjz32mHPdoEGDjCRz3XXXGWOMGTZsmJFkqlWrZjp16mTi4uKMZVlm/PjxxX6OhX1ujs/p6aefNsYYc+WVVxpJ5oUXXjCSnO3o8ssvN5JMt27djDHGrF+/3kgyDRo0MB07djS1a9d2vuc333zzvJ/R0aNHTVxcnHNbu3btnG177Nixzhod/50EBQWZwMBAk5iYaNq1a1fo+zl9+rSzTV1++eVm4cKF5tixY4Xum/e/q9jYWFO/fn3nusmTJzs/n5K0q48//tj5uvHx8aZRo0ZGkvH39zfffPONMcaYtLQ052sEBgaaVq1amcjISOdruvvdAaiaCEoAqgTHD8DCFoe8Qen11183xhgzefJk57pt27YZY4zLD/Pk5GSX13GEjJo1a5o9e/YYY4zJzs42xhizadMmk5OT49z3vffecx4nKSnJGHMuKEkyX375pTHGmAceeMC5Li0tzRhjnD8OmzRpYg4ePGiMsX9obt682RhjzJgxY4wkk5iYaM6cOWOMMea1115zhonU1NQiP6vzBaXp06c7f0zv2LHDGGPMhg0bnDUuXrzYGHMuKPn5+ZkNGzYYY86Fjjp16hhj7B/bwcHBRpIZPny4McaYlJQUExMTUyDYOo6Xv66838eDDz5ojDHm//2//+dcN3/+/CLf63PPPecMaI7X9vf3N5LMvHnzjDHGJCYmGklmxowZzucdOHDA2R7c0adPHyPJ9O/f3+Tm5prq1aubuLg4s3//fiPJDBo0yOTk5Jjo6GgjyTz00EPGGGNOnDjh0tZycnKcx7r44ovP+xlNmDDB+bmnpKQYY4yZM2eOkWQsyzK//vqrMcY1KDm+M0f7LYzj9RyLZVmmQ4cO5o033nB5nmN77969TWZmpsnMzDS9e/d2aQslbVcJCQlGkrn55ptNbm6uyc3NdbYrx2cxZcqUAt9/3nUEJQAlwdA7AFVKUFCQunfv7rIUZuTIkZKk1q1bO9cdPny4xK9z9dVXKy4uTpLk7+8vSdqwYYO6du2qatWqybIs3Xbbbc79Dxw44PL8qKgoXXnllQVqSElJ0ZEjR5ScnCxJGjt2rOrWret8b23atJEkrVmzRpK0efNm56QA48aNkySlp6dr06ZNJX4v+TmOnZmZqebNm8uyLHXo0MG53TFM0aFt27Zq3769y3txfJY7d+5URkaGJGn48OGSpFq1arkMb3SHu9/byJEj5efnp127dmnNmjX6/PPPlZOTo3r16mnw4MGS5PweRo8eraZNm+qKK67QjBkzFBsb63Z9jmGeq1ev1vr163Xs2DH17t1bsbGxatKkiVauXKn169frxIkTks4N1wsICNBLL72k+Ph4BQYGyt/fX999952kgm2nMI7v7PDhw6pdu7Ysy9LQoUMlScYY55A/h/79+zu/M0f7LczUqVM1depUDRw4UKGhoTLGaMOGDbrvvvv07LPPFtj/mmuuUWBgoAIDA3XNNdc4azpy5EiJ2tWRI0ecE6hMnTpVfn5+8vPz0+zZs52fqyRt2bJFkhQWFqYhQ4ZIkq699trzfk4AkBeTOQCoUhznKJ1PdHS0JPsHqoPJcy7F+dSpU8fl8YoVKzR69GgZY1SjRg21bt1ap0+f1rZt2yRJOTk5hb7+hdQgSTVr1lSTJk0KrC/ux29JFTYxhiTFxMS4PC7qvZQFd7+3uLg49e/fX0uWLNEnn3yin376SZJ00003OT+j5557Tr169dKCBQu0efNmfffdd5o7d66WLl2quXPnulWfI/ikpaXptddec1nXp08fTZs2Ta+//rok+7wex7Zx48ZpypQpkqRmzZqpevXq2rlzp44ePVqg7RQnIiLCJUQ6hIWFuTzO336L4ufnp7Fjx2rs2LHKzs7WihUrdNNNN2n//v2aM2eOR9Nwl7RdNW7cWLVq1SqwX2ZmpvO+ZVluvz4AONCjBABuyvuj8syZM4Xuk/8H2urVq50/2H/++WetWbNGo0aN8uj1a9WqpUaNGkmyJ6BISUmRZE8pvXXrVklS165dJdk9U/PmzXNOXPHVV1/pgQceUI8ePc77Orm5uTp79qzLkpub6zx2Tk6O3n77beexly5dqocfflg33nhjid9L06ZNFRISIknOadqPHDlS4MR86dznXtRn7qnRo0dLkj788ENnL41jcg5J+v7779W3b1+9/vrr+uabb/Tvf/9bkpz7SlLLli3VsmVLvfnmm8W+1kUXXeQMYDNnzpTkGpQk6aOPPpJk94o5ZmR0hPvBgwdrx44dWrp0qerXr1/g+EV9Ro7vLCAgQB9//LHzO1u0aJHuvvtuDRs2zGX/kgSMzMxMPfroo9qxY4fz2L1793bWFRUVVeA5X3zxhbKzs5Wdna0vvvhCkh3KatWqVaJ2VatWLcXHx0uSOnXqpBUrVjj3+89//qNnn33WpWf1zJkzWrhwoSTps88+O+97AoC8CEoAqpSDBw+qR48eLssnn3zi1jGaNGmiwMBASdLAgQPVo0eP8/4Ia9eunfN+27Zt1apVK7388svuv4E/vPjii7IsS0lJSWrUqJHatWunWrVqOX/EP/7444qMjNTOnTsVFxenjh07Kj4+XnXr1tWjjz5aotdYvny5c4Y1x/Lll1/qhhtuULt27ZSTk6OuXbsqMTFRLVq0UHR0tK655hrnsLGSCAsL09133y3JDghNmzZV8+bNncPx8mrZsqUkad26dWrbtq169Oih9PT0Er9WUa666ipVq1ZNR44cUW5urrp06eLS6/LYY4+pRo0aatq0qTp37qybb75Zkut3un37dm3fvl1Hjx4t9rUiIiKcw8mys7NVvXp152s5gpJjFjpHgMr7WgsXLlSLFi0UFxenvXv3Fjh+UZ/RPffco/r16+v48eNq0aKFOnTooCZNmqhGjRrOoOiu3NxcvfTSS2rRooXq16+vLl26KDY21jmErrDAvG7dOiUkJCghIUHLli2TZH++kkrcriZNmiTJDj6xsbHq2LGj6tatqxYtWui///2v87UdQyOvvPJKtWnTRvfdd59H7xNA1UVQAlClOKZgzrvknZ67JGrUqKHXX39dcXFxOnz4sFavXu0y3XVhBg0apBdffFGxsbFKT09Xy5YtL2iq7uHDh2vBggUaMGCAAgICtGPHDtWpU0ddunSRJLVo0UIrV67U8OHDFRYWpi1btig3N1dDhgwp9NwRdwQHB2vZsmW6//77FRcXpx07duj48ePq0qWLnnvuuRIP23KYNGmS7rjjDkVEROjkyZO655579Kc//UmSFBoa6tzv5ptv1tVXX62oqCht3rxZq1evdmvYWVHCw8Od58tIrr1JknTdddepS5cuSk1N1c8//6zo6Ghdf/31zh4hd+UNQL169XL23jRu3NhlSu28+7366qv6v//7P1WrVk2nTp3Sww8/7Dx3Kq+iPqNatWpp1apVGjt2rGrUqKEtW7YoPT1dvXv31j//+U+P3kdQUJBeeuklXXrppfL399eWLVuUmpqq9u3ba/LkybrjjjsKPGfSpEm65JJLdPLkSdWoUUNPPPGE7r//fkklb1c33nijvvrqK/Xt21fp6enavn27IiIiNGrUKN16662S7HYzd+5cZy+VJOd5TABQUpZxd8A7AACl6PDhwwoNDVVkZKQk6dixY2rdurUOHz58QYEEvsMRBqdNm1YgiAKAr6JHCQDgVStXrlT9+vU1YMAAXXHFFWrWrJkOHz6s8PBwPf74494uDwBQRRGUAABe1ahRI3Xs2FEbNmzQggULFBgYqOHDh2vlypUu5wEBAFCeGHoHAAAAAPnQowQAAAAA+RCUAAAAACAfghIAAAAA5BPg7QLKWm5urg4cOKCIiIgSXWkcAAAAQOVkjNGpU6cUGxsrP7/i+4wqfVA6cOCA4uLivF0GAAAAAB+xd+9el4t8F6bSB6WIiAhJ9ofhuJihN2VlZWnhwoUaPHiwAgMDvV0OKgDaDNxBe4G7aDNwF20G7vKlNpOamqq4uDhnRihOpQ9KjuF2kZGRPhOUwsLCFBkZ6fWGgoqBNgN30F7gLtoM3EWbgbt8sc2U5JQcJnMAAAAAgHwISgAAAACQD0EJAAAAAPKp9OcolYQxRtnZ2crJySnz18rKylJAQIDOnj1bLq+HisPf318BAQFMYw8AAOADqnxQyszM1MGDB5WWllYur2eMUd26dbV3715+EKOAsLAw1atXT0FBQd4uBQAAoEqr0kEpNzdXycnJ8vf3V2xsrIKCgso8vOTm5ur06dOqVq3aeS9yharDGKPMzEwdOXJEycnJatasGe0DAADAi6p0UMrMzFRubq7i4uIUFhZWLq+Zm5urzMxMhYSE8EMYLkJDQxUYGKjffvvN2UYAAADgHfxSlwgs8Bm0RQAAAN/ArzIAAAAAyIegBAAAAAD5EJSAMmRZlubMmePtMgAAAOAmglIFNWbMGFmWVWAZMmRIiY+xdOlSWZalEydOlF2h5cAXwsiECRPUoUMHr9YAAACA0lOlZ72r6IYMGaJp06a5rAsODi7118nMzOS6PgAAAKhS6FHKzxjpzBnvLMa4VWpwcLDq1q3rssTExDi3W5alKVOmaNiwYQoLC1OzZs305ZdfSpJ2796t/v37S5JiYmJkWZbGjBkjSerXr5/uvfdejRs3TjVr1tSll14qSXr11VfVtm1bhYeHKy4uTnfffbdOnz7tfL3p06crOjpaCxYsUKtWrVStWjUNGTJEBw8edKl76tSpatOmjYKDg1WvXj3de++9zm0nTpzQrbfeqlq1aikyMlIDBgzQxo0b3fpc8psyZYpatWqlkJAQtWzZUm+//bZz2+7du2VZlr744gv1799fYWFhat++vVauXOlyjPfee885jfywYcP06quvKjo62vm+J06cqI0bNzp79qZPn+587tGjRwv9DgAAAOC7CEr5paVJ1aqV2eIXGanoBg3kFxlZcHtaWqm/nYkTJ+raa6/Vpk2bdNlll2nEiBE6duyY4uLi9Pnnn0uStm/froMHD2ry5MnO533wwQcKCgrS999/r3feeUeSPXX166+/ri1btuiDDz7QN998o0ceeSTfx5emV155RR9++KG+++477dmzR3/961+d2//1r3/pnnvu0e23366ff/5ZX375pZo2bercPnz4cKWkpGj+/Pn68ccf1alTJ11yySU6duyYR+//v//9r55++mk999xz2rZtmyZNmqSnnnpKH3zwgct+TzzxhP76179qw4YNat68uW644QZlZ2dLkr7//nvdeeed+stf/qINGzZo0KBBeu6555zPve666/TQQw+pTZs2OnjwoA4ePKjrrrvuvN8BAAAAfJip5E6ePGkkmZMnTxbYlp6ebrZu3WrS09PPrTx92hi7b6f8l9OnS/y+Ro8ebfz9/U14eLjL8txzzzn3kWSefPLJPG/ttJFk5s+fb4wx5ttvvzWSzPHjx12O3bdvX9OxY8fz1vDpp5+aGjVqOB9PmzbNSDJJSUnOdW+99ZapU6eO83FsbKx54oknCj3e8uXLTWRkpDl79qzL+iZNmph33323yDokmdmzZxe6rUmTJuajjz5yWffss8+aiy66yBhjTHJyspFkpkyZ4ty+ZcsWI8ls27bNGGPMddddZy6//HKXY4wYMcJERUU5H48fP960b9++0NqK+w7yK6xNZmZmmjlz5pjMzMxCnwPkRXuBu2gzcBdtBu7ypTZTXDbIj3OU8gsLk/IMJyttubm5Sk1NVWRkZMGLi4aFuXWs/v3761//+pfLuurVq7s8bteunfN+eHi4IiMjlZKSct5jd+7cucC6xYsX6/nnn9cvv/yi1NRUZWdn6+zZs0pLS1PYH7WHhYWpSZMmzufUq1fP+XopKSk6cOCALrnkkkJfc+PGjTp9+rRq1Kjhsj49PV07d+48b835nTlzRjt37tQtt9yi2267zbk+OztbUVFRLvvm/Zzq1avnrLdly5bavn27hg0b5rJ/t27d9NVXX5WoDk+/AwAAgArLGOnUKenAAVl79qjB0qXSxRdL+X7n+TKCUn6WJYWHl93xc3OlnBz7NfIHJTeFh4e7DFsrTGBgoMtjy7KUm5tbomPntXv3bl1xxRW666679Nxzz6l69epasWKFbrnlFmVmZjqDUmGvZ/449yo0NLTY1zx9+rTq1aunpUuXFtjmOB/IHY7zp9577z11797dZZu/v7/L47x1W5YlSSX6nErC0+8AAADAJ50+LR04YC8HD567n3/547SSAEmdJWXdcANBCRWDYya7nJyc8+77448/Kjc3V//4xz+cPWGzZs1y6/UiIiKUkJCgJUuWOCeSyKtTp046dOiQAgIClJCQ4NaxC1OnTh3FxsZq165dGjFihMfHadGihdauXeuyLv/joKCgEn2OAAAAPistrWDwKSwInTpV8mNGR8vUraujQUGKLrPCywZBqQLLyMjQoUOHXNYFBASoZs2aJXp+fHy8LMvSV199pcsuu0yhoaGqVq1aofs2bdpUWVlZeuONN3TllVe6TPLgjgkTJujOO+9U7dq19ac//UmnTp3S999/r/vuu08DBw7URRddpKFDh+qll15S8+bNdeDAAc2dO1fDhg1Tly5dijxucnKyNmzY4LKuWbNmmjhxou6//35FRUVpyJAhysjI0Lp163T8+HE9+OCDJar5vvvuU58+ffTqq6/qyiuv1DfffKP58+c7e54kKSEhwVlDgwYNFBERUSZTtQMAALgtK8sOPPv320v+4OMIQ+5cWzMiQqpXT4qNLXqpV08KC1N2VpZ+mDdPl3XsWGZvsSwQlCqwr7/+2nk+jUOLFi30yy+/lOj59evX18SJE/XYY49p7NixGjVqlMu01nm1b99er776ql588UU9/vjj6tOnj55//nmNGjXKrZpHjx6ts2fP6p///Kf++te/qmbNmrrmmmsk2UPS5s2bpyeeeEJjx47VkSNHVLduXfXp00d16tQp9riFhZ7ly5fr1ltvVVhYmF5++WU9/PDDCg8PV9u2bTVu3LgS19yrVy+98847mjhxop588kldeumleuCBB/Tmm28697n66qudU4yfOHFC06ZNc063DgAAUCaMkVJTzwWg/fulfftcH+/fL6WklPwyNKGhUv36xYegevXsoFTJWcaU9FOrmFJTUxUVFaWTJ08qMjLSZdvZs2eVnJysRo0aKSQkpFzqKXYyB1QYt912m3755RctX768VI9bWJvMysrSvHnzdNlllxU43wnIj/YCd9Fm4C7aTDnJzpYOHSoYevIvZ86U7HgBAXbIqV/f9Tb/Ehlpn7NfinypzRSXDfKjRwkogVdeeUWDBg1SeHi45s+frw8++MDlwrUAAAAllr8XqLDl8GF7ErCSiI62g09xS61aFzyRWFVDUAJKYM2aNXrppZd06tQpNW7cWK+//rpuvfVWb5cFAAB8SU6OHXAKG/6WdynppWgCAuxhbsUFoNjYsp2xuQojKAEl4O4MfwAAoJLJG4L27i389sABe8hcSURFnb8XqHZteoG8iKAEAACAqq00Q5C///l7gerXpxeoAiAoSark81mgAqEtAgBQygoLQfmDkDshKDZWatDAXuLiCt7WqWMPmUOFV6W/RcesG2lpaQoNDfVyNYDdFiV5fUYYAAAqhLwhqKjeIEIQPFSlv2l/f39FR0crJSVFkhQWFuZyEdGykJubq8zMTJ09e5bpweFkjFFaWppSUlIUHR0tf39/b5cEAID3nTwp7dljL3v3nrvvWPbvJwShzFT51lC3bl1JcoalsmaMUXp6ukJDQ8s8lKHiiY6OdrZJAAAqtawsu7cnf/jJu6Smnv84hCCUkSrfYizLUr169VS7dm1lZWWV+etlZWXpu+++U58+fRheBReBgYH0JAEAKgdjpOPHXUNP/h6hAwdKdp2gGjWkhg0LLnFx9i0hCGWEVvUHf3//cvmR6u/vr+zsbIWEhBCUAABAhWRlZUm7dkkHDxbdG3TmzPkPFBR0LvAUFYaYHQ5eQlACAACAq1OnpN9+k3bvdr3ds0cBe/boykOHZJVkptbatYsPQVwnCD6MoAQAAFDVnDhRMATt3n3u/rFjRT7VcYa1CQmRVVQIatjQPj+IWYVRgRGUAAAAKhNj7KCTN/jkD0MlmSQhJkZKSJDi48/dxscrKzZWi7dv18Drr1dgUFAZvhHAuwhKAAAAFYkxUkpKwV6gvLclOT+oVi3XEJT/NjKy8OdlZSnz0CGJ2XtRyflkUJo2bZpuvvlmzZ49W0OHDlVKSopGjRqlnTt3Kjg4WG+//bb69Onj7TIBAABKnzHSkSNScvK5JX8YOnv2/MepW7foEBQfzyQJwHn4XFDavXu33nvvPfXo0cO57rHHHlOPHj309ddfa+3atRo2bJiSk5OZNQ4AAFRMp0+7BqFdu1wfn69HyLKk+vWL7hFq2FAKCSmHNwJUXj4VlHJzc3XrrbfqjTfe0EMPPeRcP2vWLCUlJUmSunbtqtjYWC1btkwDBw70VqkAAABFy8qyp8guKgwdOVL88y3Lvohq48Z28GnU6FwISkiwJ0rg/CCgTPlUUHr11VfVq1cvde7c2bnu999/V1ZWlurWretcl5CQoD179hR6jIyMDGVkZDgfp/5xsmJWVla5XFD2fBw1+EItqBhoM3AH7QXuos14yBjp0CFZu3dLycmydu+W9ccQOWv3bmnvXlnnuZiq+WOyBNOokcwfYch5Pz5eCg4uvgYvfWe0GbjLl9qMOzX4TFDavHmzPv/8c3333XcXdJznn39eEydOLLB+4cKFCgsLu6Bjl6ZFixZ5uwRUMLQZuIP2AnfRZgryT09X+KFDCj98WGF5lvDDhxWakqKAzMxin58TFKS02rWVVru2ztSta9+vU0dn6tRRWp06yi7sHKHsbCkpyV58HG0G7vKFNpOWllbifX0mKC1fvly7d+9Ws2bNJEmHDh3S7bffrokTJyogIECHDh1y9irt3r1bDRs2LPQ4jz/+uB588EHn49TUVMXFxWnw4MGKLGr2lnKUlZWlRYsWadCgQZxjhRKhzcAdtBe4q0q3mT8mTbB27ZJ27pS1a5esnTulXbvs+ykpxT/dz09q0OBcb1BCgkvPkOrUUYifn0IkVS+P91NOqnSbgUd8qc2klmRq/D/4TFC66667dNdddzkf9+vXT+PGjdPQoUO1evVqvfPOO5owYYLWrl2r/fv3q2/fvoUeJzg4WMGFdFUHBgZ6/YvJy9fqge+jzcAdtBe4q9K2mexsae9eaefOwpfTp4t/fvXqUpMm9jlCjRvbt3/ct+LipKAgVdVJsittm0GZ8YU2487r+0xQKs6LL76okSNHqlmzZgoKCtKMGTO8/iEDAAAfkZZmT5RQWBDavdsOS0WxLHtihCZNCl+io8vrXQDwMT4blJYuXeq8X6dOHS1cuNB7xQAAAO86dsw+b6ewMHTgQPHPDQqye4MKC0IJCUyjDaBQPhuUAABAFXPihPTrr4Uvx48X/9yoqIIhqGlT+7Z+fcnPr1zeAoDKg6AEAADKz6lTRYeho0eLf25sbNFD5KpXt4fRAUApISgBAIDSdeaMPUyusDB0+HDxz61bV2rWrODSpIlU2HTaAFBGCEoAAMB96en2+UGFhaHznTNUq1bhYahpUykionzqB4DzICgBAIDC5eZK+/ZJ27cXXPbuta9DVJQaNezgU1ggiooqv/cAAB4iKAEAUMUFpKfL+vFHu4cobxjascPuOSpKdHTRPUPVK9MlVgFURQQlAACqgpwc+5pC+XqGArZv1+UHDxb9vMBA+/ygFi1cl+bNpZo1mUABQKVFUAIAoDI5dqzwoXJJSVJmZoHdHTHH1KkjK38YatFCatRICuDnAoCqh798AABUNMbY5wht3Spt23Zu+eWX4qfYDgmxh8blCULZTZpoQXKyBl97rQIDA8vvPQCAjyMoAQDgq7Ky7POG8oYhRyA6c6bo5zVoULBnqEULqWHDAhdeNVlZyj5ypIzfCABUPAQlAAC8LS3NHh6XNwxt3WoPl8vKKvw5AQH2eUKtWp1bWra011WrVr71A0AlRFACAKC8HD/uGoQc93/7reiptsPD7QCUNxC1amVPsMBQOQAoMwQlAABK27Fj0pYtrsvWrdLhw0U/p0aNcyGodetz9xs0KDBcDgBQ9ghKAAB4KjXVDkBbtkibN5+7LW667bi4gr1DrVpJtWqVX90AgPMiKAEAcD5pafYQubxhaMsWac+eop/TsKGUmCi1aWMvrVvbQ+giIsqvbgCAxwhKAAA4ZGTYM8rlDUNbtki7dhV9DlFsrB2EHKEoMdEORQQiAKjQCEoAgKonN1dKTpY2bbKXn3+2g1FSkpSTU/hzatVyDUOOnqKYmPKtHQBQLghKAIDK7fhxOwjlDUU//1z0dYhiYgqGoTZtpNq1y7duAIBXEZQAAJVDVpa0Y8e5QOQIRXv3Fr5/cLAdgNq1k9q2tZc2baR69STLKt/aAQA+h6AEAKhYjLGn2c4biDZtsidbyMws/Dnx8XYgyrs0bWpftBUAgELwLwQAwHdlZdkBaMMGe3GEoiNHCt+/WrWCgSgxUYqKKs+qAQCVAEEJAOAbTp2yQ9D69XYoWr/enmChsF4iPz+pWbNzYahtW/s2Pp6LswIASgVBCQBQ/g4ePBeGHL1FSUmFT8EdESF16CB17GiHofbt7em3w8LKt2YAQJVCUAIAlJ3cXOnXX8+FIUcwOny48P3r1z8Xihy3CQn0EgEAyh1BCQBQOrKy7Iuz/vij9NNPdijatKnwabj9/KQWLVxDUYcO9rWKAADwAQQlAID78oaidevs202bpIyMgvuGhtpD5vKGorZtGToHAPBpBCUAQPEcocgRiIoLRVFRUufOUqdO9tKhg9S8ueTvX+5lAwBwIQhKAIBzMjPP9RSVNBTlXZo04WKtAIBKgaAEAFVVTo59jaI1a6S1a+1QtHFj4dNxE4oAAFUMQQkAqgJjpL177VDkWNatK3yiBUIRAAAEJQColI4ft6fhzhuMCpuSOzxc6tJF6taNUAQAQB4EJQCo6M6etYfMrVkj/1WrdMnSpQo8cKDgfv7+9uxz3bqdW1q1YqIFAAAKQVACgIrEGCkpSVq5Ulq92u4p2rjRnplOkp+kao59mzRxDUUdOjAlNwAAJURQAgBfduaMPdHCypXnlqNHC+5Xs6bUrZtyunTRGkld7rxTgfXqlXu5AABUFgQlAPAVxkjJyecC0Q8/2FNz5+S47hcUZJ9L1KOH1L273VuUkCBZlnKzspQyb54dnAAAgMcISgDgLenp9sxzjlC0cqWUklJwv/r1pYsuspeePaWOHaXg4PKvFwCAKoSgBADl5cABacUK6fvv7WC0YYOUne26T2CgHYR69jwXjuLivFIuAABVGUEJAMqCMdL27XYwWr7cvt21q+B+9eqdC0QXXWQPqQsJKf96AQCAC4ISAJSGrCxp/fpzoWjFioKTLvj5Se3bS7162T1GPXtKDRtyzSIAAHwQQQkAPHH6tLRq1blgtGqVlJbmuk9IiD3ZwsUXS7172z1GkZHeqRcAALiFoAQAJXHsmB2Kli61g9H69QVno4uJOReKLr7YHkYXFOSVcgEAwIUhKAFAYfIGo6VL7Yu6GuO6T3y8azBq1coeXgcAACo8ghIASHYw+u67c8Fo06aCwahVK6lvX6lPHzsYMRsdAACVFkEJQNVU0mDUr5+99Okj1a1b/nUCAACvICgBqBpSU6Vly6QlSwhGAADgvAhKACqnzEx7JrolS6TFi6XVqwtOvkAwAgAARSAoAagccnOlzZvtULR4sT2s7swZ132aNJEuucReCEYAAKAYBCUAFddvv50LRkuWSEeOuG6vVcsORQMH2rcJCV4pEwAAVDwEJQAVR2qq9M030tdf2+Fo507X7WFh9qx0AwfaS2Ii03UDAACPEJQA+K7cXPv6RV9/bS8//CBlZ5/b7u8vde9+rseoRw8u8AoAAEoFQQmAbzlyRFq0yA5GCxZIKSmu25s1ky69VBo82O49ioz0Tp0AAKBSIygB8K7sbHtGOkev0Y8/uk7bHR5u9xYNGWIHpMaNvVcrAACoMghKAMpfSoo0b540d67de3TypOv29u3tYDRkiNSzJ8PpAABAuSMoASh7xtjnGn31lb2sWePaa1S9uj2UbsgQ+7ZePe/VCgAAIIISgLKSlmbPUPfVV3bP0b59rts7d5Yuv9xeOne2J2YAAADwEQQlAKVn7147FH31lX1do7Nnz20LC5MGDZKuuEK67DIpNtZ7dQIAAJwHQQmA5xxD6ubMkf7f/5M2bHDd3rChHYyuvFLq108KCfFCkQAAAO4jKAFwT06O9P330uzZdkDavfvcNsuSLrrIDkdXXGFf8NWyvFUpAACAxwhKAM7v7Fl7dro5c6Qvv5SOHj23LTTUnrZ76FD7fKOaNb1VJQAAQKkhKAEo3IkT9vlGs2fb1zc6c+bctpgYezjdsGH2LHVhYV4rEwAAoCwQlACc8/vvdq/Rp5/akzFkZ5/bFhdn9xoNHSr17i0FBnqpSAAAgLJHUAKquuLCUZs2djAaNkzq1InzjQAAQJVBUAKqomPH7HA0a1bBcNS+vXTttdI110jNm3utRAAAAG8iKAFVhSMcffqptHhx4eFo+HCpWTOvlQgAAOArCEpAZXbmjD1L3X//Ky1YUDAcDR9uL/QcAQAAuCAoAZVNVpbdY/Tf/9o9SHlnqyMcAQAAlAhBCagMjJFWrbLD0axZ0pEj57Y1biyNGCHdeKPUsqX3agQAAKhACEpARbZtmx2OPvpISk4+t752bem66+yA1K0bs9UBAAC4iaAEVDTHjkkzZ0rTp0vr1p1bX62aPY33jTdKAwdKAfznDQAA4Cl+SQEVgJWTI2v+fOnDD+3JGTIz7Q0BAdKf/mSHoz//WQoL826hAAAAlQRBCfBlW7fK7/33NXjaNAUcP35ufYcO0pgxdkCqVctb1QEAAFRaBCXA1xw/Ln38sT20bs0a+Uvyl2Rq1pQ1YoQdkDp08GqJAAAAlR1BCfAFxkgrV0rvvmvPWnf2rL3e31+5f/qT1iUmquOTTyowPNy7dQIAAFQRBCXAm44ft887+ve/pS1bzq1PTJTGjpVGjFBO9eo6OG+eOgYFea9OAACAKoagBJQ3Y6QffrDDUd7eo9BQe0rvO+6Qunc/N6V3Vpb3agUAAKiiCEpAeTlxQvrPfwr2HrVta4ejESOk6GhvVQcAAIA8CEpAWduyRXrzTXuI3Zkz9rrQUOn666Xbb3ftPQIAAIBPICgBZSE7W/rf/6Q33pC+/fbc+jZtpLvukm66SYqK8l59AAAAKBZBCShNR49KU6ZI//qXtGePvc7PTxo6VLrvPqlvX3qPAAAAKgCCElAaNm6UJk+WPvpIysiw19WsKd12m3TnnVLDht6tDwAAAG4hKAGeMkZauFB65RVp8eJz6zt3tnuPrrtOCgnxXn0AAADwGEEJcFdGhjRzpvSPf0ibN9vr/P2la66R/vIXqUcPhtcBAABUcAQloKSOH5fefVd6/XXp4EF7XbVq0q232gEpIcGr5QEAAKD0EJSA89m71x5e9/7756b3jo21w9Htt3PtIwAAgEqIoAQUJSlJeuEF+yKxWVn2unbtpIcesq+BFBTk3foAAABQZghKQH6bN0vPPy99/LGUm2uv69dPevxxadAgzj8CAACoAghKgMO6ddJzz0lz5pxbd9ll0hNPSD17eq0sAAAAlD+CErB6tTR+vLRggf3YsqSrrpL+9jepUyfv1gYAAACvICih6vrpJ+npp6W5c+3H/v7SjTfaQ+xatfJubQAAAPAqj4NSSkqKtm7dqqNHj0qSatasqdatW6t27dqlVhxQJjZvtnuQvvjCfuznJ40aJT31lNS4sXdrAwAAgE9wKyht3bpV06dP1+zZs7Vr165C92ncuLGuvvpqjR49Wq34v/LwJdu3SxMmSJ98IhljD7G74QY7NDVv7u3qAAAA4EP8SrLTjz/+qMsvv1xt27bVP/7xD+3cuVPGmEKXnTt36uWXX1ZiYqKuvPJK/fTTTyUuZvDgwWrXrp06dOig3r17a/369ZKkX3/9VT179lTz5s3VtWtXbdmyxbN3i6pp3z7plluk1q3tmeyMka65Rvr5Z+m//yUkAQAAoIAS9Sh17dpVlmXJGCM/Pz+1b99enTp1UtOmTRUTEyNjjI4fP66kpCStX79emzZtUm5urubOnav58+crOzu7RMXMmjVL0X9cvHP27NkaM2aMNm7cqDvuuEO33367xowZo88++0xjxozR2rVrPX7TqCJOnpRefFH65z+ls2ftdX/+szRxotShg1dLAwAAgG8r8dC7Ll266NZbb9XQoUNVq1atYvc9cuSI5syZo/fee0/r1q0rcTGOkCRJJ0+elGVZSklJ0bp167Rw4UJJ0tVXX617771XSUlJatq0aYFjZGRkKCMjw/k4NTVVkpSVlaUsx0VDvchRgy/UUmllZsrv3/+W33PPyfr9d0lSbq9eyn3hBZnu3e19KtDnT5uBO2gvcBdtBu6izcBdvtRm3KnBMsaY8+30ww8/qKeH15Fx97mjRo3St99+K0maN2+eMjMzdeONN2r79u3Ofbp166YXXnhBAwYMKPD8CRMmaOLEiQXWf/TRRwoLC/PgHaDCMEax33+v1h9+qPDDhyVJpxo00NZRo3Soa1cuFAsAAFDFpaWl6cYbb9TJkycVGRlZ7L4lCkre8MEHH+iTTz7Rs88+61ZQKqxHKS4uTkePHj3vh1EesrKytGjRIg0aNEiBgYHeLqfSsNatk98DD8hv9WpJkqlbVzlPPy0zZowUULFnwafNwB20F7iLNgN30WbgLl9qM6mpqapZs2aJgpLP/oIcPXq07rzzTjVo0EAHDx5Udna2AgICZIzRnj171LBhw0KfFxwcrODg4ALrAwMDvf7F5OVr9VRYhw7ZF4adNs1+HB4uPfKIrAcfVEC1at6trZTRZuAO2gvcRZuBu2gzcJcvtBl3Xt/joPTNN9/o3XffVVJSkk6cOKH8HVOWZWnnzp0lPt6JEyeUlpam2NhYSdKcOXNUo0YN1a5dW506ddKMGTM0ZswYff7552rQoEGh5yehCsnMlF5/XXrmGenUKXvdyJHSCy9If7QhAAAAwFMeBaU33nhD48aNK3K7MUaWm+eDnDx5UsOHD1d6err8/PxUq1YtffXVV7IsS++++67GjBmjSZMmKTIyUtMcvQeomubPl8aNk3bssB936WKHposu8mpZAAAAqDw8CkqvvPJKgR6kCxUfH681a9YUuq1FixZauXJlqb4eKqB9+6S//EX64gv7ce3adg/S6NGSX4kuCQYAAACUiEe/Lo8cOSLLsnT33XfryJEjys3NLbDk5OSUdq2oqnJy7B6jVq3skBQQID30kN2jNHYsIQkAAAClzqNfmN3/uBbN4MGDVaNGjVItCHDx449S9+52T9Lp0/bwup9+kl55RYqK8nZ1AAAAqKQ8CkqTJ09WVFSUHn/8cS1btkynT58u7bpQ1Z06ZZ+H1K2bHZaio6V335VWrJDatvV2dQAAAKjkPApK7dq108iRI7Vt2zYNGDBAUVFR8vf3d1kCKvi1a+BFS5bYYWjyZCk3V7rxRumXX6Tbb2eYHQAAAMqFR2lm4sSJevPNN2VZVqlP6oAq7NQp6eGH7Z4jSWrUSHrnHWnwYO/WBQAAgCrHo6D0zjvvOANStWrVFBMTIz/+Tz8uxOLF0i23SHv22I/vucee0a6SXTQWAAAAFYNHQenMmTOyLEuTJk3So48+Wto1oSo5dUr661+lf//bftyokfT++1L//t6tCwAAAFWaR91Af/7znyVJjRs3LtViUMWsWSN17HguJN1zj7RpEyEJAAAAXudRj9KDDz6o1atX6/7779epU6fUtWtXRRUyVXPDhg0vuEBUQjk59rC68ePt+3Fx0gcfEJAAAADgMzwKSl27dpUkGWN02223FbqPZVnKzs72vDJUTnv2SCNHSt99Zz++9lp7woaYGO/WBQAAAOTh0dC7vDPdGWOKXAAXn34qtW9vh6Rq1exepI8/JiQBAADA53jUo9SnTx9ZllXataCyysiwJ2x48037cY8e0owZUpMm3q0LAAAAKIJHQWnp0qWlXAYqrd9+s4fXrVljP378cWniRCkw0Lt1AQAAAMXwKCgBJTJ/vnTTTdKxY/bwug8/lC6/3NtVAQAAAOdVonOUZs6cqZycHLcPnpOTo5kzZ7r9PFRwOTnSU09Jl11mh6SuXaX16wlJAAAAqDBKFJRGjBihRo0a6cknn9RPP/103v3Xr1+vp556So0aNdLIkSMvuEhUIKmp0tCh0t//bj++5x5p+XIpPt6rZQEAAADuKNHQu6CgIO3bt0/PP/+8nn/+eVWvXl0dO3ZU06ZNFRMTI2OMjh8/rqSkJK1fv17Hjx+XZM+IFxISUqZvAD4kKUn685+lbdukkBBpyhRpxAhvVwUAAAC4rURBaefOnXr22Wc1ffp0ZWZm6vfff9eSJUu0ZMmSAvs6pgUPDg7W2LFj9cQTT5RuxfBNS5ZIw4dLx49LsbHSnDn2kDsAAACgAirR0Lv69evrnXfe0YEDB/T666+rf//+CgsLK3DdpLCwMPXv319vvPGGDhw4oLffflv169cv6/cAb3vrLenSS+2Q1K2btG4dIQkAAAAVmluz3lWvXl333nuv7r33XuXk5GjPnj06evSoJKlmzZpq2LCh/P39y6RQ+KDcXOnRR6VXXrEfjxwp/fvf9rA7AAAAoALzeHpwf39/NWrUSI0aNSrNelBRZGRIo0dLn3xiP37uOfsaSVyIGAAAAJUA11GC+44ft2e2++47KSBAmjrV7k0CAAAAKgmCEtyzb599PtLWrVJEhPTFF9LAgd6uCgAAAChVBCWU3M6d0iWXSL/9Zs9sN2+e1L69t6sCAAAASh1BCSWzdavdc3TwoNS0qbR4MReRBQAAQKVVounBUcX99JPUp48dkhIT7XOTCEkAAACoxAhKKN7KlVL//tLvv0tdukhLl0r16nm7KgAAAKBMXdDQu23btikpKUknTpyQMabA9lGjRl3I4eFta9ZIQ4ZIqalS797SV19JkZHergoAAAAocx4FpT179uimm27S999/X+Q+lmURlCqyn36yZ7dLTZX69pXmzpXCw71dFQAAAFAuPApKd955p1asWFHatcBXbNokDRoknTgh9epl9yQRkgAAAFCFeBSUli5dKsuyFBUVpeuvv141atRQQAAT6FUK27bZs9sdOyZ1725PAV6tmrerAgAAAMqVR+kmMjJSR44c0VtvvaUbbrihtGuCt+zbJw0eLB05InXqJH39NeckAQAAoEryaNa7G264QcYYnTlzprTrgbccP25P3LBvn9SypbRggRQd7e2qAAAAAK8oUY/Snj17XB7fdtttWrhwof76178qPT1dffr0UUxMTIHnNWzYsHSqRNlKT5f+/GdpyxYpNtYOSTVrersqAAAAwGtKFJQSEhJkWVaB9cYYjRs3rtDnWJal7OzsCyoO5SAnR7rxRmnFCikqyh5uR8AFAABAFVfic5QKu05ScetRQTz8sDRnjhQcLH35pdS2rbcrAgAAALyuREGpT58+hfYooYJ7/33pn/+07//nP1KfPt6tBwAAAPARJQpKS5cuLeMyUO6++0666y77/oQJ0rXXerUcAAAAwJd4ND34M888I8uyNHbsWDVo0MBl26lTp7R+/XpJdk8UfNCuXdJVV0lZWXZAevppb1cEAAAA+BSPgtKECRNkWZYuueSSAkFp06ZN6tevn/z8/JjMwRelpUlDh0q//y516SJNmyYxrBIAAABw4dF1lIpz9uxZSUzy4LPuuUf6+WepTh17EoewMG9XBAAAAPicEvcoLVu2TMuWLXNZN3XqVC1evNj5ODc3V19//bUkKTQ0tJRKRKmZOlWaPl3y85NmzpTq1/d2RQAAAIBPKnFQWrp0qZ555hnnY2OMpk2bVui+lmWpZcuWF14dSs/GjXZvkiQ9+6zUv7936wEAAAB8mFvnKDmG0zmmCi9qeF1wcLAmTZp0gaWh1Jw6JV1zjXT2rHTZZdJjj3m7IgAAAMCnlTgoDR06VAkJCZKksWPHyrIs/e1vf1OzZs2c+/j5+SkmJkYXXXSRatSoUerFwkMPPCAlJUlxcfb1kvxK/dQ0AAAAoFIpcVBq37692rdvL0kaP368LMvSVVddpU6dOpVZcSgFc+bYF5a1LOnDDyUCLAAAAHBeHk0Pvnv37lIuA2Xi0CHpttvs+w8/LPXt6916AAAAgArC4wvOnk9YWJiaNWumgQMHKjw83JOXwYUwRrrlFunoUalDB6kE3xkAAAAA2wVdcLYkqlevrqlTp+rKK6/05KXgqf/8R5o3TwoOlmbMsG8BAAAAlIjHZ/UbY0q0/P7777r22mu1efPm0qwbxTl82J7AQZImTpTatPFuPQAAAEAF41FQmjZtmtq3by8/Pz9df/31mjx5siZPnqzrr79efn5+at++vV577TVdd911sixLmZmZevXVV0u7dhRl3Djp+HF7yN2DD3q7GgAAAKDC8Wjo3enTp7Vp0yZNnDhRTz75pHP9fffdp1atWmnChAny8/PTzJkz1bJlS02cOFFLly4trZpRnK++kj7+WPL3t2e7Cwz0dkUAAABAheNRj9I///lPSSp0avDOnTvLGKPXXntNknTttddKkg4ePOhhiSixM2eku++27z/4oMTU7QAAAIBHPApK+/fvl2QHpuPHjzvXnzx5Uq+//rrLPiEhIZKkoKCgCyoUJfDii9LevVJ8vDRhgrerAQAAACosj4beJSYm6qefftI333yj+vXrq0mTJrIsSzt37tTZs2dlWZbatWsnSfr5558lSQ0aNCi9qlFQcrL00kv2/X/8QwoL8249AAAAQAXmUY/SK6+84uwhOnv2rLZu3aotW7bo7NmzMsYoMDBQL7/8siTpnXfekSRdfPHFpVQyCvXXv0oZGVL//tJVV3m7GgAAAKBC8ygo9e3bV99++626d+8uyXWq8J49e2rZsmXq06ePJOlf//qXkpOT9corr5Re1XD1zTfSF19Ifn7S5MlSCa9xBQAAAKBwHg29k6QePXrohx9+0JEjR7Rr1y5JUpMmTVSzZk2X/eLj4y+sQhQvN9fuTZKku+6S2rb1bj0AAABAJeBxUHKoVauWatWqVRq1wBOffiqtXy9FRDCBAwAAAFBKPA5Kv/76q6ZMmaKkpCSdOHFCxhiX7ZZlacmSJRdcIIqRlSU99ZR9/6GHpHy9eQAAAAA841FQ+vTTT3XjjTcqNze30O3GGFmcJ1P2pk+Xfv3VDkgPPujtagAAAIBKw6Og9OSTTyonJ6e0a4E7zp6VJk607z/xhD30DgAAAECp8Cgo/fbbb7IsS5dccon+/ve/q0aNGgoIuODTneCODz6Q9u+XGjSQ7rzT29UAAAAAlYpH6aZp06batm2bHnjgAXXr1q20a8L5ZGdLL75o33/kESkkxLv1AAAAAJWMR9dRevzxx2WM0Zw5c0q5HJTIJ59IyclSrVrSLbd4uxoAAACg0vGoRykpKUmNGzfWlClTtHbtWvXt21cxMTEF9nv66acvuEDkk5srPf+8ff+BB6SwMO/WAwAAAFRCHgWliRMnOme127hxozZu3FjofgSlMvDVV9KWLVJkpHT33d6uBgAAAKiUPJ6BIf91k/JjevAy8tpr9u1dd0lRUV4tBQAAAKisPApK06ZNK+06UBKbN0vffiv5+0v33OPtagAAAIBKy6OgNHr06NKuAyXx5pv27dChUlycV0sBAAAAKrMLvvjR+vXrtW3bNp05c0a33XZbadSEwhw/Ln34oX3/vvu8WwsAAABQyXk0PbgkrVu3Tm3btlWXLl00cuRI3XXXXTp79qyqV6+ugIAALV26tBTLhKZPl9LSpLZtpT59vF0NAAAAUKl5FJR++eUXDRgwQFu3bpUxxrmEhIRo6NChys3N1aefflratVZdxkjvvWffv/deiYkyAAAAgDLlUVCaMGGCTp8+LT8/P1100UUu27p37y5JWrFixYVXB9uaNdK2bVJoqHT99d6uBgAAAKj0PApK3377rSzL0vPPP6+XXnrJZVtCQoIkad++fRdcHP7gmGXwmmvs6ycBAAAAKFMeBaWTJ09Kkjp27FhgW1ZWliQpLS3tAsqCU1qaNHOmfX/sWO/WAgAAAFQRHgWlunXrSpIWLlxYYJvj3KQGDRpcQFlwmj1bSk2VEhKkvn29XQ0AAABQJXgUlAYNGiRjjF555RXdf//9zvUDBgzQhx9+KMuyNHjw4FIrskr773/t29GjJT+PJykEAAAA4AaPfnk/8cQTio6OljFGGzZskPXHLGzLli2TJEVHR+uxxx4rvSqrquPHpUWL7PtM4gAAAACUG4+CUkJCghYvXqw2bdq4TA9ujFFiYqIWL16suLi40q616pkzR8rOltq1k1q29HY1AAAAQJUR4OkTO3XqpJ9//lkbN27Ujh07JEnNmzdX+/btS624Km/WLPv22mu9WwcAAABQxXgclBzat2/vEo7Wr1+vn3/+WZI0atSoCz181fX779Lixfb94cO9WwsAAABQxZT67ACzZs3SmDFjdPPNN5f2oauWL7+0h9116CA1b+7tagAAAIAqpcymUTPGlNWhq4b//c++HTbMu3UAAAAAVRDzTfuijIxzs91dfrl3awEAAACqIIKSL1q+XDp9WqpbV+rY0dvVAAAAAFUOQckXzZ1r3152GReZBQAAALygxLPeNW7cuET7HT9+3ONi8AdHUGLYHQAAAOAVJQ5Ku3fvlmVZZVkLJGnXLunXX6XAQGnQIG9XAwAAAFRJbl1HiZnsysE339i33btLERHerQUAAACookoclL799tuyrENnz57V9ddfr61btyo0NFS1a9fWv/71LzVt2lQpKSkaNWqUdu7cqeDgYL399tvq06dPmdbjNY7PuX9/79YBAAAAVGElDkp9+/YtyzokSbfffrv+9Kc/ybIsvfnmm7r11lu1dOlSPfbYY+rRo4e+/vprrV27VsOGDVNycrICAwPLvKZyZQxBCQAAAPABPjOlWkhIiC677DLneVA9evTQ7t27JUmzZs3SnXfeKUnq2rWrYmNjtWzZMm+VWnZ27JAOHpSCg6WLLvJ2NQAAAECV5dY5SuVp8uTJ+r//+z/9/vvvysrKUt26dZ3bEhIStGfPnkKfl5GRoYyMDOfj1NRUSVJWVpaysrLKtugScNRQWC1+ixfLX1Jujx7K8feXfKBeeF9xbQbIj/YCd9Fm4C7aDNzlS23GnRp8MihNmjRJSUlJWrJkidLT09167vPPP6+JEycWWL9w4UKFhYWVVokXbNGiRQXWdf7kEzWQtD02VjvmzSv/ouDTCmszQFFoL3AXbQbuos3AXb7QZtLS0kq8r2V8bCq7V155RR9//LEWL16s6OhoSVJ4eLh27tzp7FXq1q2bJk2apIEDBxZ4fmE9SnFxcTp69KgiIyPL5T0UJysrS4sWLdKgQYMKnGMV0Ly5rN27lf311zIDBnipQvia4toMkB/tBe6izcBdtBm4y5faTGpqqmrWrKmTJ0+eNxv4VI/Sq6++qpkzZ7qEJEkaPny43nnnHU2YMEFr167V/v37i5xcIjg4WMHBwQXWBwYGev2LyatAPYcPS7t3S5algIsusq+jBOTha20Yvo32AnfRZuAu2gzc5Qttxp3X95mgtG/fPj300ENq3Lix+v8x41twcLBWr16tF198USNHjlSzZs0UFBSkGTNmeP1DLnWrV9u3rVtLPtDzBQAAAFRlFxSU9u/fr1mzZmnbtm1KS0vT1KlTtWrVKkn2rHVBQUElPlaDBg2KvKBtnTp1tHDhwgsp1fc5glL37t6tAwAAAIDnQemdd97RAw88oMzMTBljZFmWZsyYobFjx2r37t36+OOPNXz48NKstXL7I2CqRw/v1gEAAADAs+soff3117r77ruVkZFRoBdo2LBhMsbos88+K5UCq4ScHGntWvs+PUoAAACA13kUlF588UVJUr169XT33Xe7bGvbtq0kaePGjRdYWhWSlCSdOiWFhkpt2ni7GgAAAKDK8ygo/fTTT7IsSy+99JJuuOEGl20NGjSQZJ+/hBLatMm+bdtW8vf3bi0AAAAAPAtKjiva1qhRo8C2o0ePSlKREzOgEI6g1K6dd+sAAAAAIMnDoNSkSRNJ0ttvv63MzEzn+rS0NL3++uuSpObNm5dCeVWEY5giQQkAAADwCR7Nenf11Vdry5Ytmjt3rhYtWuRcX69ePZ0+fVqWZemaa64ptSIrPUePUvv23q0DAAAAgCQPe5QefvhhJSYmyhijjIwMWZYlSTp16pSMMWrbtq0eeOCBUi200jp5UvrtN/v+HxNhAAAAAPAuj4JSeHi4VqxYobvvvlsxMTEyxsgYo5iYGN19991atmyZQkNDS7vWysnRm9SwoRQT491aAAAAAEi6gAvORkZG6s0339Qbb7zhnMChZs2azt4llNDWrfZtYqJ36wAAAADg5HFQcrAsS7Vq1SqNWqqmHTvs2xYtvFsHAAAAACePht7deeed8vf3V48ePQps69mzp/z9/XXXXXddcHFVgiMoMUsgAAAA4DM8CkrffPONJOn2228vsO22226TMca5D86DoAQAAAD4HI+C0r59+yRJcXFxBbY1aNDAZR8UIytL2rXLvk9QAgAAAHyGR0EpKChIkrRu3boC29auXStJCgi44NOfKr/kZCk7WwoLk2JjvV0NAAAAgD94lGZat26tVatWadKkSapdu7Yuv/xySdLcuXP1/PPPy7IstW7dulQLrZQcw+6aNZP8PMqsAAAAAMqAR0Hppptu0qpVq5SWllbgPCVjjCzL0k033VQqBVZqeYMSAAAAAJ/h8ax3gwcPdl5oNu8iSQMHDmTWu5L47Tf7tnFj79YBAAAAwIVHQcnPz09fffWVXn75ZbVv316hoaEKDQ1V+/bt9fLLL2vu3LnyYyjZ+TmCUny8d+sAAAAA4MLjGRcCAgL00EMP6aGHHirNeqqWPXvs24YNvVsHAAAAABd0+3gTPUoAAACAT/I4KE2dOlXdu3dXjRo15O/vX2BhevDzOH1aOnbMvk+PEgAAAOBTPEozTz31lCZNmiRJzgkc4Ka9e+3bqCh7AQAAAOAzPApKU6ZMcQaksLAwxcTE0IPkJstxfhLD7gAAAACf41G6SU1NlWVZuv/++/Xqq6/KsqzSrqvyc/QoMewOAAAA8DkenaPUrVs3SdIll1xCSPKQtX+/fad+fe8WAgAAAKAAj4LSyy+/rJCQEL388ss6evRoaddUNaSk2Lf16nm3DgAAAAAFeDT07pFHHlF0dLRWrFihuLg4tWzZUjExMS77WJalJUuWlEqRlZF16JB9p04d7xYCAAAAoACPgtLSpUudQ+4yMjK0adMml+3GGIbknY+jR6luXe/WAQAAAKAAj6eqyzstOFOEu886fNi+Q48SAAAA4HM8CkrJycmlXUfVYozkCEr0KAEAAAA+x6OgFM+1fy5IQHq6rPR0+wE9SgAAAIDPuaCrxGZnZ+uXX37RiRMnlJubW2B7nz59LuTwlVbwiRP2nYgIKSzMq7UAAAAAKMjjoPT3v/9dL7/8sk6fPl3odsuylJ2d7XFhlVnw8eP2HXqTAAAAAJ/kUVCaOnWqnn766dKupcoITk2179Su7d1CAAAAABTKowvOTpkyRZZlqVmzZpLs3qNBgwapdevWkqQuXbpo1KhRpVdlJRPo6IWrXt27hQAAAAAolEdBaevWrZKkZ5991rlu/Pjx+vnnn3XjjTdqy5Ytuvnmm0unwkooyBGU8l2kFwAAAIBv8Cgopf8xY1vdunXl7+/vXGdZlkaNGqX09HQ98sgjpVdlJUOPEgAAAODbPApKMX/0hGRlZTnvz5w5U2lpaVqwYIEkadOmTaVUYuUTeOaMfYceJQAAAMAneRSU4uLiJEknTpxQx44dZYzRtGnTFBERoddee02WZTn3QUFBp07ZdwhKAAAAgE/yKCh16dJFxhj98ssvuv/++yVJxhiX5a9//WupFlqZBHKOEgAAAODTPJoe/B//+IcmTJigsLAwRURE6LPPPtNbb72l/fv3Kz4+Xrfffruuvvrq0q610nAOveMcJQAAAMAnuR2UMjIytG7dOklS/fr1FRERoauuukpXXXVVqRdXWTH0DgAAAPBtbg+9CwoK0oABA9S/f3+tWrWqLGqq9JjMAQAAAPBtbgcly7JUv359SVKNGjVKvaBKLzeXoAQAAAD4OI8mc7jttttkjNHMmTNLu57KLz1dljH2/chI79YCAAAAoFAeTeZQv359NW7cWDNmzFBycrKuuOIK1alTR5Zluew3atSoUimyUvljxjtjWbJCQ71cDAAAAIDCeBSUbrnlFmco+v777/X9998X2MeyLIJSYRxTg1erJuULlgAAAAB8g0dBSbKvmwQPOIJSeLh36wAAAABQJI+C0tNPP11gmB1KxnJM5FCtmncLAQAAAFAkj4LShAkTSrmMKoQeJQAAAMDneTTr3YABA3TJJZdoy5YtBbbt3btXzzzzjJ599tkLLq5SckzmQI8SAAAA4LM86lFaunSpLMvSyZMnC2zbs2ePJkyYIMuy9NRTT11wgZVO3skcAAAAAPgkj3qUinP06NHSPmSl4jxHiaF3AAAAgM8qcY/SBx98oA8++MBl3X333aeoqCjn49zcXP3888+SpJiYmFIqsZKhRwkAAADweSUOSrt373YOuZPs6cE3bNhQ6L6WZal79+6lUmCl80ePkqFHCQAAAPBZbp+jZIxxCUuF6dy5s15//fULq6yycgy9Cwvzbh0AAAAAilTioDRu3DiNGTNGxhg1btxYlmXps88+U+fOnZ37+Pn5KSYmRtUYVla09HT7lqAEAAAA+KwSB6WoqCjn+UijRo2SZVlq37694uPjy6y4ysjKyLDvBAd7txAAAAAARfJoevDp06eXchlVyNmz9i1BCQAAAPBZHgUlSfrmm2/07rvvKikpSSdOnChwvpJlWdq5c+cFF1jpOHqUQkK8WwcAAACAInkUlN544w2NGzeuyO15J3xAPpmZkiRDjxIAAADgszwKSq+88kqRM97hPBw9SkFB3q0DAAAAQJH8PHlSSkqKLMvSDTfcoEOHDikrK0u5ubkuS05OTmnXWjkwmQMAAADg8zwKSomJiZKkESNGqHbt2vL39y/Voio1x2QOnKMEAAAA+CyPgtJzzz0ny7L0/vvvKysrq7RrqtSYHhwAAADwfR6do/Txxx8rLi5Oc+bMUcOGDdWjRw/FxMS47OMIUsiHoAQAAAD4PI+vo+SY1e7w4cP68ssvC92PoFSIP2a9IygBAAAAvsvj6yjlnfWusBnwmB68CH+co2SY9Q4AAADwWR4FpW+//ba066g6uOAsAAAA4PM8Ckp9+/Yt7TqqDs5RAgAAAHyex0PvipKVlaWDBw9Kkho2bFjah6/4CEoAAACAzyvx9OAxMTGqUaOG1qxZ41x388036+abb9bOnTud69asWaOEhAQ1bty4dCutDIyR5bgQb2Cgd2sBAAAAUKQSB6WTJ0/qxIkTys7Odq6bPn26PvjgAx0+fLjA/oVN8FDlOUKSJHGRXgAAAMBneXTBWXgoT8hUQKmPegQAAABQSghK5YkeJQAAAKBCICiVJ3qUAAAAgArB7V/rkyZNUu3atYtcl5KSUjqVVUb0KAEAAAAVgttBaf78+c77lmUVWIdi5O1RIigBAAAAPsutoMRMdhfojx6lXD8/6Y+QCQAAAMD3lDgojR8/vizrqBr+6FEyfpwaBgAAAPgyglJ5+qNHyTDsDgAAAPBpdG2UJ3qUAAAAgAqBX+zliR4lAAAAoEIgKJUnepQAAACACoFf7OWJHiUAAACgQiAolSd6lAAAAIAKgV/s5cnRo0RQAgAAAHwav9jLEz1KAAAAQIXAL/byxDlKAAAAQIVAUCpP9CgBAAAAFYJP/WK///77lZCQIMuytGHDBuf6X3/9VT179lTz5s3VtWtXbdmyxXtFXog/epRy6VECAAAAfJpPBaVrrrlGK1asUHx8vMv6O+64Q7fffrt27NihRx99VGPGjPFOgRfqj6Aky/JuHQAAAACKFeDtAvLq06dPgXUpKSlat26dFi5cKEm6+uqrde+99yopKUlNmzYtsH9GRoYyMjKcj1NTUyVJWVlZysrKKqPKS8bKzlaAJGNZXq8FFYejrdBmUBK0F7iLNgN30WbgLl9qM+7U4FNBqTB79+5VvXr1FBBgl2pZlho2bKg9e/YUGpSef/55TZw4scD6hQsXKiwsrMzrLU6t9evV84/7ixYt8motqHhoM3AH7QXuos3AXbQZuMsX2kxaWlqJ9/X5oOSuxx9/XA8++KDzcWpqquLi4jR48GBFRkZ6sTLJCjj3cQ8aNEiBgYFerAYVRVZWlhYtWkSbQYnQXuAu2gzcRZuBu3ypzThGm5WEzweluLg4HTx4UNnZ2QoICJAxRnv27FHDhg0L3T84OFjBwcEF1gcGBnr9i5EjKFmWb9SDCoU2A3fQXuAu2gzcRZuBu3yhzbjz+j41mUNhateurU6dOmnGjBmSpM8//1wNGjQodNidzzPG2xUAAAAAKAGfCkp33HGHGjRooH379unSSy91hqF3331X7777rpo3b64XXnhB06ZN83KlAAAAACoznxp69+677xa6vkWLFlq5cmU5VwMAAACgqvKpHqVKj6F3AAAAQIVAUPIGLjgLAAAA+DSCEgAAAADkQ1AqTwy9AwAAACoEgpIXGIbeAQAAAD6NoAQAAAAA+RCUyhND7wAAAIAKgaDkDQy9AwAAAHwaQak80aMEAAAAVAgEJQAAAADIh6AEAAAAAPkQlMoTQ+8AAACACoGgBAAAAAD5EJS8gAvOAgAAAL6NoFSeGHoHAAAAVAgEJW+gRwkAAADwaQQlAAAAAMiHoFSeGHoHAAAAVAgEJQAAAADIh6BUnuhRAgAAACoEghIAAAAA5ENQ8gKuowQAAAD4NoJSeWLoHQAAAFAhEJQAAAAAIB+Ckjcw9A4AAADwaQSl8sTQOwAAAKBCICgBAAAAQD4EJQAAAADIh6BUnhh6BwAAAFQIBCUAAAAAyIegVJ7+6FHigrMAAACAbyMoAQAAAEA+BCUAAAAAyIegVJ4ckzkw9A4AAADwaQQlAAAAAMiHoAQAAAAA+RCUyhPXUQIAAAAqBIISAAAAAORDUPICrqMEAAAA+DaCUnli6B0AAABQIRCUAAAAACAfgpI3MPQOAAAA8GkEpfLE0DsAAACgQiAoAQAAAEA+BKXyRI8SAAAAUCEQlAAAAAAgH4ISAAAAAORDUCpPjqF3zHoHAAAA+DSCEgAAAADkQ1ACAAAAgHwISuXpj6F3hqF3AAAAgE8jKAEAAABAPgQlAAAAAMiHoFSeuOAsAAAAUCEQlAAAAAAgH4JSeeI6SgAAAECFQFACAAAAgHwISgAAAACQD0GpPHEdJQAAAKBCICgBAAAAQD4EJQAAAADIh6BUnpj1DgAAAKgQCEoAAAAAkA9BCQAAAADyISiVJ8fQOwAAAAA+jaAEAAAAAPkQlAAAAAAgH4JSeeKCswAAAECFQFACAAAAgHwISuWJyRwAAACACoGg5A0MvQMAAAB8GkEJAAAAAPIhKJUnht4BAAAAFQJBCQAAAADyISgBAAAAQD4EpfLEdZQAAACACoGgBAAAAAD5EJQAAAAAIB+CUnlyzHrH0DsAAADApxGUAAAAACAfglJ54jpKAAAAQIVAUAIAAACAfAhKAAAAAJAPQak8MfQOAAAAqBAISt7ArHcAAACATyMoAQAAAEA+BKXyxNA7AAAAoEIgKHmBYegdAAAA4NMISgAAAACQD0GpPDH0DgAAAKgQKkxQ+vXXX9WzZ081b95cXbt21ZYtW7xdEgAAAIBKqsIEpTvuuEO33367duzYoUcffVRjxozxdknuo0cJAAAAqBAqRFBKSUnRunXrdNNNN0mSrr76au3du1dJSUlersxDTOYAAAAA+LQAbxdQEnv37lW9evUUEGCXa1mWGjZsqD179qhp06Yu+2ZkZCgjI8P5ODU1VZKUlZWlrKys8iu6EH45OfL/4763a0HF4WgrtBmUBO0F7qLNwF20GbjLl9qMOzVUiKDkjueff14TJ04ssH7hwoUKCwvzQkXn1DtwQE1atdKpBg20dtEir9aCimcRbQZuoL3AXbQZuIs2A3f5QptJS0sr8b6WMb5/4kxKSoqaNm2qY8eOKSAgQMYY1atXTytWrChRj1JcXJyOHj2qyMjI8i69gKysLC1atEiDBg1SYGCgt8tBBUCbgTtoL3AXbQbuos3AXb7UZlJTU1WzZk2dPHnyvNmgQvQo1a5dW506ddKMGTM0ZswYff7552rQoEGBkCRJwcHBCg4OLrA+MDDQ619MXr5WD3wfbQbuoL3AXbQZuIs2A3f5Qptx5/UrRFCSpHfffVdjxozRpEmTFBkZqWnTpnm7JAAAAACVVIUJSi1atNDKlSu9XQYAAACAKqBCTA8OAAAAAOWJoAQAAAAA+RCUAAAAACAfghIAAAAA5ENQAgAAAIB8CEoAAAAAkA9BCQAAAADyISgBAAAAQD4EJQAAAADIh6AEAAAAAPkQlAAAAAAgH4ISAAAAAORDUAIAAACAfAhKAAAAAJAPQQkAAAAA8gnwdgFlzRgjSUpNTfVyJbasrCylpaUpNTVVgYGB3i4HFQBtBu6gvcBdtBm4izYDd/lSm3FkAkdGKE6lD0qnTp2SJMXFxXm5EgAAAAC+4NSpU4qKiip2H8uUJE5VYLm5uTpw4IAiIiJkWZa3y1Fqaqri4uK0d+9eRUZGerscVAC0GbiD9gJ30WbgLtoM3OVLbcYYo1OnTik2NlZ+fsWfhVTpe5T8/PzUoEEDb5dRQGRkpNcbCioW2gzcQXuBu2gzcBdtBu7ylTZzvp4kByZzAAAAAIB8CEoAAAAAkA9BqZwFBwdr/PjxCg4O9nYpqCBoM3AH7QXuos3AXbQZuKuitplKP5kDAAAAALiLHiUAAAAAyIegBAAAAAD5EJQAAAAAIB+CUjn69ddf1bNnTzVv3lxdu3bVli1bvF0SfMjZs2c1dOhQNW/eXO3bt9egQYOUlJQkSUpJSdGQIUPUrFkzJSYm6rvvvvNytfA106ZNk2VZmjNnjiTaDIqWkZGhe++9V82aNVPbtm110003SeLfKBRt3rx56tSpkzp06KDExER98MEHkvg7g3Puv/9+JSQkyLIsbdiwwbm+uL8rFeJvjkG56d+/v5k2bZoxxphPP/3UdOnSxbsFwaekp6ebuXPnmtzcXGOMMW+88Ybp27evMcaYsWPHmvHjxxtjjFmzZo2pX7++yczM9FKl8DXJycnmoosuMj169DCzZ882xtBmULRx48aZe++91/m35uDBg8YY/o1C4XJzc01MTIzZuHGjMcb+exMcHGxSU1P5OwOnZcuWmb1795r4+Hizfv165/ri/q5UhL85BKVycvjwYRMREWGysrKMMfYfnjp16phff/3Vy5XBV61du9bEx8cbY4wJDw93/pgxxpiuXbuaRYsWeaky+JKcnBxzySWXmHXr1pm+ffs6gxJtBoU5ffq0iYiIMCdPnnRZz79RKEpubq6pXr26WbZsmTHGmI0bN5rY2FiTkZHB3xkUkDcoFfd3paL8zWHoXTnZu3ev6tWrp4CAAEmSZVlq2LCh9uzZ4+XK4KsmT56s//u//9Pvv/+urKws1a1b17ktISGBtgNJ0quvvqpevXqpc+fOznW0GRRl586dql69uiZNmqQuXbqod+/eWrJkCf9GoUiWZemTTz7RVVddpfj4eF188cX64IMPdOrUKf7OoFjF/V2pKH9zArxdAICCJk2apKSkJC1ZskTp6eneLgc+avPmzfr88885LwAllp2drd9++02tW7fWCy+8oPXr12vQoEGaO3eut0uDj8rOztbf//53ffHFF+rTp4/Wrl2rP//5zy7noQCVFT1K5SQuLk4HDx5Udna2JMkYoz179qhhw4Zergy+5pVXXtEXX3yh+fPnKywsTDVq1FBAQIAOHTrk3Gf37t20HWj58uXavXu3mjVrpoSEBK1atUq33367Zs2aRZtBoRo2bCg/Pz+NGDFCktSxY0c1atRIv/32G/9GoVAbNmzQgQMH1KdPH0lS165d1aBBA23atIm/MyhWcb99K8rvYoJSOaldu7Y6deqkGTNmSJI+//xzNWjQQE2bNvVyZfAlr776qmbOnKlFixYpOjrauX748OF65513JElr167V/v371bdvXy9VCV9x11136eDBg9q9e7d2796tHj166N///rfuuusu2gwKVbNmTV1yySVasGCBJCk5OVnJycnq1asX/0ahUI4ftNu2bZMkJSUlaefOnWrRogV/Z1Cs4n77VpTfxZYxxni7iKpi+/btGjNmjH7//XdFRkZq2rRpatu2rbfLgo/Yt2+f4uLi1LhxY0VEREiSgoODtXr1ah0+fFgjR45UcnKygoKC9Oabb6p///5erhi+pl+/fho3bpyGDh1Km0GRdu3apVtuuUVHjx6Vn5+fnn76aV199dX8G4UizZw5U5MmTZKfn59yc3P1+OOP68Ybb+TvDJzuuOMOzZ07V4cOHVKNGjUUERGhpKSkYv+uVIS/OQQlAAAAAMiHoXcAAAAAkA9BCQAAAADyISgBAAAAQD4EJQAAAADIh6AEAAAAAPkQlAAAAAAgH4ISAAAAAORDUAIAoIxMmDBBlmXJsixNnz69RM85c+aM6tSpI8uy9Nxzz5VtgW767bffFBAQIMuy9Omnn3q7HAAoUwQlAPAhU6ZMcf6wvvPOO122vfbaa85tPXr0cNm2ePFi57YrrrjC7dfdsGGDJkyYoAkTJmjp0qUX8hYuSHp6up555hm1adNGoaGhCgsLU8OGDdWvXz899NBDOnjwoNdqKy9vvPGGUlJSFBISojvuuKPMXufpp5+WZVn68ssvS/yc+Ph4XXXVVZKkiRMnKjc3t6zKAwCvC/B2AQCAcy666CLn/ZUrV7psy/t4/fr1ysjIUHBwcIFt+UNUSWzYsEETJ050Pu7Xr5/bx7hQxhhdccUV+uabb1zW7927V3v37tWyZcs0bNgw1atXr9xrKy/Z2dl67bXXJElDhw5VzZo1y+y15s6dq5CQEA0cONCt591666369NNPtWXLFs2bN8+jYA4AFQE9SgDgQ1q1aqXIyEhJ0ubNm3Xq1CnntlWrVjnvZ2Zmav369c7HFxqUyktaWlqR2xYvXuwMSY0bN9b06dO1ZMkS/ec//9Ejjzyixo0bl1eZXjN//nwdPnxYknT11VeX2escPHhQ69evV//+/RUWFubWc/v376+YmBhJKvFwQgCoiAhKAOBD/Pz81L17d0lSbm6u1qxZI8n+Ybtnzx5JUuvWrSWdC07GGK1evdr5/G7dukmS3n//fV166aVq2LChwsPDFRISombNmum+++7T0aNHna+ZkJCgsWPHOh9PnDjROYxvwoQJzvXJycm67bbbFB8fr+DgYNWuXVvXXXedtm3b5vIepk+f7vL8d955Ry1atFBgYKBmzZpV5Hv/6aefnPfHjRun0aNHa8CAARo5cqRefPFF/frrr+rSpUuRrzNjxgy1adNGISEhat26tT766KMCr3H69GlNmDBBiYmJCg0NVWRkpPr166f58+cXWtP/+3//TwMHDlRMTIyCg4PVokULTZw4Uenp6QX2nTVrlvP1ExMTi32vRZk9e7YkybIsDRo0yGXbmDFjnO93/vz5uv/++1WjRg1Vr15d9957rzIyMrRnzx79+c9/VrVq1VS3bl09+eSThQ6Pmzt3rowxuvzyy53rPv/8c1188cWKiopSUFCQ6tatq4svvliPPvqojDHO/QIDA9W3b1/ncTIzM91+nwBQIRgAgE95+umnjSQjyTz77LPGGGM+//xzI8k0a9bMPPzww0aSufbaa40xxvzyyy/O/du0aeM8zqWXXupcn39p1aqVSU9PN8YYEx8fX+R+48ePN8YY8+OPP5ro6OhC96lWrZpZvXq183WnTZvm3Na4cWOXfadNm1bk+37rrbec+7Vu3drMmTPHnDhxosj9875OixYtCq3to48+cu5/4sQJ07Zt2yLf61tvveVy/KeeeqrIfXv37m0yMjKc+86aNctYllVgv3bt2pXovTs0b97cSDJNmjQpsG306NHOYzVp0qTAa40cOdI0atSowPr33nuvwLGGDh1qJJndu3cbY4xZunSp8fPzK/L9ZmVluTz/mWeecW5buXLled8XAFRE9CgBgI/JO3TOMaTO0XvUo0cP9ezZ02VdUcPurrvuOk2dOlVz587V0qVLNXfuXI0aNUqStG3bNn3xxReSpM8++0x/+9vfnM8bO3asli9fruXLl+vmm2+WMUajR4/WiRMnJEkPPfSQFi5cqBdffFH+/v46ffq0xo4d69Lr4LBr1y5deumlmjNnjrPHpSj9+vWTv7+/JGnr1q0aOnSoYmJilJiYqEceeUS//fZbkc/dvn27/vKXv2ju3Lm66aabnOsffPBBZWVlSZKeeOIJ/fzzz5Kkyy67THPnztV//vMf1a1bV5L0wAMPaO/evZKktWvX6tlnn5Uk1atXT++//76+/vprZw/M8uXL9c9//lOSlJOTowceeMD5/q+//nrNnTtXDzzwgDZt2lRkzfllZ2fr119/lSQ1bdq02H0PHTqkf//735oyZYr8/Ox/yj/88EOlp6fr448/dukJfPfdd12em5mZqcWLF6tNmzaKj4+XJP3vf/9z9jxNmjRJS5Ys0ccff6wnn3xSrVu3lmVZLsfIW9/WrVtL/B4BoELxclADAORz7NgxZ+9E9erVTW5urundu7eRZN5++21z6NAh5//NP3DggLn99tsL7T3Ys2ePue2220yjRo1McHBwgV6CBx54wLlv3t4ZRy+Sw/r1653bOnToYJYvX+5cLrroIue2devWFThWfHx8gd6I4rz++usmMDCw0F6N8PBw88MPPxRac69evZzrs7OzTcOGDZ3bvvvuO5OTk2NiYmKMJBMUFGQWL17sfA933323c99XXnnFGGPMX/7yF+e6v/3tb859//e//znXJyYmGmOMWb16tXNdbGysy/vt1atXiXuUDh8+7Nz3+uuvL7A9b4/S3/72N+f6Nm3aONe///77xhhjcnNzTUREhJFkoqOjXY6zYMECI8k8+uijznWPPfaY8xiffvqpOXr0aLG1zp8/37n/iy++WOy+AFBRMesdAPiYmJgYNW/eXNu3b9exY8e0ZcsW/fjjj5LsHqM6deqoUaNGSk5O1qpVq1wmeXD0KJ06dUo9e/bUvn37inwdRw/R+ezYscN5f8OGDerdu3eh+23btk2dO3d2WTdkyBAFBJT8n5r77rtPV1xxhT755BN9/fXXWr16tc6ePSvJvr7QQw89pB9++KHA8xzndUmSv7+/Onfu7Dyna9euXWrRooWOHz8uye5RKWqmN8f5Vnnf86RJkzRp0qQC+/7yyy/O4zt06NDB5f1269ZN33//fcnefB6mkN65vBznoUlS9erVnfcd53BZlqXq1avr1KlTBb7nuXPnSpLLbHUjRozQP//5T2VkZGj48OGSpNq1a6tXr166++67C3xe56sPACoDht4BgA/KO034O++8o7S0NIWFhaldu3Yu2xcuXKjNmzdLkiIjI50TPcyePdsZklq2bKlPPvnEZbiYpFK/Bs6ZM2cKrKtTp47bx2nUqJEee+wxLV26VMeOHXO56Or69etL9CM9/1CxkirsPRQlOztbGRkZpVZH9erVnfs7Ql1RoqKinPcdQ+8kOWdMLM7cuXNVvXp1lzaWmJioH3/8Uffff7+6d++uqKgopaSkaPbs2br00ksLhNO89ZXlFOYA4E0EJQDwQXl/xDqmYO7atavzHB7H9g8//NAZeLp27er80bx//37n8++55x5de+21uvjii529M/nl/bGdP0A1b97ceb9v374yxhRYzpw5U+jFUd0JCps3b3b2AjmEhobq3nvvdT7Oyckp9JiO2QEd+6xbt875uHHjxqpZs6ZzSutq1arp1KlTBd5DTk6Opk2bVuA9T5s2rcj3HBwc7DJt+YYNG5STk+N87JiNsCQCAgLUrFkzSVJSUlKJn+eOX375RTt37tSQIUOcbUmye4jatGmjyZMna9WqVTpx4oQ+++wzSXZ7mDNnjstx8tbnCOcAUNkw9A4AfFDeSRkcvRx51zmCUt4ekLzbHSfpS9LUqVPVuHFjJSUl6e9//3uhr+cIEZL09ddfq0+fPgoJCVHbtm3Vvn17JSYmavPmzVq2bJlGjRql4cOHKzAwULt379aaNWs0e/bs8/aCnM+qVat0991367LLLtOf/vQnNWnSRBkZGZoyZYpzn7zTg+e1YsUKPfjggxo0aJA+/vhjZ+CqU6eOevToIT8/P91www16++23dfr0aQ0ePFj333+/atasqX379mnz5s364osvNHXqVPXr10833nijJk+eLMme5OHYsWNq166dTpw4oZ07d2rhwoWKj4/X1KlT1blzZ9WvX1/79+/XgQMHNGrUKN10001asmSJ28PuevXqpR07dig5OVknT5506TkqDY5hd3mnBZekl156SUuXLtXll1/unE5+wYIFzu35e84c1/AKCQlRp06dSrVGAPAZ5X1SFADg/HJycpwn4zuW2bNnO7dnZWWZsLAwl+3/+9//nNtTU1NNvXr1CkyIkHdygdGjRzv3P3LkSKETPnz77bfGmOKnB3csDsVNDFGc9957r9jjBwQEmMWLFxf6OkVN+/3hhx869z9+/Hix04Pnfb/GFD89eP7Pb+bMmYXu07Rp0xJP5mCMcZks4rPPPnPZlncyh7x19u3b17k+OTnZuT7vtO8O/fv3N/7+/ubYsWMux3722WeLfJ9+fn5mxYoVzn0zMzOdE2Ncc801531PAFBRMfQOAHxQ3gvHOuTtMQoICCjQu5J3e0REhBYtWqQBAwaoWrVqql+/vp555hk988wzhb5ezZo1NWfOHHXs2FGhoaEFtnfq1EkbNmzQnXfeqcaNGysoKEjR0dFKTEzUnXfeqSVLllzI25UkDRs2TFOmTNHw4cPVqlUrRUdHKyAgQHXr1tVVV12lFStW6JJLLin0uVdddZU++eQTtWnTRkFBQWrRooU+/PBDl6nCo6OjtXLlSj377LNq3769QkNDFRYWpmbNmumaa67RzJkzXT7DZ555Rl999ZWGDBmiGjVqKDAwUPXr19fFF1+sF154QRMnTnTue/3112vmzJlq1aqV8/WnTp2qESNGuPUZDBkyxDlduWP69tJy8uRJrVixQj179nTpQZTs6dLvuOMOJSYmKiYmRv7+/qpevboGDx6sBQsWqFevXs59v/32W2fv4ZgxY0q1RgDwJZYxTF0DAKh4pk+frrFjx0qSxo8f73LtoIrsxRdf1GOPPabQ0FDt3btXNWrUKJXjfvrpp7r22mv1wgsv6NFHH/X4ONdee60+/fRTtWnTRps2bXI5vw0AKhP+ugEA4EPuvfde1a5dW+np6XrnnXdK7bhRUVEaP368rr/+eo+P8dtvvzl7uiZMmEBIAlCpMZkDAAA+JDw8XIcPHy714w4ePFiDBw++oGPEx8crOzu7lCoCAN/G/woCAAAAgHw4RwkAAAAA8qFHCQAAAADyISgBAAAAQD4EJQAAAADIh6AEAAAAAPkQlAAAAAAgH4ISAAAAAORDUAIAAACAfAhKAAAAAJDP/weLFnMSeRS29gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "As the speed of the water flow increases, the entrance length also exhibits a proportional increase, highlighting the direct relationship between flow velocity and the extent of the entrance region in the pipe. This observation underscores the significance of controlling the entrance length in understanding and optimizing fluid dynamics within the system." + ], + "metadata": { + "id": "gW8ylUe-r-fI" + } + }, + { + "cell_type": "markdown", + "source": [ + "**Reference**:\n", + "\n", + "[1]Truskey, G. A., Yuan, F., & Katz, D. F. (2004). Transport phenomena in biological systems.\n", + "\n", + "[2]Chaudhry, M. H. (2008). Open-channel flow (Vol. 523). New York: Springer.\n", + "\n" + ], + "metadata": { + "id": "rlSwfeYbpgEV" + } + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/notebooks/contrib-dev/still-working-Estimating-the-Entrance-Length-of-Channel-Flow .ipynb b/notebooks/contrib-dev/still-working-Estimating-the-Entrance-Length-of-Channel-Flow .ipynb new file mode 100644 index 00000000..e2b386c9 --- /dev/null +++ b/notebooks/contrib-dev/still-working-Estimating-the-Entrance-Length-of-Channel-Flow .ipynb @@ -0,0 +1,624 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "ZB7hIRdzvTep" + }, + "source": [ + "# Estimating the Entrance Length of Channel Flow" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0_WncgpRkWH5" + }, + "source": [ + "**Prepared by**: Stephen Cini (scini@nd.edu) and David Gazzo (dgazzo@nd.edu)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i9wwxaH-vTeq" + }, + "source": [ + "\n", + "**Reference**: Problem 4.5, pg. 210, Transport Phenomena in Biological Systems by Truskey et al. (ISBN 978-0-13-156988-1)\n", + "\n", + "**Intended Audience**: This problem is intended for Chemical and Biomolecular Engineering juniors and seniors from the University of Notre Dame who are either enrolled in or have taken Transport." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yLqvejeuvTet" + }, + "source": [ + "## Learning Objectives\n", + "\n", + "After studying this notebook, completing the activities, and asking questions in class, you should be able to:\n", + "* Apply integration techniques to ordinary differential equations using Python.\n", + "* Properly graph and visualize data using `matplotlib`.\n", + "* Apply integration techniques to realistic scenarios using Python tools such as `scipy.integrate`." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sDQW_Y8IvstJ" + }, + "source": [ + "## Coding Resources\n", + "\n", + "Relevant Modules in Class Website:\n", + "\n", + "\n", + "\n", + "* [Functions and Scope](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-and-Scope.html)\n", + "* [Visualization with matplotlib](https://ndcbe.github.io/data-and-computing/notebooks/01/Matplotlib.html)\n", + "* [Lambda Functions](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions)\n", + "* [Preparing Publication Quality Figures in Python](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html)\n", + "* [Scipy](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy)\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DuQsLLTnvTer", + "tags": [] + }, + "outputs": [], + "source": [ + "# load libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy import integrate" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZLUihthfR0Yz" + }, + "source": [ + "## Problem Statement:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "n2b8uykvR0Y0" + }, + "source": [ + "
\n", + "

Homework Problem

\n", + " Complete the following problem outside of class to practice the concepts discussed.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "37pz7pp1R0Y1" + }, + "source": [ + "Developing flow within a channel can be examined with boundary layer theory. Consider a rectangular channel of height H and width w such that w >> H (Figure below). The velocity field in the entrance depends upon the x and y directions. As shown in the figure below, a boundary layer develops as flow enters the channel: Once the boundary layer has grown to equal H/2, the flow is fully developed.\n", + "![image.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Kw1O2l0kR0Y2" + }, + "source": [ + "## 1. Estimating Entrance Length\n", + "\n", + "As a first approximation, assume that the boundary layer is described by the results for flow over a flat plate. That is, the development of the boundary layer $δ$ is given by\n", + "\\begin{equation}\n", + "δ(x)=5.00xRe_x^{-1/2}\n", + "\\end{equation}\n", + "\n", + "where,\n", + "\\begin{equation}\n", + " Re_x=ρUx/μ\n", + "\\end{equation}\n", + "\n", + "Develop an expression for the entrance length in terms of the channels Reynolds number, $Re_x=2ρUH/μ = 2ρQ/wμ$, where $〈v〉$ is the average velocity in the channel.\n", + "\n", + "Show that the entrance length $Le$ is equal to $0.005ReH$." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mLe463wyR0Y4" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fl9qDavDOkla" + }, + "source": [ + "## 2. More Accurate/Rigorous Method" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A4XwIlMgR0Y5" + }, + "source": [ + "### 2a. Normalize the expression on paper\n", + "\n", + "The analysis in Question 1 assumes that $U(x) = U_o = 〈v〉$. But in fact, the free-stream velocity changes as the boundary layer grows in the channel. Therefore, assuming a linear velocity profile, $v_x=\\frac{U_xy}{δ}$, in the boundary layer, and utilizing the von Karman momentum integral equation,\n", + "\n", + "\\begin{equation}\n", + "τ_w=ρ \\frac{∂}{∂x} ∫_0^∞v_x (U-v_x )dy+ρ\\frac{∂U}{∂x} ∫_0^∞(U-v_x )dy\n", + "\\end{equation}\n", + "\n", + "and the fact that the flow rate $Q$ is constant, the following expression for the growth of the boundary layer can be derived:\n", + "\n", + "\\begin{equation}\n", + "\\frac{dδ_{(x)}}{dx}=\\frac{6μW}{ρδ_{(x)}Q}\\frac{[H-δ_{(x)}]^2}{H+4δ_{(x)}}\n", + "\\end{equation}\n", + "\n", + "Manipulate this expression so that it can be integrated numerically. Hint: normalize it and keep symmetry in mind." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ObaJyG4Xp8Er" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lZcAJ3QiPKJ3" + }, + "source": [ + "### 2b. Numerically integrate the normalized expression\n", + "\n", + "Using the normalized form of the differential equation, use `scipy.integrate.solve_ivp` to numerically integrate the expression and find the value of x where $δ$ is fully developed.\n", + "\n", + "For more information on how to use `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html#scipy) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7iAzmaKEp-P0" + }, + "outputs": [], + "source": [ + "def entrance(d, x, Re = 1):\n", + " '''Solving for the entrance length of the tube with non constant velocity\n", + " Args:\n", + " d: δ_star; Normalized δ; partial derivative wrt x or y (numpy array)\n", + " x: x_star; Normalized x; position along channel (numpy array)\n", + " Re: Reynolds number, constant dimensionless quantity used to show\n", + " turbulence or roughness of flow. Set to unity as default value (float)\n", + " Returns:\n", + " dxdy: Normalized expression for the entrance length\n", + " '''\n", + "\n", + " # assume Re is at unity for the example\n", + "\n", + "### BEGIN SOLUTION\n", + " dxdy = (Re*d/6)*((1+(2*d))/(2-d)**2)\n", + "### END SOLUTION\n", + "\n", + " return dxdy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "BGKBtOjYsBc6" + }, + "outputs": [], + "source": [ + "# Integrate the solution in scipy using defined function\n", + "\n", + "### BEGIN SOLUTION\n", + "dspan = [0, 1] # since del is dimensionless it will range from 0 to 1\n", + " # where del of 0 is at the entrance of the tube and at a del of 1 is the\n", + " # begining of fully developed flow\n", + "\n", + "n = 300 # number of steps in linspace\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "\n", + "# Solve using scipy.integrate.solve_ivp\n", + "soln = integrate.solve_ivp(entrance, dspan, xo, t_eval= tspan)\n", + "d = soln.t\n", + "x = soln.y[0]\n", + "### END SOLUTION" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ufUkZqZNHuVN" + }, + "source": [ + "### 2c. Plot the results\n", + "Plot the resulting data to show the behavior of the integrated expression.\n", + "\n", + "For more information on how to use `matplotlib` to make publication quality plots, click [here](https://ndcbe.github.io/data-and-computing/notebooks/01/Publication-Quality-Figures.html#preparing-publication-quality-figures-in-python) to go to the relevant section of the class website." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0h4ys3UGHL6L", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 634 + }, + "outputId": "a4cef84d-47ec-43dd-d5be-17e2ebbcc4e7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7oAAAJpCAYAAACD2U5YAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AADWUUlEQVR4nOzdeVxUVf8H8M8dBIZNdlF2ERVx19TEJNHUTFvMJ20xtT3brKzMflpZ2uqjLZZPu2m2qJmWZbkkaOKW+4IogiKIssm+M/f3BzFxmWEWmLl3Bj7v18tX3DP3nvnSJeMz59xzBFEURRARERERERG1EiqlCyAiIiIiIiKyJAZdIiIiIiIialUYdImIiIiIiKhVYdAlIiIiIiKiVoVBl4iIiIiIiFoVBl0iIiIiIiJqVRh0iYiIiIiIqFVh0CUiIiIiIqJWhUGXiIiIiIiIWhUGXSIiIiIiImpVGHSJiIiIiIioVWHQJSIiIiIiolaFQZeIiIiIiIhaFQZdIiIiIiIialUYdImIiIiIiKhVYdAlIiIiIiKiVqWd0gVQ21RRUYHjx48DAPz9/dGuHX8UiYiIiIjaopqaGuTk5AAAevfuDbVa3eI+mS5IEcePH8fgwYOVLoOIiIiIiGzI/v37MWjQoBb3w6nLRERERERE1KpwRJcU4e/vr/16//796NSpk2K1lJeXY+fOnQCA2NhYuLi4KFYLmYf3zn7x3tkv3jv7xXtnv3jv7BfvnWmysrK0sz0b5oSWYNAlRTR8JrdTp04IDg5WrJby8nL4+fkBAIKDg/kXkB3hvbNfvHf2i/fOfvHe2S/eO/vFe2c+S63dY9GgGxERYcnuLEoQBJw7d07pMoiIiIiIiMjKLBp0z58/D0EQIIqiJbu1CEEQlC6BiIiIiIiIZGCVqcu2FiptMXgTERERERGRdfAZ3TZEFEUcOnQIR44cQXZ2NgAgICAAffv2xYABA2zuAwoiIiIiIqLmsErQtaURVLnCW2ZmJvbv3499+/Zh//79+Pvvv1FcXKx9PSwsDOfPn5ellsaqq6vx/vvv47333kNmZqbec4KDg/H000/jqaeegqOjo8wVEhERERERWY7VR3SVGiWUI2zv3r0b//3vf7Fv3z5cunTJ6u/XHBcvXsStt96Kw4cPGzwvIyMDzz33HL777jts3LgRQUFBMlVIRERERERkWVYPurY0umtpBw4cwE8//aR0GU3Kzs5GXFyczmrTLi4uiIiIgEajQVpaGioqKrSvHTx4EHFxcUhMTNQuhU5ERERERGRPrLYYlSiKEAQBL7/8sjXewqgFCxYo+sypu7s7SkpKFHt/AJgxY4Yk5KrVarz11lt46KGH4OrqCgAoLS3Fp59+ipdeekkbeM+ePYv7778fP//8syJ1ExERERERtYTVR3RfeeUVa7+FXgsWLJDtvTw8PDBw4EAMGjQIgwcPxqBBg5CWloa4uDjZamhsy5Yt2Lx5s/bY0dERf/zxB2JjYyXnubm54ZlnnsGAAQMwevRoVFdXAwB++eUX7NixQ9HvgYiIiIiIqDm46nIL3HzzzRgzZgyioqKgUqkkr6WlpSlUVZ358+dLjl988UWdkNvQ9ddfjzlz5mDhwoXatnnz5mH37t1Wq5GIiIiIiMgaVMZPoaZ06dIF0dHROiFXacePH8f+/fu1x25ubnj++eeNXvfCCy/Azc1Ne5yYmIikpCSr1EhERERERGQttpXQyCI2btwoOZ48eTI8PDyMXufh4YE77rhD0rZhwwZLlkZERERERGR1Fg+6oijazErLtlSLnH799VfJ8ZgxY0y+dvTo0ZLjTZs2WaQmIiIiIiIiuVj0Gd3p06dbsrsWsaVa5CSKIo4dOyZpi4mJMfn6YcOGSY6PHj2qXUGbiIiIiIhan5LKGqTmlCDM1w2eLo5Kl2MRFg26X331lSW7axFbqkVOFy5cQFlZmfbYzc0NoaGhJl8fFhYGV1dXbR+lpaW4ePGiWX0QEREREZFtqdWIuFRQjpScEqTmlCK1/p+5JbhSVAkA+OTegRjbs6PClVoGV11uZZKTkyXHISEhZvcREhIi6Sc5OZlBl4iIiIjIDhRVVGuD7DltqC1FWl4pqmo0Bq89l1MiU5XWx6DbymRnZ0uOg4ODze4jKChIEnQb92mKjIwMg69nZWVpvy4vL0d5ebnZ72EpFRUVer8m28d7Z7947+wX75394r2zX7x39sta965Go0FmQQXScstwPq8MabllSM0rw/ncMuSWVjW737OXCxX5vdwa78mg28qUlEg/hWm4XZCpGl/TuE9TmDOSvHPnTvj5+Zn9Htawc+dOpUugZuK9s1+8d/aL985+8d7ZL947+9Wce1dZC2SXA1fKhX/+1H2dUwHUipZfQ+dwSha2bDE8YGUNubm5Fu/T7oLu5cuXkZWVBVEUERwcjA4dOihdkk1pHErVarXZfbi4uBjsk4iIiIiILEMUgdIa4HJ9oC37N9BerZJ3QdjsVjRhwC6Cbk1NDT788EN8/PHHSE1NlbzWu3dvPPvss5g2bZpC1dmWxlMinJyczO7D2dlZctycqQQXL140+HpWVhYGDx4MAIiNjW3WFGtLqaio0H7CFhsb26wPB0gZvHf2i/fOfvHe2S/eO/vFe2e/Gt6764YPR34FcC63FKk5ZUjNLUVqbhnO5ZaisLxG4UrrlNUIGHTdCHi7mp8hWsLYY4/NoUjQzc/Px3PPPafT7ufnh3feeUfSVlFRgVtuuQXbt2/XuyfusWPHcN9992HLli345ptvrFazvWj8F19Vlflz9CsrKw32aQpzgquLi4vOKLJS1Gq1zdRC5uG9s1+8d/aL985+8d7ZL94721dRXYvzeaVIyS7B6cwCJJ5R4Uq5gBcO7EOlkcWgbEFmcS0CfeX9GbPGz7QiQXfnzp1YsWKFzt6sDz74oM65r732GrZt2wYATe7lKooivvvuO0RGRuLVV1+1eL32xN3dXXLcnIfeG4/gNu6TiIiIiKitKyyrRkpOCc5ll0j+eTG/DBrJ+Jzqn3/afsgFgPO5pRgU7qN0GS2mSNDdtWuX9uv6UVpBEDBlyhTJeQUFBVi6dKkk4DYe1RUEAYIgQBRFvPPOO3j44YcRGBhoxeptW+NQWlpaanYfja9h0CUiIiKitkgURVwpqsTZ7GKkZJcgJbtuy56U7FLkllQa78BGtVMJCPV1RYSfO7r4uyHC3w1d/N0R4e8OHzd5py1biyJBd9++fdqv60Oqi4sLYmNjJed9//33qKys1J6jjyiK2iBcWVmJjz/+GAsXLrRe8Tau8eJczZnvnpmZabBPIiIiIqLWpD7QnrlSjLPZJTh7pVj7dXGFbTw/2xw+bk51QdbPHRH+bojwr/tnqI8rHB1UxjuwY4oE3ePHj2vDaX1Qvfbaa9GunbSczZs361zbePpywwAsiiJ+/vnnNh10u3fvLjk2tiiUPo2viYqKalFNRERERES2oGGgPXOlbpTW3gOto4OAMF83RPi5oUsHd0T41QXaLv5u8JJ5USlbInvQTU9PR3FxsU5gHTp0qM65f/31l+S8xiO7jcOyKIo4efIkrl69Cm9vbyt9B7YtLCwMLi4u2udsS0tLceHCBYSFhZl0/YULF1BWVqY9dnNzM2tPXCIiIiIipbXGQOvp4ojIDu6I9HdHZAd37XTjYG8XtGvlo7PNIXvQTUtL09seHR0tOU5JScHVq1d1AvELL7yAe++9FwkJCZg1axY0Gt2Huk+fPq03OLcFgiCgT58+kunhiYmJJgfd3bt3S4779OnT5CJgRERERERKEkURl4sqcPbKP0H2SgnOZtt3oA3yckGXDnUjspEd3NHln2Dr6+bE38vNIHvQbWoqbdeuXSXHp0+f1n5dP4rbq1cvvPXWWwCAnj174tixY/j00091bnhKSkqbDboAMGHCBEnQ3bp1K+666y6Trt26davk+Oabb7ZobURERERE5mptgdbRQUC4rzTIRnZwR2c/N7g5K/J0aasj+7/F/Px8ve2NpxonJydLjgVBwOjRoyVtEydOxKeffqrTV2FhYQurtG+33HIL5s+frz1eu3YtPvjgA6OrJxcXF2Pt2rWStltvvdUqNRIRERER6ZNXUonky8U4fblYO/XYXgOtm5MD/JxqEOAi4ro+kYgK9EZkB3eEtIHFoJQme9Bt+PxnQ+3bt5ccnz17VuecXr16SY4bjwIbe4+2ok+fPhg0aBAOHDgAACgpKcE777yD1157zeB177zzjmRroWuvvVZnSjkRERERkSWUVdXg7JUSbahNvlKE5MsldrltT0B7Z+3IbMMRWo92Gu2MyTHXhcPFxUXhStsO2YNuU9sEVVVVSY5TU1N1zomIiJAce3h46O2rpsb+Pu0xpPHU7B07dmDEiBEGr3nttdcwbtw47fFbb72FG264QWcLp3oJCQl4++23JW1tefVqIiIiIrKMmloNzueVIflyMZIvF/0TaouRnl+GJqKBTXJQCQjzcUVEgyDbxb9upeP2ake919QvEEvykz3ourm56W2/dOkSgoKCtMdnzpzRCXiNF1SqrNT/aY+cn5Ts3r1b7w/w0aNHJccVFRXYtm2b3j4CAwMtPnJ64403YsyYMdiyZQsAoLq6GmPHjsVbb72Fhx56CK6urgDqVmX+7LPPMHfuXFRXV2uvv+mmmzBq1CiL1kRERERErVf9c7R1gbZYO1KbklOCqhrdBWRtlYNKQJivK7p18EC3AHdEBtT9s7OfG5zbOShdHplI9qDb1Cjsrl27MGjQIAB1WxClp6dLgq6zs7NO0C0uLjbrPazhnnvuwYULF4yed+XKFZ1njOtNnz4dK1assHBlwMqVKzF06FDtStcVFRV4+umnMXfuXEREREAURaSmpqKiokJyXZcuXaxSDxERERG1DkUV1ZJAm/zPKG1hebXxi20EA23rJnvQ7dy5s+S4fv/bd999F6NGjUJoaCiefvpp7ev1U531PY+bk5Oj9z0CAwMtV7AdCwgIwI4dO3DrrbdKRpjLy8tx8uRJvdf069cPP//8M/z9/eUqk4iIiIhsVGVNLc5ll2qfn02+XITky8W4VFhh/GIbwUDbNskedLt37679uuHzuleuXMGAAQO0xw1HcwVBwJAhQ3T6argFUUOhoaGWKLVVCAsLw/79+/Hee+/h/fffx6VLl/SeFxgYiKeffhqzZs2Ck5OTzFUSERERkdJyiiuRlFXU4E8xzuWUoEZjHw/SNgy0XQPc0ZWBtk2TPeh26tQJkZGROHfunHY0t17jhaoaht24uDidvpKSknTaVCoVunTpYsGKDTt//rzV36OpBbxM5eTkhBdeeAHPPfccDh48iKNHjyI7OxsA0KFDB/Tr1w8DBgyASsUlzomIiIhau+paDVJzSrWB9tQ/odZeVjtmoCVTKLIb8S233IIlS5bojNo2xcXFBRMmTNBp37Vrl/br+jDYrVs3LtvdBJVKhUGDBmmfhSYiIiKi1q2grEobZOuD7dkrJaiqtf3FoQQBCPNxRbcAD3Tv6MFAS2ZRJOjOmjULy5YtQ3V1tXZUV99oriiKEAQB99xzj84CU/n5+Thy5IhOWB44cKAs3wMRERERka2o1Yi4kFcqCbSnsoqQZSfP0vq5OyOqY12g7a4Ntu5wdVIkrlAroMhPTkhICBYsWIC5c+dCEASDo7m+vr5YtGiRTvsvv/wCjUajc21T+8QSEREREbUGJZU1OK0Ns3XBNvlyMcqra5UuzShXJwd0C/DQCbW+7s5Kl0atjGIfkcyZMwfl5eV44403UFNTAwA6z+yGhobi559/hp+fn871X375JQDd51eb2sKHiIiIiMieiKKIS4UVOJyWg80XBVwqE7D4dCIuXrX9UVoHlYAIPzd071gfatuje4AHgr1doFI1PchFZCmKzgV49dVXMWXKFHz99dfYu3cvrly5AmdnZ4SHh2PcuHGYPn061Gq1znXV1dUYNWoURo4cKWl3dXXV2WuXiIiIiMjWaTQizueV4sSlIpy8VIiTmXX/vFpWvy9t/TOpthdyAz3VdaOzHdtrR2oj/PkcLSlL8UnvPXr0wFtvvWXWNY6Ojnj55ZetVBERERERkfVU12pw9koJTlwqxKlLRTiRWYikrCKUVtn21OP26naI6tj+n1BbN1LbraMH2qsdlS6NSIfiQZeIiIiIqLUqr6pF0uUinMwsxMlLRTh5qe55Wlte9VglABH+7ujRqT16dPKo+2fH9gho72xwbR0iW8KgS0RERERkAYVl1TiZ9e+045OXinAupwQa0fi1SvFQt0OPTu0R3SDUdgvwgNqR047JvjHoEhERERGZKbuo4p8R2kKcyCzCyaxCXMwvV7osg8J8XdGjY3tEB7bXjtYGeblwlJZaJbsJuuXl5Vi/fj127dqFrKwsiKKI4OBgjBkzBuPHj4ejI58NICIiIiLLyy6qwLGMQhzLLMTxjAKcuFSEnOJKpctqkquTA7p3/GfKcaf2iO5Ut1CUu7Pd/OpP1GKK/bSnp6frtKlUKgQHB+u0b9myBffddx8uX76s89onn3yCbt26YfXq1RgwYIBVaiUiIiKitiG3pBLHMwpxLKMQxzMLcDyzEFeKbDfUBnm5/Psc7T9/wnxcuYUPtXmKBN3Dhw/jmmuu0WkfOnQo/vrrL0nb3r17ccstt6CqqqrJ/pKTkzFy5Ejs2bMHPXr0sHi9RERERNT6XC2twvHMQhzPLMSxjAIczyjEpULb274HABwEEZ1cgcFdA9E7xFu7QJSnK2c1EumjSNDduXMnRFH6VL4gCJg8ebLOuY899hiqqqoMPjsgiiKKiopwzz334NChQxavl4iIiIjsW2FZNU5c+nek9lhGITKu2uYztW5ODogObI+egZ7oGdgekb7OSDuyBw4qYMyYHnBxcVG6RCKbp0jQrR+1rQ+v9aH39ttvl5y3d+9eHDlyROe8xgRBgCiKOHr0KDZs2IDbbrvNSpUTERERka0rrqjGicwibaA9kVmI83llSpell4+bE3o2CLU9A9sj3NdNMvW4vLwc6SoFiySyQ4oE3YbhtV7nzp11ns/97rvvtF/Xh9yG1+kLvt988w2DLhEREVEbUVZVg5OXiupGajMKcCyzEKk5pUqXpVegpxrRgZ7oFfRvsO3kqeaqx0RWIHvQLS0tRWpqqvZYFEUIgoARI0bonJuQkCA5bjiyKwiCdiS3/jVRFLF161ZoNBqoVPzYi4iIiKg1qdWIOHOlGEcvFuDIP3/OXCm2uX1qBQHo7OuG6MD26BXkqR2x9XFzUro0ojZD9qB79uxZbVBtqE+fPpLjoqIinDhxQuc8Pz8/xMbG4tChQ0hLS9MG3PrzSkpKkJKSgm7duln3GyEiIiIiqxFFEVmFFThysQBHLxbg8MUCnMgsRFlVrdKlSbRTCega4IGege3RK7A9egZ5okcnbuVDpDTZ/wvUt60QAJ3Vkk+dOgWNRiMJum5ubjhw4ABCQ0NRWlqKwYMH4/Tp0zphODk5mUGXiIiIyI4UV1TjWEahdqT2yMUCm9ur1tFBQI9O7dE7yBO9gjzRK9AT3Tq6w7mdg9KlEVEjsgfdrKwsve1BQUGS49OnT2u/rh+xvfHGGxEaGgqgLvQ+9dRTmDlzpk7Qbeo9iIiIiEh51bUaJF8uxuF/RmuPXCzAuZwSNLHuqCLaqQR0C/BAn2BP9A72RJ8gL4ZaIjsie9AtKSnR2+7p6Sk5PnPmjM45gwcPlhwPGTJEb1+lpba5AAERERFRWyOKIi7ml+NIRgGOpBfgaEbdFOTKGo3SpWmpBKBbgAd6B3n+E2y9ENXRA2pHhloieyV70C0v179fmZOT9OH8c+fO6ZzTeDpyx44d9fZVVmaby8cTERERtXbFFdU4crEAhy4U4MjFqziaUYj80iqly9ISBKCLvzv6BP0zUhvsiehOnnBxYqglak1kD7pqtVpve2FhIfz9/bXH+oJu/bTlek2trOzo6NiCComIiIjIFKIoIjW3FIcuXMWh9Ks4dKEAZ7KLbWoKcoSfG3oHe6J3UN2fnkGeXCiKqA2Q/b9yd3d3ve2nTp1CZGQkAKCmpgZJSUk6z9526dJFclxcXKy3Lzc3NwtUSkREREQNlVbW4OjFAhz8J9gevliAgrJqpcvSCvVx/ed52rrR2l5Bnmiv5gAIUVske9BtOGrb0MqVK3HLLbcAADZs2IDy8nJJ0A0ICICHh4fkmqKiIr19+fj4WKhaIiIiorZJFEVcyCvDofSr/wTbAiRfLrKZPWt93JzQN9gT/UK80TfEE32DveDNfWqJ6B+yB92Gz9nWr6YsiiJ++ukn3HbbbQgLC8OKFSu0Ibf+nN69e+v0lZaWpvc9Gk9xJiIiIiLDyqpqcCyj8J8pyFdxOL0AeTbybK1zOxV6BdWF2X6hXugX7IUQHxed2X9ERPUUCbpqtRqVlZXakAvUBdpffvlF+3Xjv7iuv/56nb4abkHUUHh4uGWLJiIiImpF6lZCbjhaexVJWcWotYHh2vrFovqFeKFviBf6h3ihe0cPODroX5uFiEgf2YOus7MzRo4cid9++00SZhuG3vqvG75+44036vR15MgRnTYvLy+dPXmJiIiI2rKaWg1OXCpCfJaA1CIBrx/fjdwS2xit9fdwRr8QL+2f3sF8rpaIWk6RJefuvfde/Pbbb5K2xsG2Ydjt1asXBgwYoHP+jh07dKY49+/f3/rfABEREZENK62swZGLBThwPh9/n68bsS2rqgVQv4WOMiHX1ckBvYM8taG2b4gXOnmqOQWZiCxOkaA7efJkvPXWWzh27JgkqIoN1qJv+BfeK6+8otPHwYMHkZeXp/MX45AhQ6xUNREREZFtyimuxMEL+Thw/ioOnM/HyUtFik9DFgSgWwcP9A/9Z7Q21AtdO3jAQcVQS0TWp0jQFQQB69evR0xMDK5cuQJBEJr8JO/hhx/G7bffrtP+zTff6PQJAKNGjbJ8wUREREQ2QhRFnM8rw4Hz+TiQlo+/L1xFWm6p0mXBQ90O/UO9MSDUCwPDvNE3xItTkIlIMYrtlt25c2ccOXIEzzzzDNavX4+qKukUmk6dOmHevHmYOXOmzrXV1dVYvXo1AEhGgV1dXXHddddZt3AiIiIiGdXUanAqqwj70+qmIf99Id8mnq+N7OCOAaFeGBDqjYFh3uji7w4VR2uJyEYoFnSBur1xv/32WxQVFeHQoUO4cuUKnJ2dER4ejn79+jV5naOjI3JycuQrlIiIiEgmZVU1OHThn+drL+TjcHrBP8/XKsfduR36hXhhQKgX+od5Y0CINzxdOVpLRLZL0aBbr3379hgxYoTSZRARERHJrqSyBn+fz8e+tHzsS83DsYxC1Cj8fG2En1vdNOSwuhHbbgF8tpaI7ItNBF0iIiKitqKoorou2KbmY29aPk5kFiq6cJSLowP6hnhiYJg3BoR6o3+oN3zcnBSrh4jIEhh0iYiIiKyosKwa+8/XjdbuTcvDqUtFUHLA1tNRREy3AFzbxR8Dw7wR1dED7RxUyhVERGQFNht0S0tLkZ2djZycHFRUVAAAYmNjFa6KiIiIyLD80irsT8vD3tS66cinLxdBVDDYdu3gjmvCfdAvyB2l54/BxxkYO7YXXFxclCuKiMjKbCro7t27F9999x22bt2K5ORkyWuCIKCmpgYAkJubi7KyMp3rO3XqBEdHLoxARERE8sktqcS+1HzsS8vDvtR8JF8pVqwWRwcBvYM8MaizDwaF+WBgmDe8/5mGXF5eji2XjylWGxGRnGwi6J46dQrPP/88fv/9dwDSLYP0WbVqFZ577jmd9qVLl+Kpp56ySo1EREREQN2I7Z5zeUg8l4t9aflIyS5RrBYP53YYGO6NQeE+uOafvWvVjg6K1UNEZCsUD7obN27Evffei9LSUm3AFQTpqn6Ng+8DDzyAl19+GaWl0s3RV61axaBLREREFlVcUY0D5/OxOyUPiefykJRVpFgtHdur60Zr/wm3XA2ZiEg/RYPut99+i2nTpkGj0QCQBtymQi9Qtx3R1KlT8cknn2hfF0URhw4dQkpKCiIjI2WonoiIiFqjiupaHLpwFYn/jNoezVBuVeRuAe4YFO5TN2Ib7o0gLxe9vxsREZGUYkH36NGjeOihh6DRaCRh1VSTJ0/GJ598otP++++/44knnrBYnURERNS61dRqcCyzEHvO5WF3Si7+vnAVVTUa2esQBCCqY3sM6eyDayN8MLizL7f5ISJqJsWC7n333Yfy8nKdkGtq6I2NjYWPjw+uXr0qaf/zzz8ZdImIiKhJGo2I05eLkXguF3vO5WFfWj5KKmtkr0MlANGB7XFtZ18MifDFoHBveLky2BIRWYIiQXfTpk04cuRIs0MuADg4OCAuLg4//vgjBEGAIAgQRRG7du2yXuFERERkd0RRxPm8MuxOqQu2e1LzkF9aJXsdDioBvYI8cW1nHwyJ8ME14T5or+ZuEURE1qBI0F22bJn2a1EUJQHX0dERvXv3xqFDh4w+gzJgwAD8+OOPkrb8/HxkZ2ejQ4cOli+ciIiI7MLV0irsPpeLXWdy8VdKLjILymWvoZ1KQJ9gTwyJ8MWQznXB1t1Z8XVAiYjaBNn/tq2ursauXbu0IbZ+JFYQBIwfPx5ffvkl/P39oVKpjPbVv39/ve1JSUkMukRERG1IVY0Gh9KvYtfZHPx1NhfHMgthxtIfFuHoIKBfiBeGdPbFkIi6PWxdnRhsiYiUIPvfvvv379f7bG7Pnj3x008/oV0700vq1KmT3vb09PSWF0pEREQ2SxRFnMsp1QbbPal5KKuqlbWGdioB/UO9MDTCF9d28cWAUG/uYUtEZCNkD7r6QqggCHj22WfNCrkA4O3trbe9qEi5/e2IiIjIOhpOR951NgeXCitkfX9BAHoGtsewLn4Y2sUXg8J94MapyERENkn2v51zc3P1tsfExJjdl7Ozs9724uJis/siIiIi21JVo8HBC1fxV0oOdp3NxXEFpiNHdnBHTBdfxHTxw7URPlwVmYjITsgedEtKSvS2e3l5md1XUyO3Dg6cNkRERGRvRFFEWm4pEs7UBdu9CkxHDvJywbDIumA7tIsvAtqrZX1/IiKyDNmDrqenp972q1evmr2AVHJyst72pqY0ExERkW0pr6rF3tQ87EjORnxyDtLzy2R9fz93Jwzt4odh/4zahvi4GN31gYiIbJ/sQdfHx0dv+8GDB9G9e3ez+tqyZYvedgZdIiIi25WWW4r45GzsSM7BvtQ8VNZoZHtvD3U7XBvhq52O3C3AncGWiKgVkj3oBgUF6W3/7LPPcPfdd5vcT05ODlauXKn3f05dunRpdn2WcO7cOezfvx8ZGRmoqqqCt7c3oqKiEBMTA7VauSlQBQUFOHDgANLS0lBQUACNRgNPT08EBwdj0KBB6Nixo2K1ERFR61VRXYs9qXlISM7BjuRsXMiTb9S2nUrAgFBvXNfVD9d19UOfIE+0czC+hSEREdk32YPuNddcA0dHR9TU1AD4dx/dnTt34r///S9mz55ttI+ysjJMnjwZRUVFOkHX1dUVffr0sUrtxmzYsAGvv/46Dh06pPd1d3d3zJgxA6+88gr8/Pxkq2v9+vVYtmwZ4uPjtds56dO/f388+uijuP/++81eAZuIiKih8/+M2safycGec/KO2kb4ueG6rn4Y3tUf10b4wEPtKNt7ExGRbZA9zbi4uGDAgAHYt2+fNuTW//OFF15AYmIiZs6cqffas2fPYsuWLfjvf/+LCxcu6FwvCAIGDx4MlUreT2orKyvxwAMPYPXq1QbPKykpwbJly/DDDz9g3bp1iI2NtWpdeXl5mDZtGn777TeTzj98+DAeeeQRfPrpp/j+++8RGRlp1fqIiKj1qKiue9Y2PjkHCWdykJZbKtt7e7o4YlikL4Z39cd1kX4I8XGV7b2JiMg2KTJsN2XKFOzbt0973DCsbtiwARs2bNC2NzwnKipK0q5v2vLUqVOtWLkujUaDKVOmYOPGjZJ2BwcHhIaGwtPTE2lpaSgsLNS+lpOTg3HjxmHbtm0YOnSoVeoqKirCmDFj9I4u+/v7IyQkBIIgIDMzE5cvX5a8fvDgQcTFxWHXrl0IDw+3Sn1ERGT/LhdVYPfRbPx5OhuJ53JRUS3PqG39dOThXf0wvJs/egd5wkHF52yJiOhfigTdhx56CK+99hoKCwu1Abdh2G1K44Bbf009X19f3HPPPdYtvpF3331XJ+Q++uijmD9/PgIDAwHUheGNGzfi6aefRnp6OoB/p1+fOHGiyZWoW+Kll17SCbm33HILXn31VfTv31/SnpSUhEWLFklGpDMyMvDwww83ueAXERG1PRqNiBOXivDbRRVOXhWQsSdRtveO8HOrC7Zd/XFtF1+4O/MRGyIiapoi/5dwc3PDnDlzMHfuXElQbRhc9QXexuc2vm7evHlwcpJvI/e8vDwsWrRI0vbmm2/ixRdflLSpVCpMnDgRgwcPxnXXXYfz588DqAuTS5YswYIFCyxaV3Z2Nv73v/9J2mbOnImPP/5Y7/k9evTAN998g+7du+Pll1/Wtm/duhV79uyx2qgzERHZvvKqWuxOycX201ewPSkb2cWVAKz/iJCHuh2Gd/VDbFd/XNfVD8HenI5MRESmU+zj0BdeeAHbt2/Htm3bJCO5pozo1qsPvoIgYPTo0XjqqaesV7Ae77zzDoqLi7XHsbGxmDNnTpPnBwUF4fPPP8cNN9ygbVu6dCmeeuop+Pr6WqyuTZs2oba2Vnvs7++PxYsXG73u//7v//Ddd98hKSlJ2/bLL78w6BIRtTFXiiqwPSkb25Ou4K+UXNkWkoru1B4juvtjRPcOGBDqxdWRiYio2RQLuoIg4Ntvv8XYsWNx+PBhgyO5TV1ff37//v3xzTffWK1WfTQaDb766itJ26uvvmp0L75Ro0Zh+PDh2LVrFwCguLgYa9asaXIBruZITk6WHI8dOxaursY/Ca8feW4YdFNSUixWFxER2SZRFHHyUhG2JdWN2h7PLDR+kQXUj9qO6NYB13f3R0B75bbgIyKi1kXRB1z8/Pywa9cu3HXXXfjll18gCILJm7bXB+Jx48bhhx9+gLu7uzVL1ZGYmIicnBztcUREBEaMGGHStQ888IA26AJ12xJZMujm5+dLjkNCQky+NjQ0VHJcUFBgiZKIiMjGVFTXIvFcLrYlZePPpGxcLqqQ5X171I/advPHgDBvOHLUloiIrEDxlRxcXV2xceNGbNq0CfPmzcOxY8ckrzc10tuzZ08sWrQIt9xyi2y1NvTrr79KjkePHm1ySB89erTkOD4+HqWlpXBzc7NIbY0XtyovLzf52sbnyrnfLxERWVdheTV2nM7GHycvI+FMDsqqao1f1ELuzv+M2nb3x/XdOqCjJ0dtiYjI+hQPuvUmTJiACRMm4OTJk/jjjz+wd+9eZGdna0dN/f390aFDBwwePBg33ngjevXqpWi9R44ckRzHxMSYfG1gYCDCw8O1i1JVVVXh1KlTGDRokEVq69evn+T4wIEDJl+7f/9+yfHgwYMtURIRESkku6gCf5y6gi0nL2PPuTzUaEx7RKglojp6YET3DhjR3R8DOWpLREQKsJmgW69nz57o2bOn0mUY1fA5VgCIjo426/ro6Ght0K3vz1JBd8KECXBzc0NpaSkAYPfu3SatnpySkoIff/xRe6xWq3H33XdbpCYiIpJPWm4p/jh5GX+cvIzD6QVWfz/ndipcF+mHUT0CEBflj06eLlZ/TyIiIkNsLujag/Lycu1+uPXMeQ5W3/mNF5BqCS8vL7z00kv4v//7P23bpEmTsHHjxibDdFJSEm699VZUVVVp2xYuXIgOHTpYrC4iIrKO+sWk6sPtmSslVn/P9o4ixvYOwthegRgW6QcXJwervycREZGpGHSbITc3V/LMsKOjo9mBMCgoSHKcnZ1tkdrqvfjiizh58iS+/fZbAEBWVhaGDh2K8ePHY8yYMQgLC4MgCMjMzMSff/6J9evXo7q6WnL97Nmzm/3+GRkZBl/PysrSfl1eXm7Wc8SWVlFRofdrsn28d/aL967lajQaHEovxLbTOdh+OheXCq3/77FHR3cMj/CCR/F5BLsBI64Ph1qtBmqroOBf42Qi/ndnv3jv7BfvnWmskQUE0dT9fEgrKSlJMlXZ09PT7NWJlyxZIgmSd955J7777jtLlQig7hP+jz/+GAsWLJCsEG3IsGHDsGDBAowaNapF723qwlwA8Pnnn3PRKyIiE9RogORCAUfzBJy4KqC0xvS/a5ujnSCim6eInt4ienmL8HK26tsREVEblZubiwcffBAAcPHiRQQHB7e4T47oNkNJiXRKmFpt/gqSLi7S55ca92kJgiDg8ccfx6233oqZM2di06ZNBs8fNmwYZs+ejbi4OIvXQkREzVOjAU4XCjiSJ+BEvoDyWuuGWw/Hf4NtN08RzpyRTEREdsiiQfe1116zZHfN9vLLL1u1/8bTDpycnMzuw9lZ+rG4NYbrS0tLMX/+fPzvf/8zqf/du3dj9+7diIqKwldffYVrr7222e998eJFg69nZWVpV3SOjY21yKc2zVVRUYGdO3dqa2nOBxekDN47+8V7Z1hVjQa7z+Xj91PZ2JGci+LKGqu+X1SAO0Z080Ncdz/0CvSAysCsHN47+8V7Z7947+wX751pjD322BwWDbqvvvqqWVNWrcXaQbfxD2jDBZxMVVlZabDPlrp06RJGjRqF06dPa9u6d++OWbNmYeTIkQgODoZKpUJWVhZ27dqFDz/8EAcPHgQAnD59GsOHD8fatWtx2223Nev9zQmuLi4uOiPcSlGr1TZTC5mH985+8d7Vqaiuxa6zufjteBa2nbpi1XCrEoBrwn0wtmdHjIkOQIiPa7P64b2zX7x39ov3zn7x3jXNGv9erDJ1WcnHfuUI2u7u7pLj5jxY3niEtXGfLVFRUYExY8ZIQu6DDz6Ijz76SGf0OSIiAhEREZg2bRrmz5+PRYsWAQBqampw11134dChQ+jRo4fFaiMion/Vh9tfj13CtqRslFgx3Do5qHBdVz+M7RmAUT0C4OfOB26JiKj1skrQVWpUV66A3TiUlpWVQRRFs77v+j1um+qzJd5++22cPHlSezxy5Eh88sknUKlUTV4jCAIWLlyI9PR0rFq1CkBdYJ49ezZ+++03i9VGRNTWVVTXYueZnLqRWyuHW3fndoiL6oCxPQMwonsHuDtzaQ4iImobWs2Irpzh2s/PD4IgaL/P6upqZGdnIyAgwOQ+MjMzJceW2q+2trYWy5Ytk7QtXLjQYMhtaNGiRVi9ejU0Gg0A4Pfff8fFixfN3ieYiIj+VV2rwV9nc/Hz0UvYeuqKVcOtn7sTRkcHYEzPjojp4gvndlxNioiI2h5+tNsMLi4uCA0NxYULF7Rt6enpZgXd9PR0yXFUVJRFajt27Bhyc3O1x35+fmYtKhUSEoK+ffvi8OHDAOo+tPjrr79w1113WaQ+IqK2QqMRceB8PjYevYTNx7Nwtaza+EXNFOrjirE9AzC2Z0f0D/WGg0r59TKIiIiU1KqmLsspKipKEnRPnTqFQYMGmXx9UlKSTn+WkJaWJjkODw83+3507txZG3QB3dFnIiLSTxRFnLxUhI1HMrHpWBayCs1fw8FU3QLcMa5XJ9zYqyOiOnq0if/3EhERmcriQVfJhajk1K9fP/zxxx/a48TEREyfPt2ka7OysnD+/HntsaOjI6Kjoy1SV+PVnNu1M/8WOzo6So5ra2tbVBMRUWt3LqcEPx+5hF+OXkJqbqnxC5qpe4AHburdCeP7dERkBw+rvQ8REZG9s2jQ3bFjhyW7s2kTJkzA22+/rT3etm2byQtSbdmyRXIcFxdnscWofH19JceXLl0yu4/GI7j+/v4tqomIqDW6VFCOTccuYeORSzh5qchq7xPVsS7c3tS7EyI7WG7hQiIiotbMokH3+uuvt2R3Ni0mJgZ+fn7a52FTU1MRHx+PuLg4o9d+8cUXkuNbb73VYnWFh4dLjtPT03Hu3Dl06dLFpOuLi4tx4MABSZup1xIRtXb5pVX47XgWfj5yCfvP51vtfaI6emB87064qU8ndPFnuCUiIjIXF6NqJpVKhRkzZmDx4sXatgULFmDEiBEGR3W3b9+OXbt2aY89PDwwefJki9XVrVs3BAcHIyMjQ9u2ePFiLF++3KTrlyxZIpn+7OrqatZiVkRErU1lTS12nM7Gj4cyseN0Nmo01nlEp0en9hjfuyNu6t0JEQy3RERELWLanjOk15w5cyRTjhMSEiTTmRvLzMzEgw8+KGmbNWsW/Pz8DL6PIAiSP/Hx8QbPnzp1quT4k08+wcqVKw1eAwC//PILFi5cKGm788474ezsbPRaIqLWRBRFHEq/inkbjmPwou149JtD2HrqisVDbnSn9nh+bHfseG4ENs8ajidGdmXIJSIisgAG3Rbw8/PDSy+9JGmbO3cuHnvsMcmzsRqNBhs2bEBMTIxkEarAwEDMnj3b4nW98MIL8PHx0R6Loojp06fjvvvuw8mTJ3XOT0lJwZNPPonbbrsNNTX/7u3o6uqKl19+2eL1ERHZqov5Zfhg+1mM/G8Cbv84Ed/sTUdhuWW3Beri74ZnbuiGHc+NwG+zhuPxuEh09nOz6HsQERG1dZy63EJz5sxBYmIiNm3apG1bvnw5Pv30U4SFhcHT0xNpaWkoKCiQXOfi4oI1a9bAy8vL4jV5e3vjp59+wpgxYyTTkFesWIEVK1agQ4cOCA4OhiAIuHTpErKysnT6UKlU+PbbbxEWFmbx+oiIbElRRTU2H8/Cj4cysT/NOs/dBnqqcXO/QNzSNxDRndpzKyAiIiIrY9BtIZVKhbVr1+K+++7D999/r22vra1Famqq3mt8fX2xbt06DBs2zGp1xcbGYtu2bZg6dapkv18AyM7ORnZ2dpPXBgQE4Msvv8RNN91ktfqIiJRUU6vBrrO5WH84E1tOXkZljcbi7+Hj5oTxvTvhln6BGBjqDZWK4ZaIiEguNhN0KysrcfjwYSQnJ6OgoADFxcXQaJr3i4fc023VajW+++47/Oc//8HChQtx5MgRvee5ublh+vTpeOWVV9ChQwer13Xdddfh+PHj+OKLL/DJJ5/g9OnTBs8PDw/Hgw8+iEcffVRnmyIiotYg+XIx1vx9ERuPXEJuSaXxC8zk5uSAsb064pa+gRgW6QdHBz4hREREpATFg25CQgI++OADbNq0SfJ8aEso9VzppEmTMGnSJKSkpGDfvn3IzMxEVVUVvLy80KNHDwwbNgxqtdrsfkWx+YufeHh44Omnn8bTTz+Ny5cv48CBA7h06RIKCgogiiI8PT0REBCAa665BqGhoc1+HyIiW1VUUY1fjl7Cmr8zcPRigcX7d2qnwsjuHXBLv0CMjOoAtaODxd+DiIiIzKNY0K2ursbMmTPx1VdfAWhZmGvIFp57ioyMRGRkpNJl6OjYsSNuvvlmpcsgIrI6URSxLy0faw5cxG8nslBRbdmpyYIADOvih1v7BWJsr45or3a0aP9ERETUMooEXVEUcdddd+Gnn37SBlxLBFRLhWUiIrJPlwsr8OOhDKz5+yIu5JVZvP9uAe6YNCAYt/YLQkdP82foEBERkTwUCborVqzA+vXrtfvC1mtJULWFkVwiIpJfVY0G25OuYM3fF5FwJgcW3uoWfu5OuKVvEG4fEISegVwxmYiIyB4oEnRff/117dcchSUiouY4c6UYPxy4iJ8OZyK/tMqifTu1U2FMdAAmDQjGdV25qBQREZG9kT3oJiUl4fz58xAEQSfk8lNyIiIypLyqFpuOXcK3+9NxOL3A4v0PDvfB7QOCMK53J3i68LlbIiIieyV70P3777/1tteHXI7wEhFRYynZxVi9Lx0/HsxAUYVlVuivF+7ritsHBGNi/yCE+LhatG8iIiJShuxBNycnR3LcMOA6OjpizJgx6NevH/z8/ODi4gJHR0eoVJwyRkTU1lTW1OL3E5exel869qflW7RvNycH3Nw3EHdcE4wBod6cUURERNTKyB50NZp/t3hoGHJ9fX2xfft29OnTR+6SiIjIhpzPLcV3+9Ox9mCGxZ+9HRTujcnXhOCm3p3g5qz4VvJERERkJbL/Xz4oKEhyLIoiBEHA66+/zpBLRNRGVddqsO3UFazel46/UnIt2re/hzMmDQjGHdcEo4u/u0X7JiIiItske9Dt1q2b3vaxY8fKXAkRESktvxJ4789zWH/kMnKKKy3Wr4NKwMioDphyTQhGdPdHO66aTERE1KbIHnQHDhyI8PBwXLhwQdLu4OAgdylERKQAURSxNy0fXySrcDxfgIgLxi8yUYS/G6ZcE4KJA4LQwUNtsX6JiIjIvijygNK9996L119/XbL4x7FjxxAaGqpEOUREJIPSyhr8dDgTK/ecx5krJQAsM8rq6uSACX06YcqgEC4sRURERAAUCrrPPfccvvjiC2RlZWnbPvjgA0yYMEGJcoiIyIrO55Zi5Z4LWHvwIootuDVQj07tcc+QUNzaLxAeau55S0RERP9SJOh6eHhg5cqVuPHGG1FbWwtRFLF9+3Y899xzWLx4sRIlERGRBWk0IhLO5mBl4nnEn8mBpbZIVzuqMKFPIO4ZEop+IV4cvSUiIiK9FNtbYeTIkfjqq68wY8YMaDQaiKKIpUuXIiEhAS+++CJuuukmuLi4KFUeERE1Q1FFNdb9nYFVey8gLbfUYv127eCOu4eE4vb+wfB05egtERERGaZI0B05cqT2a09PT+Tn50MQBIiiiIMHD2Ly5MlQqVSIiIiAr68v1GrTFxQRBAHbt2+3RtlERNSEtNxSfPlXGn48lIGyqlqL9OnkoMJNvTvinmvDcE0Yn70lIiIi0ykSdOPj43V+YanfT1cURYiiiNraWpw9exYpKSkm91vfBxERWZ8oitiflo/PdqVh++krFpue3NnPDXcPDsWkgcHwcXOyTKdERETUpig2dRmo+yWp8bG+AGwKBlwiInlU12rw2/EsfL4rDcczCy3Sp4NKwOgeAZg2NAxDu/jy73QiIiJqEUWDbv0vMg3DbP3X9a/xlx0iIttQWF6N7/enY0XieWQVVlikT7d2Iu65NhwzruuCQC+uy0BERESWYVMjuqa+pg8DMRGRdVzML8OXu9Ow5sBFlFro+dvoTh7o51qAAX4ixo/qwsUHiYiIyKIUDbpERGS7Dl64ii/+SsXvJy5DY4Hnb9upBNzUuxOmx4Sjh78ztm7d2vJOiYiIiPSwianLRERkGzQaETuSs7E8/hz+vnDVIn36ezjj7sGhuGdIKDq0r1tFv7y83CJ9ExEREemjWNA1d2oyERFZT3WtBpuOXcL/4lORfKXYIn0OCPXC9JhwjOvVCU7tVBbpk4iIiMgUigRdjUajxNsSEVEj5VW1WHvwIj7dmYqMqy0fZXVQCRjfuxMeuK4z+oZ4tbxAIiIiombgM7pERG1QYVk1Vu09j692n0deaVWL+/Nwboe7hoRiekw4grh6MhERESmMQZeIqA25UlSBL/5Kw+q9FyyygnKQlwvuv64zpgwKgbsz/5dCREREtoG/lRARtQHnc0vxyc5z+PFgJqpqW/74SL8QLzw0PAJjewagnQOfvyUiIiLbwqBLRNSKncspwUd/pmDDkcwWbxGkEoAbe3XEA9dFYGCYt2UKJCIiIrICmwy6oiji9OnTyMnJQU5ODgDA398f/v7+iIqK4rZERERGpGQX48M/U/DL0UstDrgujg6YMigE9w/rjFBfV8sUSERERGRFNhV016xZg++//x7x8fEoLCzUe46npydGjBiBu+66C3fccYfMFRIR2bbky8X48M+z+PV4Flq6i5uXqyNmxIRj+tBweLs5WaZAIiIiIhnYRND9888/8cwzz+DEiRMADO+xW1BQgI0bN2Ljxo1YtGgRli5diri4OLlKJSKySUlZRfhg+1lsPnG5xX118lTjweERuHNQCNy4wBQRERHZIcV/g/noo4/wzDPPoLa2VhtwjU1Nrj/v2LFjGDt2LN577z089thjVq+ViMjWnMgsxAfbz2LLqSst7quLvxsevb4Lbu0XBKd2XGCKiIiI7JeiQff999/Hs88+qzfgNjWqKwiC5Lyamho8+eSTqK2txZNPPmndgomIbMTJS4VYuvUMtiVlt7ivvsGemDkiEmOiA6BScQ0EIiIisn+KBd0DBw7ghRdegCiK2uBqaMpyvYbn1IdeURTx/PPPIyYmBgMHDrRazURESkvJLsHSrWfw6/GsFvc1vKsfZo7ogqERvlzkj4iIiFoVxYLuQw89hOrq6iZDblO/dDU8rz4kC4KAqqoqPPTQQzh06JD1iiYiUsjF/DK8t+0sfjqc0eJVlEdHB+CpkV3RO9jTMsURERER2RhFgu7WrVtx7Ngx7WhsQ4amLzectlz/WsMR4aNHj2Lbtm244YYbrFk+EZFsrhRV4MM/z+KHAxdRXduyhDuuV0c8MTISPQMZcImIiKh1UyToLl++XG97w+Dr7OyMrl27wsvLC0Ddastnz55FZWWlzrmN+2bQJSJ7l19aheXxKVi55wIqazTN7kcQgJt6d8KTIyMR1bG9BSskIiIisl2KBN2EhATJyG3DUdpx48bh2WefxYgRI+Dg4CC5rra2FvHx8Xjvvffw66+/SsJu/dcJCQnyfSNERBZWVFGNz3em4ou/0lBaVdvsfgQBuLlPIJ4YGYluAR4WrJCIiIjI9skedE+ePImrV69qg2nDfy5ZsgRPP/10k9c6ODhg1KhRGDVqFD788EPMmjVLcj0AXL16FSdPnkTPnj1l+o6IiFqusqYWq/ZcwLIdKSgoq252PyoBuLVfEB6Pi0RkB3cLVkhERERkP2QPusnJydqvG4bUiRMnGgy5jT355JNISEjA+vXrdRauSk5OZtAlIrug0Yj45dglvPtHMjKulje7H5UATOwfjCdGRqKzn5sFKyQiIiKyP7IH3fz8fL3tDz30kNl9Pfzww1i/fr3J70FEZEsSU3LxxuYknMgsalE/N/cNxDM3dEWEP0dwiYiIiAAbCrrR0dFm99WjRw+97VevXjW7LyIiuZy+XIS3Np9GfHJOi/q5oUcAZo/phh6duMgUERERUUOyB92m9sfVaMxfVVTfqstERLYqq7AcS7acwbpDGWjJX1/XRfph9phu6B/qbbniiIiIiFoR2YOuj4+P3vZTp04hLCzMrL5Onjxp1nsQESmhuKIa/0s4hy/+SkNFdfO3ChoY5o3nxnTH0C6+FqyOiIiIqPWxmaD76aefYty4cWb19dlnn+lt9/XlL4FEpLxajYh1By/i3T/OILekstn99Axsj+fGdMeI7v5NzoohIiIion/JHnQbPlfbcHuhn3/+GUuWLMGzzz5rUj9Lly7Fhg0bdLYXAoCoqCiL101EZI4D5/Ox4JeTLVpoqrOfG54b0x3jenWESsWAS0RERGQq2YNuVFQUfH19kZ+fr7OX7vPPP48///wTs2fPxvXXXw+VSiW5VqPRICEhAUuWLMFvv/0GADoh19fXl0GXiBSTWVCON39LwqZjWc3uw9fNCU/f0BV3Dg6Fo4PK+AVEREREJCF70AWAuLg4rFu3ThtQG4bdzZs3Y/PmzXB2dka3bt3g5eUFACgoKMDZs2dRUVGhc03D4xEjRijxLRFRG1dWVYP/xZ/DJztTUVnTvOdwXRwd8NDwznj4+i5wd1bkr2ciIiKiVkGR36RmzpyJdevWSdoaB9eKigocO3ZMEoYbanhuQ4899piVqiYi0iWKIjYeuYS3Np/G5aKKZvWhEoApg0Lw9A3dENBebeEKiYiIiNoexUZ0+/fvjyNHjugdla0niqIkzDZ+rb6t/roBAwZwRJeIZHMisxAvbzyBQ+kFze7jhh4dMOfGKHQN8LBcYURERERtnGJz4z799FMMGzYM1dXVOmEXqAuw+lYXbSr4Ojk54ZNPPrFy1UREQGF5NZZsScaqvRegaeZ+uH1DvPDSuCgMieAq8URERESWpljQHThwIN59913MmjVLG2obhlh905L1qT9v8eLFGDBggFVqNde5c+ewf/9+ZGRkoKqqCt7e3oiKikJMTAzUauWnJdbW1uLgwYM4deoUsrOzUV1dDXd3dwQHB6NHjx6IiorSWQiMiP6dprzw16RmbxfUsb0ac2+Kwi19A7lVEBEREZGVKLrayZNPPgmVSoWnn34aGo1G79Tkxhqf4+DggPfff98mns3dsGEDXn/9dRw6dEjv6+7u7pgxYwZeeeUV+Pn5yVwdkJaWhnfffRffffcdCgoKmjyvffv2iIuLw8MPP4ybbrpJvgKJbNjZK8WYv/EE9qbmN+t653YqPHJ9Fzx6fQRcnbjQFBEREZE1KT5s9/jjj+P3339HdHS05Jnc+lHexn+Af5/d7dWrF/744w/FQ25lZSWmTp2KiRMnNhlyAaCkpATLli1DdHQ0du7cKVt9Go0Gb775Jnr06IHly5cbDLkAUFRUhI0bN2LlypXyFEhkw0ora/Dm5iSMe39Xs0PuhD6dsH329Xh2dDeGXCIiIiIZ2MRvXKNGjcKxY8fwww8/4IcffsCOHTtQVFSk99z60cY777wTkydPVnzqn0ajwZQpU7Bx40ZJu4ODA0JDQ+Hp6Ym0tDQUFhZqX8vJycG4ceOwbds2DB061Kr1VVdX45577sHatWt1XvP09ESnTp3Qvn17FBcX48KFCygrK7NqPUT2QhRF/HHyMl775RQuFTZvNeWege3xys09Mbizj4WrIyIiIiJDbCLoAnUjuHfeeSfuvPNO1NbW4vTp08jOzkZubi4AwM/PDx06dEBUVBQcHBwUrvZf7777rk7IffTRRzF//nwEBgYCqAvDGzduxNNPP4309HQAQFlZGSZPnowTJ07A09PTavU98MADkpDbrl07PPLII5g+fTquueYayQcFGo0GZ86cwR9//IE1a9Yo/iECkVIuFZTj5Y0nsC0pu1nX+7k74fmx3fGfgSFwUPG/IyIiIiK52UzQbcjBwQE9e/ZEz549lS7FoLy8PCxatEjS9uabb+LFF1+UtKlUKkycOBGDBw/Gddddh/PnzwMAMjIysGTJEixYsMAq9X3zzTdYtWqV9jgwMBCbN29Gnz599J6vUqkQFRWFqKgozJo1C1evXrVKXUS2SqMRsXrfBbz9ezJKKmvMvr6dSsD913XGkyMj4aF2tEKFRERERGQKxZ/RtWfvvPMOiouLtcexsbGYM2dOk+cHBQXh888/l7QtXboUeXl5Fq8tNzcXzzzzjPbY09MTCQkJTYZcfby9vS1eF5GtSskuxh2f7MH8jSebFXKHdPbBb7OG46WbejDkEhERESmMQbeZNBoNvvrqK0nbq6++anS676hRozB8+HDtcXFxMdasWWPx+hYtWqSd9g0Ab7zxBiIjIy3+PkT2rqpGg/e3ncVN7/+FgxfMn8Xg5+6MpVP64vuHr0W3AA8rVEhERERE5mLQbabExETk5ORojyMiIjBixAiTrn3ggQckxxs2bLBgZXWrQDdcMbljx4545JFHLPoeRK3BwQtXMeHDXVi67QyqajVmXasSgOlDw7B99vWY2D+Yz7QTERER2RCbfEbXHvz666+S49GjR5v8i+7o0aMlx/Hx8SgtLYWbm5tFavvpp5+Qn//vNih33nmnTS3gRaS00soavPtHMr7ecx5NbNltUN8QLyy6rRd6BVlvITkiIiIiaj6LBl19YUoQBNTU1Bg9z1L0vZ81HDlyRHIcExNj8rWBgYEIDw/XLkpVVVWFU6dOYdCgQRaprXEIj4uLs0i/RK3B/rR8PLf2KNLzzd9Ky8vVEXNujMKUa0Kg4mrKRERERDbLokFXNHFoxNTzbFlSUpLkODo62qzro6OjtUG3vj9LBd0DBw5Ijvv27QsAqK2txZYtW/D111/j8OHDyMjIgKOjI/z9/dG/f3+MGzcOU6ZMgaurq0XqILIlFdW1ePePZHy5O61Zo7gT+wdh3vge8HV3tnxxRERERGRRFp+63HD6rqFAa43n2eQK0OXl5dr9cOuFhISY1Ufj85OTk1tcFwAUFhbizJkz2mMHBweEhYUhNTUVU6dOxZ49e/Rek5KSgrVr12LevHl46623cO+991qkHiJbcDj9KmavPYrUnFKzrw3ycsGiib0wonsHK1RGRERERNZglWd0RVE0KchaMpjKuRBMbm6upHZHR0d06GDeL8FBQUGS4+zsbIvUlpqaKqnNw8MDp06dQkxMDAoLC41ef+nSJUybNg0nT57EW2+91ew6MjIyDL6elZWl/bq8vBzl5eXNfq+Wqqio0Ps12T5j966qRoOPE9Lw2e4L0Jj5140A4N4hIXhqZGe4ObVT9Ge0NeJ/d/aL985+8d7ZL947+8V7Zxpr/J7FxaiaoaSkRHLs6upqdtBuvPBU4z6bq6CgQHIsCAImTJigDbmurq64++67ERsbC19fX+Tl5SEhIQHffvut5Afs7bffRlBQEJ588slm1WHOCPfOnTvh5+fXrPextJ07dypdAjVT43uXUQqsTnHApTLzPwTr5CLizi61CFelYXd8mqVKpCbwvzv7xXtnv3jv7Bfvnf3ivWtaw21RLcUqQdfU0Gev23E0DqVqtdrsPlxcXAz22VyNg+7Vq1dx9Wrd3qADBw7E+vXrERoaKjnn3nvvxbx583Drrbfi2LFj2vbnn38eY8eORbdu3SxSG5EcNCKwLVPA5gwVNKJ5f8c4CCLGBmswKlBEO26+RkRERGS3rDZ12ZLn2ZrG0w6cnJzM7sPZWbqgjaWG65sKzMHBwdi6dSu8vb31vh4eHo7t27ejd+/euHz5MoC6/XgXL16MTz/91Ow6Ll68aPD1rKwsDB48GAAQGxuL4OBgs9/DUioqKrSfsMXGxjbrgwtSRuN7l18JvLD+JA5eND5Nv7H+IZ5YeEsUIvwss80XGcb/7uwX75394r2zX7x39ov3zjTGHntsDosG3djYWJNGaU09z1Y1/gGtqqoyu4/KykqDfTZXU/28++67TYbcen5+fnjrrbcwY8YMbduqVavw/vvv64xAG2NOcHVxcTG7f2tRq9U2UwuZ58+UQrz6azKKK8zbXsypnQrPj+mO+6/rDAduGaQI/ndnv3jv7Bfvnf3ivbNfvHdNs8a/F4sG3fj4eIueZ6vc3d0lx815sLzxCG7jPptLXz8+Pj6YNGmSSddPmTIFs2bN0j7TW1FRgf379+P666+3SH1EllZRC/yYpsL+PSfNvrZvsCf+O7kvIjt4WKEyIiIiIlIKn0JrhsZhsqyszOxp2KWl0m1OrBl0hw4dCkdHR5OuV6vV2inF9f7++2+L1EZkaUczCvHuUQfszzHvrzJHBwHPjemGH2fGMOQSERERtUIMus3g5+cnmXpdXV1t9vZAmZmZkmNztydqSkBAgE6buYtJde/eXXJsqa2PiCylViNi2Z9ncc+Xh5Bbad5046iOHtj4+HV4YmRXtHPgX4FERERErRG3F2oGFxcXhIaG4sKFC9q29PR0vSGzKenp6ZLjqKgoi9TWpUsXODk5SZ4bbt++vVl9ND6/ftVmIluQXVSBp74/jL2p+WZd56AS8NiILnhyZFc4cUllIiIiolaNv+01U+NgeurUKbOuT0pKMthfczk4OOiM4DZe+MqYxs8cu7q6trguIktITMnFTR/8ZXbIDfd1xY8zYzB7THeGXCIiIqI2wK5+46uursbevXvx008/Yf369di/fz9qa2sVqaVfv36S48TERJOvzcrKwvnz57XHjo6OiI6OtlBlwIABAyTHV65cMev6xlOVfX19W1wTUUvUakS8t+0M7vliH3JLzPvg5o6Bwfj1qeHoF+JlneKIiIiIyObYRdAtKirCrFmz4OPjg2HDhuE///kP7rjjDgwdOhSdOnXCa6+9JnvgnTBhguR427ZtJi9ItWXLFslxXFycxRajAoBbbrlFcnzw4EGzrm98fuNndonklFNcielf7sd7287CnDXf2qvb4aO7B+DdO/rCzZlPaRARERG1JYr89peVlYV77rlHpz0oKAirVq2StF29ehVxcXE4fvy43iCZm5uLBQsWYMeOHdiyZYvJqwu3VExMDPz8/JCbmwsASE1NRXx8POLi4oxe+8UXX0iOb731VovWduONN0KtVmunIB87dgxnz55F165djV578uRJnWnVI0aMsGh9RKbam5qHJ787jJxi80ZxB3f2wdIp/RDkxb3qiIiIiNoiRUZ0d+7cifj4eCQkJCAhIUH7tb+/v865L774Io4dOwZRFCEIgt4/oihi586dmDVrlmzfg0qlwowZMyRtCxYsMDqqu337duzatUt77OHhgcmTJ1u0Njc3N0ydOlXStnDhQpOufe211yTH119/vcVWhCYylUYj4qMdKbj7s71mhVwHlYDnx3bHdw9dy5BLRERE1IYpFnT1aRz4Ll++jC+//FIbaAFAFEXJHwDasPvZZ5/hzJkz1i2+gTlz5kimHCckJODtt99u8vzMzEw8+OCDkrZZs2bBz8/P4Ps0Dvbx8fFGa3vllVegVqu1xytXrsSXX35p8JqPP/4Ya9askbTNnTvX6HsRWVJRRTUeXnUQ7/6RDI0ZU5VDvV3w48wYPB4XCQeVeVsOEREREVHrokjQPXDggE5b+/btMWTIEEnb6tWrtc/eNgy2DTVs02g0+N///mfhapvm5+eHl156SdI2d+5cPPbYY7h06ZKkrg0bNiAmJkayCFVgYCBmz55tldqCg4MxZ84cSduDDz6IJ554AhcvXpS0p6enY+bMmXjiiSck7XfddRfGjh1rlfqI9EnJLsFtH+3GtiTzFlDr56PBuocHccEpIiIiIgKgQNAVRREnT56UjNAKgoBhw4Zp2+o1XrQJ0B3dbNguiiJ++eUX634DjcyZM0dnYarly5cjNDQUXbp0wYABA+Dr64uJEydK9s51cXHBmjVr4OXlZbXa5s+fL6lNFEV89NFHCAsLQ5cuXTB48GB06dIFYWFh+N///if50GDAgAH49NNPrVYbUWN/nLyM2z7ajdScUpOvcVQJmBReixndNPBQc8EpIiIiIqoje9BNTU1FeXm5Tnvj0dza2lrs2bNHb5htPLrb8OvU1FSzt9NpCZVKhbVr1+LOO++UtNfW1iI1NRWHDx9GQUGB5DVfX1/89ttvGDZsmFVrc3BwwLp16zB9+nRJuyiKSE1NxYEDB5Camqpz3S233IKEhASLrgRN1BSNRsSSLcl4ZNVBlFTWmHxdiI8Lvn1gIGI7iRA4U5mIiIiIGpA96DacuttQjx49JMdnzpxBSUmJznkff/wxiouLsWnTJqjVap2RXQBITk62WL2mUKvV+O6777Bu3Tqd/XUbcnNzw2OPPYZTp07JtpKxs7MzVqxYgc2bNxsM1oIgYMiQIfjll1+wceNGhlySRWF5NR74+gA++DPFrOvGRAdg05PD0SuwvZUqIyIiIiJ7Jvtcv8bPh9aLjIyUHJ8+fVr7df305iFDhuDRRx8FANx00014/PHHsXjxYp2gm5qaitjYWAtXbtykSZMwadIkpKSkYN++fcjMzERVVRW8vLzQo0cPDBs2TLJAlKlM3Z/XkBtvvBE33ngjMjMzsWfPHly4cAEVFRXw9vZGp06dMGzYMK6uTLJKyS7Bg18fwPm8MpOvaacSMPemHrh/WDgEQUB5uekjwERERETUdsgedAsLC/W2e3p6So71jco23qP2pptuwuLFi3XOKy4ubkGFLRcZGakT3G1FUFAQ/vOf/yhdBrVxu87m4LHVh1BcYXpQ7dhejY+nDsCAUG8rVkZERERErYHsQbe0VP9CM42nyqak6E5ljI6Olhx37tzZrPcgIuWt2nsBr/58ErVm7B00ONwHH90zAP4ezlasjIiIiIhaC9mDrkql/7HgyspKybG+RZLCw8Mlx66urnr7ssRUXyKyrJpaDRb+moQViefNum5GTDj+b3wPODooshsaEREREdkh2YOum5ub3vb09HQEBwdrj0+fPq3z7G3joKtv9Wag6QBMRMooqqjGk98eRsKZHJOvcWqnwhsTe+M/A4ONn0xERERE1IDsQySNn8Wtt23bNu3XSUlJuHz5suR1V1dXBAUFSdqaehbXw8OjhVUSkaVczC/DpI8TzQq5QV4u+PHRGIZcIiIiImoW2Ud0u3TpIjmu3xt3yZIl6Nu3L0JDQ/HUU09pX6+fhhwVFaXTV+MwXK9xICYiZRy5WIAHVhxAXmmVydcMjfDFsrv7w9edz+MSERERUfPIHnS7d++u/brhs7RFRUW4/fbbtccNpy0LgoChQ4fq9NVwC6KGwsLCLFEqEbXAn6ev4PHVh1FeXWvyNfcMCcWrt/Tk87hERERE1CKy/zbp5+eH3r17A9ANs6IoSv40NHLkSJ2+Tp06pdPWrl07nVFjIpLX9/vT8dDKgyaHXJUAvHJzNBbe1oshl4iIiIhaTJHfKCdOnKh3ZWRBECR/6nl6emLcuHE65yckJGjPq+8vOjoajo6OVqqciAwRRRHvbTuDF9cfN3n7IHfndvhixiDcN6yzzgJ0RERERETNoUjQfeqpp7QLRjUMqo1Hc0VRhCAIeOihh+DsLH1e7/LlyzojuoIg4JprrpHhOyCixmpqNZi7/jje23bW5GuCvFzw48wYxHXvYMXKiIiIiKitUSTo+vj44MMPP9QG2sYjuQ1HdSIiIvDyyy/r9PHjjz/q7XvEiBFWqZmImlZWVYOHVx3E9wcumnzNwDBvbHxiGLp35CrpRERERGRZij0MN23aNHz55Zfw8PDQGc2t/zN48GDs2LFD7967X375JQDoPM97ww03yPY9EBFQWF6NaV/sx5+ns02+5ua+gVj94BD4cWVlIiIiIrIC2VddbmjGjBm4+eabsXbtWuzduxdXrlyBs7MzwsPDMW7cOIwdO1bvddXV1Zg1a5bOc74uLi4ICAiQo3QiApBbUolpX+zHqawik695JDYCc26MgkrF53GJiIiIyDoUDboA4Ovri0cffRSPPvqoydc4Ojpi2rRpVqyKiIzJKizHPZ/vQ2pOqUnnCwIwf3w07r+us5UrIyIiIqK2TvGgS0T253xuKe75fB8yC8pNOt/JQYWlU/phfJ9OVq6MiIiIiIhBl4jMlHy5GFO/2Iec4kqTzvdQt8Nn067BtRG+Vq6MiIiIiKgOgy4RmexYRgGmfbkfBWXVJp3fyVONFfcN5srKRERERCQrBl0iMsmxjALc8/k+FFfUmHR+hJ8bVj04BEFeLlaujIiIiIhIymaCbmVlJQ4fPozk5GQUFBSguLgYGo2mWX3p23eXiJrP3JDbo1N7rLx/MPw9uH0QEREREclP8aCbkJCADz74AJs2bUJNjWm/RBvDoEtkOUcvFmDqF6aH3AGhXvhqxmB4ujpauTIiIiIiIv0UC7rV1dWYOXMmvvrqKwDQ2RO3uQSBe3MSWYq5IXdYpC8+vfcauDkr/hkaEREREbVhivw2Kooi7rrrLvz000/agGuJgGqpsExE5ofc0dEB+PCu/lA7Oli5MiIiIiIiwxQJuitWrMD69eshCIIk4LYkqHIkl8hyTmQWmhVyb+0XiMV39IWjg8rKlRERERERGadI0H399de1X3MUlsi2pGQXY9qX+00Oubf1C8R/J/eDg4ofNhERERGRbZA96CYlJeH8+fMQBEEn5HJUlkhZF/PLcM/n+5BfWmXS+Qy5RERERGSLZA+6f//9t972+pDLEV4iZVwurMDdn+/FlaJKk86f2D8Ii+/oy5BLRERERDZH9qCbk5MjOW4YcB0dHTFmzBj069cPfn5+cHFxgaOjI1QqPvdHZE35pVWY+sU+XMwvN+l8hlwiIiIismWyB12NRqP9umHI9fX1xfbt29GnTx+5SyJq04oqqjHty31IyS4x6XyGXCIiIiKydbIPlQYFBUmORVGEIAh4/fXXGXKJZFZZU4uHV/6NE5lFJp0/vk8nhlwiIiIisnmyB91u3brpbR87dqzMlRC1bRqNiNlrjmJvar5J54+M6oClXHiKiIiIiOyA7EF34MCBCA8P12l3cHCQuxSiNu2N35Kw6ViWSedeG+GDj+8ZAKd2fF6eiIiIiGyfIr+13nvvvTqrKx87dkyJUojapM93peLzv9JMOrdfiBc+nz4Iakd+GEVERERE9kGRoPvcc88hMDBQ0vbBBx8oUQpRm/Pz0UtY+GuSSedGdfTAivsGwd1Z9nXriIiIiIiaTZGg6+HhgZUrV8LBwQGCIEAURWzfvh3PPfecEuUQtRl7zuXhuTVHTTo33NcVqx4YAi9XJytXRURERERkWYo9cDdy5Eh89dVXUKlU2rC7dOlSDBo0CD/++CPKy03bz5OITJOWW4pHvzmIqlqN0XP93J3w9f2D4e/hLENlRERERESWpch8xJEjR2q/9vT0RH5+vjbsHjx4EJMnT4ZKpUJERAR8fX2hVqtN7lsQBGzfvt0aZRPZrcKyajyw4gAKy6uNnuvq5IAvZwxCmK+bDJUREREREVmeIkE3Pj4egiDdoqR+P11RFCGKImpra3H27FmkpKSY3G99H0T0r+paDR7/9hBSc0uNnuugEvDRPQPQJ9jL+oUREREREVmJoivMNF55WV9QbXxOUxhwiXSJoogFv5zEXym5Jp3/5u29Ede9g5WrIiIiIiKyLkWDbn04bRhm67+uf40Blqj5Vu65gG/2ppt07uzR3TD5mhArV0REREREZH02NaJr6mv6MBATSf11NhcLfjlp0rl3DAzGEyMjrVwREREREZE8FFt1mYis52J+GZ787hA0JnxeNLizDxZN7M0Pi4iIiIio1bCJqctEZDkV1bWYufogrpYZX2E51McV/5s6EE7t+JkXEREREbUeigVdc6cmE5Fxoihi3oYTOJFZZPRcD+d2+GL6NfBxc5KhMiIiIiIi+SgSdDUajRJvS9Tqrd6XjnUHM4yepxKAZfcMQNcADxmqIiIiIiKSF+crErUSBy9cNXnxqZcnROP6bv5WroiIiIiISBkMukStQH5pFR5ffQjVtcYfCbh9QBCmx4RbvygiIiIiIoUw6BLZOY1GxHNrj+JyUYXRc6M7tccbXGGZiIiIiFo5Bl0iO/fFX2n483S20fO8XB3xyb0DoXZ0kKEqIiIiIiLlKLq9kDEajQa5ubmoqKgbqQoNDVW4IiLbcjj9Kt7+/bTR8wQB+ODO/gjxcZWhKiIiIiIiZdlU0L148SLWrVuHrVu34sCBA7h69ap2GyJBEFBTU6NwhUS2o7C8Gk9+dxg1GuPP5T43pjtiufgUEREREbURNjF1+cqVK3j88cfRtWtXPPfcc/jjjz+Ql5cHjUYDURS1f+otWLAADg4OOn+++OILBb8LIvmIoogXfzyGjKvlRs8dGdUBM6/vIkNVRERERES2QfER3QMHDuC2227D5cuXJWG24WI5DdsB4JFHHsGbb76JqqoqSfs333yDBx54wLoFm+DcuXPYv38/MjIyUFVVBW9vb0RFRSEmJgZqtVrp8qgVWPt3BjafuGz0vE6eavz3jr5Qqbj4FBERERG1HYoG3e3bt+OWW25BeXndqJSpK8F27NgRd9xxB1avXq29RhRF7Nq1C5mZmQgKCrJazYZs2LABr7/+Og4dOqT3dXd3d8yYMQOvvPIK/Pz8ZK5OV1lZGfr06YNz585J2qdPn44VK1YoUxQZdTG/zKT9clUC8P6d/eHt5iRDVUREREREtkOxqcsXLlzAnXfeifLycgiCIAms+qYrN3bnnXfqtImiiM2bN1ut5qZUVlZi6tSpmDhxYpMhFwBKSkqwbNkyREdHY+fOnTJWqN+8efN0Qi7ZtlqNiGfXHEFpVa3Rc58d3Q2DO/vIUBURERERkW1RLOjed999yMvL0wm4gGkjuzfccAPc3Nx02v/880/LFmqERqPBlClTsHr1akm7g4MDOnfujH79+sHT01PyWk5ODsaNG4c9e/bIWarE/v378f777yv2/tQ8n+5MxYHzV42eNyzSFzNHRMpQERERERGR7VEk6O7atQvx8fGSkAtAMrJrjLOzM+Li4iTXiqKIhIQE6xTdhHfffRcbN26UtD366KNIT09HamoqDh8+jPz8fKxfv16yPVJZWRkmT56MwsJCWesFgKqqKjzwwAPQaDQAoPcDA7I9Jy8VYsnWZKPn+bo5YemUfnDgc7lERERE1EYpEnTfe+897deNg6ooivD29ta2GTJw4ECdtsuXL6OgoMBitRqSl5eHRYsWSdrefPNNLF++HIGBgdo2lUqFiRMnIjExEeHh4dr2jIwMLFmyRJZaG3rjjTdw4sQJAEBQUBAeeeQR2Wsg81TW1OKZH46gutb4VkJvT+qDDh5c9IyIiIiI2i7Zg65Go8H27du1IbZhmB04cCAOHz6M3Nxck/rq37+/3vakpKSWF2qCd955B8XFxdrj2NhYzJkzp8nzg4KC8Pnnn0vali5diry8PKvV2NjJkyfx5ptvao+XLVsGDw8P2d6fmmfZnyk4c6XE6Hl3DQ7BDdEBMlRERERERGS7ZA+6Bw8eRFFRkU57aGgo/vzzT/Tt29fkvkJCQvS2p6WlNbs+U2k0Gnz11VeStldffdXoKPSoUaMwfPhw7XFxcTHWrFljlRob02g0eOCBB7TbMk2cOBG33XabLO9NzXfqUhGWxxtfNCzUxxXzxkfLUBERERERkW2TPeimpqZKjkVRhCAIeO6558weWayf4tyYHM+9JiYmIicnR3scERGBESNGmHRt471+N2zYYMHKmvbee+9h3759AID27dtj2bJlsrwvNV9NrQZzfjyGGo3hKcsqAVg6pS/cnBXfGpuIiIiISHGyB92mpiWbGhIbcnV11duub8TY0n799VfJ8ejRo01eSGv06NGS4/j4eJSWllqsNn1SU1Mxf/587fGbb74peY6YbNNnu9JwPNP4BzePjYjEwDBuJUREREREBCgQdJsabfX39ze7r5IS/c8smho4W+LIkSOS45iYGJOvDQwMlCxKVVVVhVOnTlmoMv0eeughlJWVAQCGDh2KmTNnWvX9qOXO5ZRg6bYzRs+L6uiBp0Z1laEiIiIiIiL7IHvQbd++vd72hos6mSolJUVvu5eXl9l9mavxglfR0eY9G9n4fGsuoPX5559r9xd2dHTEZ599JsuHAdR8oihi7vrjqKrRGDzPQSXg3f/0hVM7xbbEJiIiIiKyObL/duzjo3965dGjR83ua8eOHXrbm3p211LKy8uRnp4uaWtqYaymND4/Odn4/qjNkZWVheeff157/MILL6Bnz55WeS+ynB8PZWJ/Wr7R8x4aHoHewZ4yVEREREREZD9kX7kmIED/1ierVq3C7bffbnI/JSUlWLFihd6RybCwsGbXZ4rc3Fzt/r9A3Shphw4dzOojKChIcpydnW2R2hp77LHHtPsKd+3aFfPmzbPK+zSWkZFh8PWsrCzt1+Xl5SgvL7d2SU2qqKjQ+7VSCsqr8cavxqeyh/u64pFhwYr+u1Oard07Mh3vnf3ivbNfvHf2i/fOfvHemcYav8/KHnQHDRoElUqlDYqCIEAURfz8889Ys2YNJk+ebLQPURTx4IMP4sqVKzpB18nJqcn9dS2l8bPBrq6uZk8FdnNzM9inJaxZs0ayovMnn3wCtVpt8ffRx5wR7p07d8LPz8+K1Zhu586dSpeANakq5JcZnmwhQMQtHYuwc8d2maqyfbZw76h5eO/sF++d/eK9s1+8d/aL965pTS1Y3BKKPKPbu3dvyYhofdi95557MHv27Cafva2oqMCvv/6KmJgYrF27Vnsd8O82RQMHDoSjo6NVv4fGobQ54dHFxcVgny2Vl5eHJ598Unt83333IS4uzqLvQZZ3oRhIvGL8Q5PrAkR00f+4OxERERFRm6fIppsTJ07UPpPbcGS3trYW7733Ht577z3taw1HSj08PKDRaPS+Vs+UEeGWajztwMnJyew+nJ2dJceWHq5/+umntdOhO3TogMWLF1u0f2MuXrxo8PWsrCwMHjwYABAbG4vg4GA5ytKroqJC+wlbbGysbKPejdVqRNzx2QGIMPyhh7+7E5bcdy3cuWeuzdw7Mh/vnf3ivbNfvHf2i/fOfvHemcbYY4/Nochvyo8//jjefvttVFRUaEdl64Nrw5FeAJIR29raWm17/bkNw667uzvuu+8+q9ff+Ae0qqrK7D4qKysN9tkSmzdvxjfffKM9Xrp0aZOLgFmLOcHVxcVFZ4RbKWq1WrFaVu+7gKTLxkf259/cE/5eHjJUZF+UvHfUMrx39ov3zn7x3tkv3jv7xXvXNGv8e1FkTxJfX1889thjOqEWqAuwTT3vWv9a40BcH3hnzZoFDw/rBwB3d3fJcXMeLG88gtu4z+YqLi7Go48+qj2+8cYbcffdd1ukb7KewvJq/HeL8T1zr4v0w819OslQERERERGR/VJs88033nhDu2hUfbCtH9nVF4DrNXy9/rr6Z3NfeeUVK1ddp3EoLSsrM1izPqWlpQb7bK4XX3xRu/WRq6srli9fbpF+ybqW/XkW+aWGZwY4Oajw2q09uQcyEREREZERigVdR0dHrF27FiEhIdoRWWO/wDdewKq+LSQkBD/88AMcHBysWnM9Pz8/Sa3V1dVmbw+UmZkpOTZ3eyJ90tLSJMF2wYIFCA8Pb3G/ZF1puaVYkXje6HmPXh+BCH/LfCBCRERERNSaKRZ0ASAiIgJ79+7FwIEDJaO0pvwB6kJu3759sWfPHnTu3Fm2ul1cXBAaGippqx9FNVXj86OiolpcV2FhoeTDgOeff96kf5cLFiyQ9PP1119LXvfy8mpxbdS0Rb8mobrW8IyAIC8XPBYXKVNFRERERET2TdGgCwAdO3ZEYmIiPvjgAwQEBBicvtzwNT8/P7z33nvYv38/OnWS/5nFxsH01KlTZl2flJRksD9qG3an5GJb0hWj5829KQpqR3lmLBARERER2TvFgy5QN435iSeeQGpqKn755Rc88cQTuOaaaxASEgK1Wg21Wo2QkBBcc801eOyxx/Dzzz/j/PnzeOqpp6y+Z25T+vXrJzlOTEw0+dqsrCycP39ee+zo6Ijo6GgLVUb2QqMR8ebmJKPnXRPmjfG9uQAVEREREZGpbGojTrVajfHjx2P8+PFKl2LUhAkT8Pbbb2uPt23b1uTevo1t2bJFchwXF2eRxagiIyOxdetWs69buXIlVq1apT0eM2YMnn/+ee2xUh8mtHa/Hs/Cicwio+e9fHM0F6AiIiIiIjKDTQVdexITEwM/Pz/k5uYCAFJTUxEfH4+4uDij137xxReS41tvvdUiNbm7u+OGG24w+7q//vpLctypU6dm9UOmq67V4L9bko2eN2lAMPoEe1m/ICIiIiKiVsQmpi7bI5VKhRkzZkjaFixYYHSboe3bt2PXrl3aYw8PD0yePNkaJZIN++HARZzPKzN4joujA164sbtMFRERERERtR4Mui0wZ84cyZTjhIQEyXTmxjIzM/Hggw9K2mbNmgU/Pz+D79N4leT4+PgW1U3KKquqwfvbzxo978HhnRHQXi1DRURERERErQuDbgv4+fnhpZdekrTNnTsXjz32GC5duqRt02g02LBhA2JiYiSLUAUGBmL27NlylUs2YkXieeQUVxo8x9vVEQ/HRshUERERERFR62Izz+ieO3cOBw4cQHJyMgoKClBcXAyNRmN2P4Ig6DwDa01z5sxBYmIiNm3apG1bvnw5Pv30U4SFhcHT0xNpaWkoKCiQXOfi4oI1a9Zwj9o2prSyBp/tTDV63uNxkfBQcxEwIiIiIqLmUDzofv311/jggw9w5MiRFvdVv+qxnEFXpVJh7dq1uO+++/D9999r22tra5Gaqj/Q+Pr6Yt26dRg2bJhcZZKNWLX3Aq6WVRs8J8jLBVOvDZOpIiIiIiKi1kexqcuFhYUYPXo07r//fhw5cgSiKLb4j1LUajW+++47rFu3Tmd/3Ybc3Nzw2GOP4dSpUxgxYoRs9ZFtKKsybTT3mdHdoHZ0kKEiIiIiIqLWSZER3aqqKkyYMAG7d+/Wtllin1Alwy4ATJo0CZMmTUJKSgr27duHzMxMVFVVwcvLCz169MCwYcOgVpu/uJC1v69XX30Vr776qlXfg4DVe9ORV1pl8Jwu/m6Y2D9IpoqIiIiIiFonRYLuhx9+iN27d0vCbUvDnCWCsqVERkYiMjJS6TLIhpRX1eITE0ZznxrVFQ4q2/lZJiIiIiKyR7IHXVEU8c4772iDqdKjsERy+HZ/OnJLDK+0HOHnhgl9AmWqiIiIiIio9ZI96B48eBA5OTkQBEEn5NrSqCyRpVRU1+KThHNGz3tiZCRHc4mIiIiILED2oHvixAm97fqCL1FrsPFIJrKN7Jsb7uuKW/pyNJeIiIiIyBJkD7o5OTmS4/qAK4oirrvuOkyfPh29e/eGj48PHB25jyjZN41GxGe70oye93hcJNo5KLYIOhERERFRq6LIM7r16kOuIAi4++67sWrVKrnLIbKq+DPZSMkuMXhOiI8LbuNKy0REREREFiP7EFJoaKje9tmzZ8tcCZH1fWrCSsuPxHaBI0dziYiIiIgsRvbfrocNG6a3PSAgQOZKiKzreEYh9qbmGzzHx80J/xkYLFNFRERERERtg+xBNyQkBNdff73OwlMpKSlyl0JkVZ/tMj6aO21oGNSODjJUQ0RERETUdigyX3LhwoU6WwktW7ZMiVKIrCKzoBy/Hs8yeI5zOxXuvTZMpoqIiIiIiNoORYLusGHDMHfuXO1CVKIoYt26dXjppZdQW1urRElEFrV67wXUagxvl/WfgcHwdXeWqSIiIiIiorZDsRVwFi5ciEceeUQSdt9++21ERUXhjTfeQGJiInJyclBdXa1UiUTNUllTix8OXDR4jiAAD1zXWaaKiIiIiIjaFtm3F2po+fLl6NWrF55++mloNBqIoohz585h/vz5ze5TEATU1NRYsEoi8/x+4jLySqsMnnNDjwBE+LvLVBERERERUduiaNDNyMjAH3/8gdraWgiCoH1ut/FCVUT2ZNWeC0bPuW9YuPULISIiIiJqoxQLuseOHcP111+PoqIi7dRlAJLAay4GZFJaUlYR/r5w1eA5kR3cMTTCV6aKiIiIiIjaHkWCblZWFsaPH4/CwkIAkATb5obV5oZjIkv6Zq/x0dypQ0L580pEREREZEWKBN0XX3wRmZmZnKpMrUpxRTV+Opxp8BwXRwfcPjBYpoqIiIiIiNom2YNufn4+vv/+e4Mhl6NdZI82HctCWZXh7bFu6x+E9mpHmSoiIiIiImqbZA+6u3btQnV1teS5XIDhluzfuoMZRs+Zem2oDJUQEREREbVtsgfdc+fONflawwWpvLy8oFar4eTkJFdpRM12LqcEB40sQjUg1As9Az1lqoiIiIiIqO2SPejW1v47tbPh9GW1Wo2XX34Zt9xyC7p16wYHBwe5SyNqth9NGM29czBHc4mIiIiI5CB70A0Oli7EI4oiBEHA4sWLMXPmTLnLIWqxWo2I9YeML0J1U+9OMlVERERERNS2qeR+wx49euhtv+mmm2SuhMgy/krJxeWiCoPn3NS7E9ydFdu2moiIiIioTZE96Pbr1w/R0dE67dxiiOzV2r8vGj3nP9xSiIiIiIhINrIHXQB49tlndYLtnj17lCiFqEVKKmuw9dQVg+cEe7tgSGcfmSoiIiIiIiJFgu7999+P8ePHa5/PFUURL7/8MoqKipQoh6jZtp26gsoajcFz/jMwGCoVt88iIiIiIpKLIkEXAL755hsMGzZMG3ZTU1MxePBg7NixQ6mSiMz2y9FLRs+ZNIDTlomIiIiI5KTI6jgrV64EAEydOhXJycnIy8sDAJw5cwY33HADIiIiMGLECHTv3h2enp5wdnY2q/9p06ZZvGaixgrLqrHzbI7BcwaGeSPEx1WmioiIiIiICFAo6M6YMUO7hy7w7xZD9V+fO3cOqampze6fQZfk8MfJy6iuNbyI2s19uKUQEREREZHcFN3vpOGCVA3DbuPXzNGwDyJr+uWY4WnLKgG4iUGXiIiIiEh2igbdhqO4Df8pCEKzAiu3KCK55JZUYndKrsFzhnT2RQcPtUwVERERERFRPZsZ0TWl3RCO5JKc/jh5GRojP6Y39w2UpxgiIiIiIpJQbNVlIntmbO9cB5WAG3t1lKkaIiIiIiJqyCamLhPZk5LKGiSm5Bk8Z1ikH3zcnGSqiIiIiIiIGlIs6PJ5WrJXCck5qKrVGDznxp4czSUiIiIiUooiQfeVV15R4m2JLGLrqcsGXxcE4IboDjJVQ0REREREjTHoEpmhulaDP09nGzynX4gXV1smIiIiIlIQF6MiMsP+tHwUVdQYPGdMNKctExEREREpiUGXyAzbkgyvtgwAo6MDZKiEiIiIiIiawqBLZIaEMzkGX4/wd0NkB3eZqiEiIiIiIn0YdIlMdDG/DKk5pQbPGd2Do7lEREREREpj0CUy0c6zhkdzAWBEd662TERERESkNAZdIhMlJBsOum5ODhgY5i1TNURERERE1BSLbi/k4OCg0yYIAmpqaoyeZyn63o+opaprNUg8l2fwnKFd/ODUjp8dEREREREpzaJBVxRFi55HZCsOXbiKkkrDH6Bc391fpmqIiIiIiMgQiwZdoG5EtZ6hQNvwPEthgCZrMeX53Ou7MugSEREREdkCiwddoC5wmhJkLRlMrRGciertMTJtubOfG0J9XWWqhoiIiIiIDOEDhURGlFbW4FhGocFzhnf1k6kaIiIiIiIyxiojuqaOrnIUluzB3xeuokZjePZBTBdfmaohIiIiIiJjrDZ12ZLnESlpb6rhacsAMKQzgy4RERERka2waNCNjY01aZTW1POIbIGx53OjOnrA281JpmqIiIiIiMgYiwbd+Ph4i55nr86dO4f9+/cjIyMDVVVV8Pb2RlRUFGJiYqBWq2Wvp7q6GsnJyTh58iSuXLmC4uJiuLu7w9fXF3369EGvXr2gUvFxbX1KKmtwPNPw87lDOW2ZiIiIiMimWGXqclu1YcMGvP766zh06JDe193d3TFjxgy88sor8POz7uJFaWlpWLduHbZu3Yq//voL5eXlTZ7r6emJqVOnYtasWejatatV67I3f5/PR62R53OvjWDQJSIiIiKyJRzGs4DKykpMnToVEydObDLkAkBJSQmWLVuG6Oho7Ny502q1XHvttYiIiMALL7yArVu3Ggy5AFBYWIiPPvoIvXr1wuLFi/nsdAMHL1w1+LogAEM6+8hUDRERERERmYJBt4U0Gg2mTJmC1atXS9odHBzQuXNn9OvXD56enpLXcnJyMG7cOOzZs8fi9VRXV2Pfvn16X1Or1ejcuTMGDRqE6OhoODlJnyutqqrC888/jyeeeMLiddmrQ+mGg25Ux/bwcuXzuUREREREtoRBt4XeffddbNy4UdL26KOPIj09HampqTh8+DDy8/Oxfv16hIaGas8pKyvD5MmTUVho+PnPlurcuTNeffVV7N69G0VFRUhNTcX+/ftx8uRJFBQUYNWqVQgLC5Nc8/HHH2PZsmVWrcse1GpEHEkvMHjOwDAvWWohIiIiIiLTMei2QF5eHhYtWiRpe/PNN7F8+XIEBgZq21QqFSZOnIjExESEh4dr2zMyMrBkyRKr1DZs2DD88ccfOHfuHF555RXExMTA0dFRco6LiwumTp2Kw4cPY9CgQZLX5s+fj/z8fKvUZi/OXClGaVWtwXMGhHrLVA0REREREZmKQbcF3nnnHRQXF2uPY2NjMWfOnCbPDwoKwueffy5pW7p0KfLyjO/TaionJyds2rQJf/31F8aMGWPSNk7e3t7YsGED3NzctG0FBQX48ccfLVaXPTI2bRlg0CUiIiIiskUWXXV55MiRluyuWQRBwPbt263+PhqNBl999ZWk7dVXXzUaLEeNGoXhw4dj165dAIDi4mKsWbMGM2fOtEhdTk5OGD9+vNnXBQYGYvr06fj444+1bX/88Qceeughi9Rljw5dKDD4uo+bE8J8XeUphoiIiIiITGbxfXRNGUG0FlEUZXv/xMRE5OTkaI8jIiIwYsQIk6594IEHtEEXqNuWyFJBtyWGDx8uCbrp6ekKVqO8w0ZGdAeEein6805ERERERPpZZR9dJbankTtw/Prrr5Lj0aNHm1zD6NGjJcfx8fEoLS2VTB1Wgre3dBqutRfKsmVXS6uQmltq8Jz+nLZMRERERGSTrPKMriAIsv+R25EjRyTHMTExJl8bGBgoWZSqqqoKp06dslBlzZeZmSk59vX1VagS5R3LNB7y+XwuEREREZFtskrQFUVR9j9yS0pKkhxHR0ebdX3j8xv3p4SG06kBoFu3bgpVorwTRoKug0pA3xBPg+cQEREREZEyuOpyM5SXl+s8vxoSEmJWH43PT05ObnFdLVFUVIR169ZJ2m666SaFqlHeqUtFBl+P9HeHq5NVZv4TEREREVELWeU3dXOnEjcckTX12uZcYym5ubmS93d0dESHDh3M6iMoKEhynJ2dbZHammvhwoUoKSnRHvv5+WHChAnN7i8jI8Pg61lZWdqvy8vLUV5e3uz3aqmKigqdr49nFBi8pnuAm6I1Ux19947sA++d/eK9s1+8d/aL985+8d6Zxhq/V1s86LZkGnF9YDXWR/1zufXnyT11uWEgBABXV1ezw3bjhaca9ymnxMRELFmyRNI2b948uLo2f+scc0a4d+7cCT8/v2a/lyXt3LkT5TVA+lXD/2k4FGViyxbDYZ7ktXPnTqVLoGbivbNfvHf2i/fOfvHe2S/eu6bl5uZavE+LBt20tDSzzs/NzcU999yDM2fOaIOrq6srbr/9dowePRpRUVHw9Kx7DrKgoACnT5/G1q1b8dNPP6GsrEx7TZcuXbB69WoEBARY8ttpUuNQqlarze7DxcXFYJ9yyc7Oxp133ona2lpt26BBg/DEE08oUo8tyDS82DIAINhV/ufCiYiIiIjINBYNumFhYSafm5eXh5tvvhlnz57VtsXFxWHVqlUIDAzUe83gwYMxbdo0ZGRkYNq0adp9e1NTUzF9+nQkJCSYPYW4ORpPO3BycjK7D2dnZ8mxEtNgKysrMXHiRFy8eFHb5uHhgW+//RYODg4t6rthn/pkZWVh8ODBAIDY2FgEBwe36P1aoqKiQvsJW2xsLLKO5ACnzhq85t6bR8JDzWd0ldb43jXnQydSBu+d/eK9s1+8d/aL985+8d6Zxthjj82h2G/qU6ZMwYkTJ7THPXr0wObNm00KjcHBwfj9998xYMAAJCUlQRRFJCcnY9KkSdi5c6fVn9lt/ANaVVVldh+VlZUG+7Q2jUaDqVOnIjExUdvm4OCA1atXIzIyssX9mxNcXVxcdEa4laJWq3Emp8zgOWG+rujg7SFTRWQqtVptMz9HZB7eO/vFe2e/eO/sF++d/eK9a5o1/r0osuryihUr8Oeff2oDqSAIePHFF80aGXVycsKcOXMgiqK2n8TERHz66adWqbkhd3d3yXFzHixvPILbuE9re+yxxySrLAuCgM8++ww333yzrHXYImMrLvcMbC9TJURERERE1ByKBN2PPvpIp+3aa681u5+YmBjJsSiKWL58ebPrMlXjUFpWVmb2glilpdIHQeUMunPnzsUnn3wiafvvf/+L++67T7YabFV1rQbncgw/L90zkPvnEhERERHZMtmD7tmzZ3Hw4EGd6cXNWeG34RB3fX/Hjx+3+p60fn5+kvqrq6vN3h4oMzNTcizHs8UA8NZbb+Gtt96StL388st45plnZHl/W5eeX47qWsMfWvToxGnLRERERES2TPage/z4cb3tKSkpZvfV1DVNvYeluLi4IDQ0VNKWnp5uVh+Nz4+KimpxXcZ89NFHmDt3rqRt1qxZWLBggdXf216cyzG+5HLXDgy6RERERES2TPag23gks97XX39tdl9fffWV3vZLly6Z3Ze5GgfTU6dOmXV9UlKSwf4sbeXKlXjyySclbffffz+WLl1q1fe1NylGgq6rkwOCvLiIABERERGRLZM96DZebbh+L9yvv/4a33zzjcn9rFy5EitXrtS7wnJzVkE2V79+/STHDVcvNiYrKwvnz5/XHjs6OiI6OtpClen68ccfcf/990ueI548eTI+++wzq69QbW+MBd3IDu5QqfjvjIiIiIjIlskedDt16qT9WhRF7arJGo0G06dPx913391kaBRFEbt378Zdd92F++67T3t944WgGr6HtUyYMEFyvG3bNpMXpNqyZYvkOC4uzmqLUW3evBl33303amtrtW3jx4/HN998A5VKkbXIbJqxqcuRHeRdHZuIiIiIiMwn+z66PXv21GmrD7uiKOKHH37ADz/8ABcXF3Tt2hWennUr3BYWFuLs2bPabXkaXmPKe1haTEwM/Pz8kJubCwBITU1FfHw84uLijF77xRdfSI5vvfVWq9SYkJCASZMmSUa44+LisG7dOjg6OlrlPe1ZrQik5RneQ7dbAJ/PJSIiIiKydbIP6fXr1w9dunQBAJ1ps/XBVRRFlJWV4ejRo9i1axd27dqFo0eParfxabh3buN+IiIidKYVW4NKpcKMGTMkbQsWLDA6qrt9+3bs2rVLe+zh4YHJkydbvL6///4bN998s2S/3muvvRY///wz1Gq1xd+vNcitgNEVl7tyRJeIiIiIyOYpMnf1iSee0AmEDQNs/Z+G7QAkrzWeslx/beMFl6xpzpw5kinHCQkJePvtt5s8PzMzEw8++KCkbdasWfDz8zP4Pg2/b0EQEB8fb/D8kydP4sYbb0RxcbG2rV+/fti8ebOs+/Xam+xy48/eckSXiIiIiMj2yT51GQCefPJJrFy5EocPH9aZftw41DbWOCDXnyMIAgYMGCBr0PXz88NLL72El156Sds2d+5cpKenY968eQgMDAQAaDQa/Pzzz5g1a5ZkW6HAwEDMnj3bojVlZWVhzJgxyMvL07a5ubnhhRdewN9//212fzfccIMly7NpORWGX3dup+KKy0REREREdkCRoKtSqbB+/XqMGDEC6enpktHbeqYs7NTwus6dO2P9+vWyryI8Z84cJCYmYtOmTdq25cuX49NPP0VYWBg8PT2RlpaGgoICyXUuLi5Ys2YNvLy8LFpPcnKyzvZKpaWluPvuu5vVn6kLbLUGuRWGf3bCfd244jIRERERkR1QbNndsLAwxMfHo3fv3nqnJjdF39Tmvn374s8//0RISIgstTekUqmwdu1a3HnnnZL22tpapKam4vDhwzoh19fXF7/99huGDRsmY6VkjLER3VBfV3kKISIiIiKiFlF0f5mwsDD8/fffmD9/PlxcXJp8Hrep53ZdXFzw8ssv48CBAwgLC1Ps+1Cr1fjuu++wbt06gwthubm54bHHHsOpU6cwYsQI2eoj0xgf0WXQJSIiIiKyB4pMXZYU0K4dFixYgGeffRZffPEF1q9fj4MHD6KyslLv+c7Ozhg4cCAmTZqE+++/X7v9kC2YNGkSJk2ahJSUFOzbtw+ZmZmoqqqCl5cXevTogWHDhjVrxWNzpg+PGDGiTU03tpQaDXBV/4+cVpivmzzFEBERERFRiygedOt5enri2WefxbPPPouqqiqcOnUKOTk5uHr1KgDA29sb/v7+iI6OhpOTk8LVGhYZGYnIyEilyyAz5FcCIow/o0tERERERLbPZoJuQ05OTrLshUtUL8fItGUACOPUZSIiIiIiu6DoM7pEtiLXyEJUjg4CArm1EBERERGRXWDQJQKQX2l4RDfE2xUO3FqIiIiIiMguMOgSASgwshBVkDdHc4mIiIiI7IVFn9G9//77JceCIOCLL76w5FvYZS1k+65WGR6tDeK0ZSIiIiIiu2HRoLtixQrJXrdKhktbqoVsn7Gthfh8LhERERGR/bDK1GVb2sfVlmoh21RVo0FRteERXQZdIiIiIiL7YZWgWz+SagtsqRayTVeKjQznAgj0VMtQCRERERERWQIXo6I2L6vQyN5C4IguEREREZE9YdClNu+SCUG3I0d0iYiIiIjshkUXo9Lntddes/ZbELXIlSLDU5f93J2hdnSQqRoiIiIiImopqwTd+gWgRFHEggULrPEWJtfBZ3TJmNySKoOvB7R3lqkSIiIiIiKyBKuP6HLVY7J1uaWGg24HDwZdIiIiIiJ7YvWgq9SIKgM2mcrYiK6fO4MuEREREZE94YgutXnGgq4/R3SJiIiIiOyKVYIun4sle5LHEV0iIiIiolaF2wtRm1ZRXYviyhqD53BEl4iIiIjIvlh0RDc0NJSjuWRXcooNby0EMOgSEREREdkbiwbd8+fPW7I7IqvLLTEedDl1mYiIiIjIvnDqMrVpHNElIiIiImp9GHSpTcszsoeuk4MK7dVWX5yciIiIiIgsiEGX2rTC8mqDr3u7OfK5cyIiIiIiO8OgS21aQZnhoOvl4iRTJUREREREZCkMutSmFZYbnrrs6eIoUyVERERERGQpDLrUphmbuuzpyqBLRERERGRvGHSpTTM+dZlBl4iIiIjI3jDoUptmdESXQZeIiIiIyO4w6FKbZnREl1OXiYiIiIjsDoMutWnGn9HlqstERERERPaGQZfarOpaDUoqawyew6nLRERERET2h0GX2qySCsMhF2DQJSIiIiKyRwy61GaVVhkPuu7O7WSohIiIiIiILIlBl9qssqpao+e4OTvIUAkREREREVkSgy61WaVGns8FADcnjugSEREREdkbBl1qs0wZ0XV14oguEREREZG9YdClNsvYissA4MZndImIiIiI7A6DLrVZZUYWo3JQCXBux/9EiIiIiIjsDX+LpzartNLw1GVXJwcIgiBTNUREREREZCmyBN2EhARMnjwZNTX6R9A0Gg3uvvtubN26VY5yiAAYH9HlQlRERERERPbJqkH3/PnzGDduHEaOHIkff/wRn3zyid7zvv76a3z//fe48cYbccMNN+Ds2bPWLIsIgAkjutxaiIiIiIjILlk16LZv3x779u2DKIoQRRGvv/46ysrKJOdUVlbilVdegSAIEEUR+/fvh4eHhzXLIgJgfHshdy5ERURERERkl6wadH18fDB37lwAgCAIyMnJwZIlSyTnLFu2DBkZGdpznn/+eXTs2NGaZREBAMqqDY/oujhyRJeIiIiIyB5Z/RndWbNmITw8HAAgiiIWL16MvLw8AEBhYSHefPNN7WhuUFAQnn/+eWuXRAQAqKzWGHzdmUGXiIiIiMguWT3oOjk5YdGiRRBFEYIgoLi4GG+88QYA4O2330Z+fr72tYULF0KtVlu7JCIAQFWt4aDr5MBFyYmIiIiI7JEsv8nfddddGDRoEIC6Ud2PP/4Ye/fuxfvvvw9BECAIAgYMGIBp06bJUQ4RAKCqxvDUZe6hS0RERERkn2T7TX7x4sXakdvKykqMHj0a5eXlEEURAPDf//5XrlKIAABVNUZGdBl0iYiIiIjskmy/yQ8fPhy33XabNuyWlpYCqFuA6tZbb0VsbKxcpRAB4NRlIiIiIqLWyuL7pzg4mLaAjyAIAOqmMm/cuLHJ6wRBQE2N4W1giJqDI7pERERERK2TxYNu/VRkY+fUr7Rs6jVEllZVa/jnjkGXiIiIiMg+WeU3+frRWkOMhVtT+iBqCY7oEhERERG1ThYf0Y2NjW0ypKanpyMtLU0ybVkQBHTu3BkhISGWLkUx586dw/79+5GRkYGqqip4e3sjKioKMTExim6fJIoiDh06hCNHjiA7OxsAEBAQgL59+2LAgAFt7sMFY6su8xldIiIiIiL7ZPGgGx8fr7ddFEUMHDhQclw/fbl9+/bYsWOHpUuR3YYNG/D666/j0KFDel93d3fHjBkz8Morr8DPz0+2uqqrq/H+++/jvffeQ2Zmpt5zgoOD8fTTT+Opp56Co6OjbLUpyehiVBzRJSIiIiKyS7L9Jv/NN9/gyJEj2lHDvn37aqcvHz16FCtWrJCrFIurrKzE1KlTMXHixCZDLgCUlJRg2bJliI6Oxs6dO2Wp7eLFixgyZAief/75JkMuAGRkZOC5557D0KFDDZ7Xmhibusx9dImIiIiI7JMsv8lXVFTg//7v/7QjuJ06dUJ8fDxCQ0O1bfPmzUN5ebkc5ViURqPBlClTsHr1akm7g4MDOnfujH79+sHT01PyWk5ODsaNG4c9e/ZYtbbs7GzExcXh8OHDknYXFxf07NkTPXr00JlKffDgQcTFxSE3N9eqtdkCIwO6aKdqW1O5iYiIiIhaC1mC7pIlS5CRkaGdrjx//nx4enpiwYIF2rasrCy88847cpRjUe+++y42btwoaXv00UeRnp6O1NRUHD58GPn5+Vi/fj1CQ0O155SVlWHy5MkoLCy0Wm0zZszAuXPntMdqtRrvvfcecnNzceLECZw6dQq5ublYsmSJJPCePXsW999/v9XqshUaIwuiqRh0iYiIiIjsktWDbk5ODt5++23tlOUuXbrgwQcfBABMmzYN0dHRAOqe2V28eDGysrKsXZLF5OXlYdGiRZK2N998E8uXL0dgYKC2TaVSYeLEiUhMTER4eLi2PSMjA0uWLLFKbVu2bMHmzZu1x46Ojvjjjz8wa9YsuLq6atvd3NzwzDPP4Pfff5c8m/vLL7+0iuemDTEWdNva4lxERERERK2F1YPuq6++iuLiYu3I7YIFC+Dg4ACgLkgsXLhQ+1pZWRn+7//+z9olWcw777yD4uJi7XFsbCzmzJnT5PlBQUH4/PPPJW1Lly5FXl6exWubP3++5PjFF19EbGxsk+dff/31OrXPmzfP4nXZEo3GyIgucy4RERERkV2yatBNTk7GZ599BkEQIAgCevfujbvuuktyzm233YbBgwcDqBvVXblyJY4cOWLNsixCo9Hgq6++krS9+uqrRkcBR40aheHDh2uPi4uLsWbNGovWdvz4cezfv1977Obmhueff97odS+88ALc3Ny0x4mJiUhKSrJobbbEyIAuHDiiS0RERERkl6wadIODgzFv3jx4eHgAgM4033pvvvkmRFGEm5sb5s6diy5dulizLItITExETk6O9jgiIgIjRoww6doHHnhAcrxhwwYLVgadZ4YnT56svQeGeHh44I477pC0Wbo2W1Jr7BldBl0iIiIiIrtk1aDr5uaGl19+GefOncOSJUswfvx4vefFxcXhww8/REpKCl5//XWTQpnSfv31V8nx6NGjTX6mc/To0ZLj+Ph4lJaWWq22MWPGmHxt49o2bdpkkZpskfFndGUqhIiIiIiILEqWVZd9fX0xa9Ysg+c8/vjjCAgIkKMci2g8vTomJsbkawMDAyWLUlVVVeHUqVMWqUsURRw7dqzZtQ0bNkxyfPToUe1+x62NkUd0OaJLRERERGSnZAm6rVHjZ1frV482VePzLfUs7IULF1BWVqY9dnNzk2xrZExYWJhkVebS0lJcvHjRIrXZGmMBXsX/OoiIiIiI7FI7pQvQJzMzE9u3b0dmZiays7NRVVUFf39/+Pv7Y9CgQRg0aJCiW7+Ul5cjPT1d0hYSEmJWH43PT05ObnFd+voxt676axr2k5ycbFZYthe1Rldd5oguEREREZE9sqmg+/333+Ptt9/WmXrbmLe3NyZPnox58+ZJ9quVS25urmQ00NHRER06dDCrj6CgIMlxdna2RWpr3E9wcLDZfQQFBUmCbnNqy8jIMPh6w/2Sy8vLUV5ebvZ7tJSxqcs11dWK1EWmq6io0Ps12T7eO/vFe2e/eO/sF++d/eK9M401fue2iaCbm5uL//znP9i1axcA41NK8/Pz8cknn+Drr7/G//3f/+Gll16So0ytkpISybGrq6vZI8wNt/HR12dzNe6n8fuYwhK1mTOSvHPnTvj5+Zn9Hi1R9yNm+Mf/+PFjaHepdT6f3Brt3LlT6RKomXjv7Bfvnf3ivbNfvHf2i/euabm5uRbv0+JBV6PR6P20ouFznw3l5ORg5MiROHXqlDbgmhIaRVFEeXk55s+fj6SkJHz55ZdwdHRsWfEmahz81Gq12X24uLgY7LO5bLk2W2JKfOXEZSIiIiIi+2TxoPvUU09h+fLlkrZrrrkG+/bt0zlXFEXcfvvtOHnyJARB0AZcYyO6jc/99ttv4ebmhv/9738W+i4MaxzknZyczO7D2dlZcmyp4Xpbqc3YAlZZWVkYPHgwACA2NrZZU6xboqpWA+yNN3hO/379MLqHvzwFUbNUVFRoPx2NjY1t1gc7pAzeO/vFe2e/eO/sF++d/eK9M42xxx6bw6JBt6ysDKtWrZIEVUEQMHXqVL3nf/TRR9i9e7fJAbdew5FfQRAgiiI+++wzjBo1CnfccUcLvwvjGv+AVlVVmd1HZWWlwT6by1ZqMye4uri46IwiW5tQXWv0HBe1s+x1UfOp1WreLzvFe2e/eO/sF++d/eK9s1+8d02zxr8Xi26gsmvXLhQXF0tGXAFg5MiROudWVlZi4cKFekNu/fX6/jTUMPCKoojZs2ejttZ4gGkpd3d3yXFzHixvPErauM/msuXabIkpn6moOHeZiIiIiMguWXRENyEhQadNrVbr3WN25cqVyM7O1obUesZGdxu/Loqiti0zMxPfffddkyPIltI4+JWVlUnqMEVpaanBPi1VW+P3MYW1arMlKhUwbWgYNKKI6uoapF/MgEYEAoMCIfx/e/cdHkW5tgH83hQSUiCNFiAhJEDoEETaB4QjRJB+8EhTQUWl6AGkC0gRpYiAiiA2mhURadIRQm+BhCotJDEJCS2QEELq+/2RK3uYLbOzNZvl/l3XXjDlLTPPZneenZl3VM4oEgJVKvDSEiIiIiKissiiie6lS5e05gUHB+tMAH/55RfJ9JMJrLu7O9q0aYPGjRvDx8cHeXl5SE9Px+nTpxEXF6deX1cyvHLlSqsnugEBAZL28/PzcevWLVSpUkVxHSkpKZJpYx9PpI9mPaZc726tvtkTNxdnzO7dCEDxGexdu4qfixwV1YCXlBARERERlXEWTXRv3Lih/n/JGU5dz7nNyMjAgQMH1Mntk0njf//7X0yfPh3+/v4624iPj8esWbOwdu1aSbmS/x8/fhwFBQVwcbHek5PKly+PoKAgJCYmquclJSUZlegmJSVJpsPDwy3St3r16kmmDQ0KpYtmGUv1jYiIiIiIyBYseo9uenq61tlbXQnrsWPHJPfSliTFn332GZYsWaI3yQWA2rVrY/Xq1VixYoW63JNndnNychATE2OBrZGnmfxdvHjRqPKaZ78tlUwGBwdLzkhmZ2dLEnJDEhMT8ejRI/W0p6enUc/EJSIiIiIiKm0WTXR13Q/q7e2tNe/JRLQkWe3evTveffddxW29+eabGDRokM57YxMSEpR32kTNmjWTTB85ckRx2Zs3b0r66OrqqvM+ZlOoVCo0adLE5L4dPnxYMt2kSROj7j0mIiIiIiIqbRZNdHU9b1XXc1zPnDmjNe+9994zur0333xT5/x79+4ZXZexevToIZnes2eP4scj7dq1SzLdqVMniw74pNm33bt3Ky6ruW7Pnj0t0iciIiIiIiJbsWiiq+u+WCcn7Sbi4uIkZwldXFzQpk0bo9sLCwvTOf/BgwdG12Wstm3bIiAgQD0dHx+P/fv3Kyr73XffSaZ79+5tya6hV69ekunffvsNDx8+NFguKysLv/32m1X7RkREREREZG0WTXQ9PT215mmeXU1OTkZ8fDyA/z0iKCwsDG5ubka3p+/ROe7u1n8sjJOTE4YOHSqZN2vWLINndffu3YuDBw+qp729vfHSSy9ZtG9NmjRBy5Yt1dMPHz7EggULDJZbsGCBZJ+2bt3aYpdUExERERER2YpFE90KFSpIpoUQuHDhgmTezz//LJlWqVSoWrWqSe3pem4vAPj6+ppUn7EmTZokueQ4Ojoa8+fP17t+SkoKhg0bJpk3evRoyZlhXVQqleSl5Mzx7NmzJdPz5s3DgQMH9K6vq+9z5swx2A4REREREZG9sWiiGxoaKnncDwCcP38e27dvB1D8SJ0FCxZoPVZo//792LNnj1FtZWVl4eOPP9Y5UFKlSpXM2QzFAgIC8P7770vmTZkyBSNHjkRqaqp6XlFRETZu3Ii2bdtKBqEKDAzEuHHjrNK3rl27IioqSj2dn5+P559/Hp999plkVOXs7GwsWbIEXbt2RX5+vnr+Cy+8gOeee84qfSMiIiIiIrImiya6derUkUyXJLK9e/dGREQEmjRpgrt37wKA1vNv+/Tpg/Xr1ytqJzExEZ07d1Y/NkfzcuFnnnnG3E1RbNKkSVqDPy1fvhxBQUEIDQ1FREQE/P390bdvX8mzc8uXL49169bBx8fHan1bs2YNQkJC1NOPHz/GmDFjEBAQgEaNGqFhw4YICAjA2LFj8fjxY/V6oaGhWLVqldX6RUREREREZE0WTXTbt2+v/r8QQv3on4KCAsTGxiIzM1Py3Nsn13n06BH69++Pjh074ttvv8XFixfVozjn5+cjJSUFf/75J9588000aNAAp06dUtfx5Fnd0NBQVK5c2ZKbJcvJyQm//fYbBgwYIJlfWFiI+Ph4nDlzBvfv35cs8/f3x7Zt29CuXTur9q1KlSrYt28fmjZtKpmfk5ODCxcu4OLFi5IEFyh+bNK+fftsdlaciIiIiIjI0rSHSTZDVFQUnJ2dUVRUpE5oSxJRzYS05P+a6xw6dAiHDh2SrKd5xlbzbHDJvJLn8dqau7s7fv75Z7z44ouYM2cOYmNjda7n6emJIUOGYMaMGTZLxoODg3HixAksWbIEn332meSS6icFBgZizJgxGD16tM5HQhEREREREZUVFk10/f390b9/f/z0009a984+mdhq/l9X4lpC1yjGuuoCis+ujh492nIbZKR+/fqhX79+uHbtGo4fP46UlBTk5eXBx8cH9evXR7t27UwaEVrp83n1KVeuHCZOnIjx48cjJiYGcXFxuHXrFgCgcuXKaNasGSIiInQ+CoqIiIiIiKissWiiCwAzZ87E5s2bkZ2dLUlIgf+NHgwAFStWxAcffID33ntPK9lV4snkryThHTBgAGrVqmXBrTFNWFiY3mf8liYnJye0bNlS8ughIiIiIiIiR2PxRDcsLAxr1qzBwIEDkZubK0lugeKk1M3NDStXrkTv3r3x119/YevWrZJLnZ+k6yzvk8tK/g0KCsLSpUstvTlkJQUFBer/37x5sxR7UnzP8p07dwAUP+e5fPnypdofUo6xK7sYu7KLsSu7GLuyi7Eruxg7ZZ7MB57ME8yhEuZeF6tHbGwspkyZgj179qCwsFA9PzIyEnPnzkWrVq0AFD8mqGPHjoiNjdU6Ayzb8SfW9fb2xu7du/Hss89aYUvIGk6ePMl4ERERERGRxIkTJyxyBarFz+iWaNasGbZv347MzEwkJCQgPz8ftWrVgr+/v2Q9b29vHDhwAP369cPu3bt1ngEGdF/SLIRAzZo1sXXrVjRu3Nham0JERERERERliNXO6BqrsLAQixYtwpw5c5CVlQVAf3ILAG5ubhgxYgSmTp2qlTyT/Xv8+DHOnTsHAKhUqRJcXKz2m4tBN2/eVJ9dPnHiBKpVq1ZqfSHjMHZlF2NXdjF2ZRdjV3YxdmUXY6dMQUEBbt++DQBo3LixSQP4aiq97EKDs7MzJkyYgCFDhmD16tX4/fffERcXh9zcXADFSa+/vz9at26NqKgo/Pvf/0ZgYGAp95pM5e7ubpeDYlWrVg01atQo7W6QCRi7souxK7sYu7KLsSu7GLuyi7GTZ+lBhe0m0S1RuXJlTJgwARMmTAAA3Lt3D4WFhfD39+fjb4iIiIiIiMggu0t0Nfn5+ZV2F4iIiIiIiKgM4SlSIiIiIiIicihMdImIiIiIiMihMNElIiIiIiIih8JEl4iIiIiIiBwKE10iIiIiIiJyKCohhCjtThARERERERFZCs/oEhERERERkUNhoktEREREREQOhYkuERERERERORQmukRERERERORQmOgSERERERGRQ2GiS0RERERERA6FiS4RERERERE5FCa6RERERERE5FCY6BIREREREZFDYaJLREREREREDsWltDtAT7fr16/jxIkTSE5ORl5eHnx9fREeHo62bdvC3d291PolhMDp06cRGxuLW7duAQCqVKmCpk2bIiIiAiqVymJt3b17F4cPH8b169eRnZ0NT09PhIaGol27dvD397dYO5b2NMfu9u3bOHfuHK5fv46MjAwIIeDr64saNWqgdevW8PPzM7sNa3qaY1fWMXb/k5aWhpMnT+LGjRvIysqCq6sr/Pz8EBYWhqZNm8LX19fibZrqaY9bUVER/v77b8TGxuLOnTvIysqCh4cH/Pz80KhRIzRp0gSurq4Wacsa7DV+tsRjlbKnrB+rWIQgKgV//PGHiIiIEAB0vry8vMQ777wjbt++bdN+5eXliU8++URUr15db99q1KghFi5cKPLy8sxqKzY2VvTq1Us4OTnpbMfZ2Vn06tVLxMXFWWjrLONpjF1ubq7YvHmzePvtt0VYWJje+gEIlUolnn32WbF27VqRn59vpa01zdMYO6W++uorne3euHHDKu0Zi7ErVlhYKNasWSNatWpl8O+wYcOGYuLEieLBgwcW2FLTPO1xS0lJERMmTBABAQGy8fL09BTDhg0TFy9etOBWms8e41dUVCQuXrwoVq1aJUaOHClatGghXF1dJf0aMmSIxdrjsYrlWDt2jnKsYklMdMmmHj9+LAYPHiz7x/fkq1KlSiI6OtomfUtKShLNmzdX3LcWLVqI5ORkk9pasmSJcHFxUdSOi4uL+Pzzzy28tcZ7WmO3cuVK4evrq7juJ18tW7YUV65csfLWG/a0xk6pf/75R1SoUEFne6Wd6DJ2/3Pp0iXRokULo/8OL126ZMGtVoZxE+Lnn38WPj4+RsWqXLlyYt68eVbYauPYY/y+//578dxzz4mKFSsa7I+lEl0eq1iGLWLnCMcq1sBEl2ymsLBQ9O7dW+sPzNnZWYSEhIhmzZrp/BDw8PAQR44csWrf0tPTRWhoqFbb5cuXFw0bNhT169cX7u7uWsvr1Klj9K+Bn376qc4PmmrVqokWLVqIatWq6Vz+2WefWWnrDXuaYzdu3Di9Xw6VK1cWjRs3lo1bQEBAqZ6leJpjp1SPHj30xrg0E13G7n/279+v88cIZ2dnUbNmTdGiRQvRvHlzUbNmTa11bJ3oMm5CrFmzRqhUKp37IDw8XLRq1Uo0aNBA62xWyWvatGlW3Avy7DV+uvqk72WJRJfHKpZji9iV9WMVa2GiSzYzb948rT+s4cOHi5SUFPU6hYWFYsOGDSIoKEiyXo0aNcT9+/et1rdu3bpJ2nN3dxdLliwR2dnZ6nUePnwoFi1apHUQ0LNnT8XtHD58WDg7O0vKR0ZGipiYGMl6J0+eFB07dpSs5+LiIo4fP26xbTbG0xy7J788XF1dRd++fcWPP/4o2fYSly5dEq+99prWvgoKCpL0x5ae5tgp8eOPP6rr9PT01NpXpZnoMnbFYmNjhbe3t6SO+vXri7Vr14q7d+9qrf/gwQOxbds2MWLECOHj42PzRPdpj1tiYqLw8PCQlPX19RXLli0TWVlZknVzcnLEmjVrtA6+VSqVOHjwoEW3XSl7jZ9csqT52WVuostjFcuyRezK+rGKtTDRJZu4c+eO1oHK3Llz9a6fnJwsatWqJVn/gw8+sErfdu7cKWnH1dVV9jKW/fv3a/0K/ddffylqq23btloHDrm5uTrXzc3NFd27d5es36FDB5O20RxPe+zGjRsnvL29xfTp00VaWpqifuk6m2GtfSDnaY+dIbdv35bcO6jrDEZpJbqMXbHc3FzRoEEDSdmxY8cqvm/00aNHIicnR9G6lsC4CfHOO+9oJbmGfmxISUnROhsfFRVl9Daay57jV5IsVa1aVfTs2VN8+OGHYseOHeLu3btixowZFk10eaxiWbaIXVk+VrEmJrpkExMnTtT6ECwqKpIts2fPHkkZb29vcefOHYv37dlnn5W0M336dINlpk2bJinTtm1bg2W2bdsmKePv7y9u3bolWyY9PV34+/tLyu3atUvxtlnC0x67gwcPmnSp5dixYyXtVK9e3eg6zPW0x86QgQMHqutq0aKFKCgosJtEl7ErNnPmTEm5kSNHmtt9q2LchFbCumDBAkX9+/nnn7UScc0zwNZmz/GLiYkRSUlJOpdZMtHlsUrZjF1ZPlaxJia6ZHWFhYWiUqVKkj8kpb/mt2/fXlJu2bJlFu3b2bNnJfV7enqKzMxMg+UyMzO1LjcxdG/Dv//9b5N+NZs+fbqk3EsvvaSonCUwdqZLS0vT+qX03LlzFm9HH8ZO3pYtW9R1ODs7i9OnTwshhF0kuoxdsfT0dOHm5qZePzg42K4vq2Pcis+ga/4NXbt2TVEfs7OztQY+unDhguJtNJc9x88QSya6PFYpu7EzRWkfq1ibE4is7MiRI7h9+7Z6unbt2oiMjFRU9o033pBMb9y40YI9AzZt2iSZfumll+Dt7W2wnLe3N/7zn/9I5sn1LTc3Fzt37pTMe/311xX1UXO97du3Iy8vT1FZczF2pqtSpQrq1q0rmZeUlGTxdvRh7PTLzMzEiBEj1NNjxoxB8+bNja7HWhi7YqtXr0Zubq56esKECfDw8FDeWRtj3IB79+5pzatZs6aiPnp4eCAgIEAy7/79+4rKWoI9x89WeKxSdmNnqtI+VrE2JrpkdX/++adkukuXLoofQt+lSxfJ9P79+5GdnW21vkVFRSkuq9m3rVu36l1Xs9/16tVDcHCwonZq1aqFOnXqqKezsrIQHR2tuJ/mYOzM4+vrK5l+8OCBVdrRhbHTb+LEiUhOTgZQ/Pc1e/Zso+uwJsau2Hfffaf+v4uLC/r376+4rdLAuAEVK1bUmpeTk6O4Lc11NRNfa7Ln+NkKj1XKbuzMUZrHKtbGRJesLjY2VjLdtm1bxWUDAwNRq1Yt9XReXh4uXrxokX4JIXD27FmT+9auXTvJdFxcHIQQOtc1Zx/oakuzPmth7MyTkpIimfb397d4G/owdrpFR0fj66+/Vk8vX77c7s4SMnbA9evXcfnyZfV048aNbZr0mIJxA7y8vBAaGiqZd/LkSUXtXLlyRXKA7evri7CwMMX9NJe9xs+WeKxSdmNnjtI8VrE2JrpkdZcuXZJMN2jQwKjymutr1meqxMREPHr0SD3t6emJoKAgxeWDg4MlB8jZ2dn4559/dK5rr/vAEHvtty1jZ6obN26ozxqWePLXbmtj7LTl5OTgzTffVB+kDxw4EF27dlXctq0wdtrJUdOmTdX/T0lJwccff4zWrVujWrVqcHd3R/Xq1dG6dWu8//77OH36tOI+WRLjVkzzzPvChQsVtTNv3jzJ9GuvvQYnJ9sdptpr/GyprO6Dstpve1DaxyrWxkSXrConJ0frWn+l9+voW//JX/nNoVmPsf3SVUZf38xty1r7QA5jZ55Vq1ZJznrUr18fISEhFm1DH8ZOtxkzZuDq1asAAD8/PyxZssTotq2NsSummejWrl0bQgh89tlnCA0NxdSpU3H8+HGkpaUhNzcXqampOH78OObOnYsWLVrgP//5D9LS0ozun6kYt/8ZN24cqlatqp7euXMnRo0apfd+zaKiIsycORMrV66UtDd9+nSj+2kqe46fLfFYpVhZjJ2pSvNYxRaY6JJV3blzR/IH5OrqisqVKxtVR/Xq1SXTt27dskjfNOupUaOG0XUo7Zu5bVlrH8hh7Ex38+ZNrSRq6NChFqvfEMZOW0xMDBYtWqSe/uSTT4zeJ7bA2BW7du2aZLpChQp4++23MWbMGMkAVfqsX78erVu3xt9//210H03BuP2Pn58fNm7cKLlfd9myZQgLC8PkyZPx66+/YseOHVi/fj0++OADhIeHY9asWep1a9Wqhd27d8PHx8fofprKnuNnSzxWKVYWY2eK0j5WsQWX0u4AObaHDx9Kpj08PBQPEFDC09NTtk5Tadaj2Y4SSvtmblvW2gdyGDvTCCEwbNgwZGZmqudVr14do0aNskj9SjB2Uvn5+XjjjTdQWFgIAIiMjFQ8kqitMXbFNEfbXbNmjeSS5IiICAwYMEB9id2VK1fwyy+/4MyZM+p1EhMT8cILLyA2NhYVKlQwuq/GYNykWrVqhTNnzuCdd97Btm3bAAD//PMP5s+fr7eMj48P3nrrLUydOtXq8dJkz/GzJR6r6K7TEdnDsYot8IwuWZXmh4W7u7vRdZQvX162TlPZsm/mtmWtfSCHsTPNvHnz1Ad2JZYtW2bSwaWp7Hn/lEbf5s+fj7i4OACAm5sbVqxYYXSbtsLYFdNMdEuSXCcnJyxduhSnTp3ChAkT0KdPH/Tp0wcTJ05Un7V/8iD3xo0bGDNmjNH9NBbjpi0kJAR//vknvv/+e61RXTV5eHhg1KhRGDlypM2TXMC+42dLPFbRXacjsodjFVtgoktW9fjxY8l0uXLljK7Dzc1NMm3Mowrk2LJv5rZlrX0gh7Ez3qZNmzBt2jTJvOHDh6NXr15m120Me90/gO37dunSJcyZM0c9PW3aNK1nBtoTxq6YvgPN+fPnY9SoUTrP2KhUKowdO1brcVFr1661+nMhGTdt+/btQ/PmzfH6668jIyNDdt1Hjx7ho48+Qp06dfDee+8pujzdkuw5frbEY5ViZTF2xrCXYxVbYKJLVqX5y5opDw/X/MIz5dc6XWzZN3PbstY+kMPYGefYsWMYNGgQioqK1PPat29fKgMe2eP+0VePNftWVFSEN954Q71+w4YNMWnSJKPbsyXGTv/8+vXr47333jPYxuTJkyWPpSkoKMD3339vZE+Nw7hJLVy4EJ07d1Y/9sXV1RVvvPEGdu3ahVu3biEvLw93795FdHQ0xowZox7VOT8/H4sXL0ZUVJRkpGhrs+f42RKPVXTX6Ujs6VjFFpjoklV5eXlJpjV/eVNC85c1zTpNZcu+mduWtfaBHMZOuQsXLqB79+6SA7OmTZtiy5YtWr8U24K97R+5eqzZty+++AJHjx4FUHy27+uvv4arq6vR7dkSY6d//htvvKHocTMuLi5a92BHR0cb0UvjMW7/88MPP2DChAnqA+lKlSrh4MGD+Pbbb9GlSxdUqlQJrq6u8PPzQ4cOHbB48WLExMSgdu3a6joOHDiAESNGGN1PU9lz/GyJxyq663QU9nasYgtMdMmqND8sHj16pPdB8/pkZ2fL1mkqzXo021FCad/Mbcta+0AOY6fMjRs3EBUVhXv37qnn1alTBzt37pSMOmpLjB2QkJCAqVOnqqeHDx+Otm3bGt2WrTF2+ud37NhRcTua6546dUpxWVMwbsUePHiAd955RzJv3bp1aNWqlWz94eHh2Lp1q+Sy0zVr1uDEiRNG99UU9hw/W+Kxiu46HYE9HqvYAhNdsqqAgADJvVT5+flGD9uekpIimbbUI0E069F8YLYSSvtmblvW2gdyGDvDUlNT0blzZ6Smpqrn1axZE3v27EGVKlWMrs9SGDtg5syZ6oOXwMBAzJs3z+h2SgNjV0zX348x91bXq1dPMv3w4UOr3nfHuBVbvXo1Hjx4oJ6OiopCZGSkojbq16+PV199VTLvm2++Ma6jJrLn+NkSj1WKlcXYybHXYxVbYKJLVlW+fHkEBQVJ5hk7KIjm+uHh4Wb3C9A+EPrnn3+MrkOzjL6+abZlL/tADmMn786dO+jcuTPi4+PV8ypXrow9e/Zo7TdbY+yko/ampqaiYsWKUKlUBl+aQkJCJMutfR8TY1esfv36kmmVSgVvb2/F7egaudfQgEjmYNyK7d27VzLds2dPo9rRXP/AgQNGlTeVPcfPlnisUqwsxk4fez5WsQUmumR1mh8YFy9eNKr8pUuXZOszVXBwsGRI+ezsbCQmJioun5iYKLnPwdPTEzVr1tS5rr3uA0Pstd+2jJ0uDx48wPPPPy/ZPh8fH+zatctuRvRl7Mouxg5o0KCBZFoIYdQgM7ru0ysZ8MhaGLfiyyOfFBISYlRfNdfXPNNmTfYaP1sqq/ugrPbb2srCsYq1MdElq2vWrJlk+siRI4rL3rx5EwkJCeppV1dXrQMgU6lUKjRp0sTkvh0+fFgy3aRJE70PKTdnH+hqS7M+a2HstGVnZ6N79+7q53oCxffzbN++HU2bNlXcB2tj7Mouxg6IiIjQmpeenq64Lc1LF52dna1+Hxrjpj16rYuLi+J2AGgNFldYWGhUeXPYa/xsiccqZTd2msrKsYq1MdElq+vRo4dkes+ePYoHCti1a5dkulOnThYdJECzb7t371ZcVnNduUu0IiMjJQ/hvnLliuJf1BMSEnD16lX1tLe3t+J7nszF2Enl5uaiT58+ki9zd3d3bNq0Ca1bt1bcvi087bGbPXs2du/ebfRL0w8//CBZ3q9fP8V9NdXTHjug+Mxeo0aNJPNiYmIUt6W5bt26da3+gwjjBvj7+0umn7wnUAnNM7iVKlUyqrw57Dl+tsJjlbIbuyeVpWMVqxNEVlZYWCgCAgIEAPXrr7/+UlS2ffv2knJffvmlRfsWFxcnqd/Ly0tkZWUZLJeZmSk8PT0lZS9cuCBbpm/fvpL1P/jgA0V9nD59uqTcf/7zH0XlLIGx+5/8/HzRq1cvSTlXV1exZcsWS2yOxTF2pnmybgDixo0bFq1fCcaumOZn3+DBgxX388UXX5SUHTFihOKypmLchBg4cKBk3Zdfftmofk6ZMkVSPjIy0qjy5rDn+BkyY8YMSftDhgwxuS4eq5Td2AlR9o5VrI2JLtnE+PHjJX90HTt2FEVFRbJl9uzZIynj7e0tbt++bfG+tWzZUtLO9OnTDZaZNm2apEzr1q0Nltm6daukjL+/v7h165ZsmfT0dOHv7y8pt2PHDsXbZgmMXfGX6ODBgyXlnJycxK+//mqJzbAaxs549pDoCsHYCSFEfHy8cHV1VZcpV66cuHTpksFycXFxwsXFRdLevn37lGya2Z72uH377beS9d3c3ERCQoKi/t29e1f4+flJyn/44YeKylqKPcdPjiWTJR6rlN3YldVjFWtioks2cfv2beHl5SX545s7d67e9ZOTk0WtWrUk60+bNs1gO5oHqUoObrZv3671y1d0dLTe9ffv3y85+AIg9uzZY7AdIYRo3bq1pFzPnj1FXl6eznVzc3NFjx49JOu3b99eUTuWxNgJMXz4cEkZlUolvv/+e4PlShtjZzx7SXQZu2KjRo2SlGvatKm4e/eu3vVv3bolGjRoYFRyZklPe9x0bf8zzzwj7t27J1suKytL/Otf/9Lq37Vr1wxulyXZc/zkWPqsII9V9LPn2JXVYxVrYqJLNvPxxx9rfUCMGDFCpKSkqNcpLCwUf/zxhwgKCpKsFxgYKDIyMgy2YeoHUFRUlKScu7u7WLJkicjOzlav8/DhQ7F48WLh7u4uWfeFF15QvA8OHjwonJycJOUjIyNFTEyMZL1Tp06Jjh07StZzdnYWR48eVdyWJT3NsZs5c6ZW31588UWxe/duo1/Xr19XtE2W9DTHzhSa21Jaia4QjJ0QxWeKKlWqJCkfFhYmNm3aJPLz89Xr5eXliT/++EOEhIRo9Ss2NlZxe5bwtMdt1qxZWv0LDg4Wq1ev1rpc+tGjR2LdunWiXr16WmVGjRqlqD1Ls9f45eTk6P1ueeWVVyT1RUVF6V03NTXVYFs8VtHPXmNX1o9VrIWJLtlMYWGh1q9+JR+KtWvXFs2bNxc+Pj5ay8uXLy8OHTqkqA1Tv/zT0tK0DpBK2m7YsKFo0KCB1pc+ABEaGmrwkh5N8+fP16qn5EO2RYsWolq1ajqXf/rpp0a1Y0lPc+w0v8TNec2YMUPRNlnS0xw7U2i2VZqJLmNXbN++fTrrqlixomjatKlo2rSpqFChgs79tGbNGqPasoSnPW4FBQU6tx+AcHFxEeHh4aJVq1aiQYMGws3NTed67dq1Ezk5OYraszR7jd+NGzcs8j20cuVKRX3ksYpu9hq7sn6sYi1MdMmmcnJyxIABAxT/sfn7+xt1WYipX/5CCJGQkCCaNm2quG/NmjUTSUlJxu8EIcTChQuFs7OzonacnZ3F4sWLTWrHkp7W2DnCl8fTGjtTaLZXmomuEIxdiejoaFG5cmXFbVWoUKFUB1952uOWk5MjRo4cadLn5ODBg8WDBw+Mas/S7DF+tk50heCxii72GjtHOFaxBia6VCrWr18vmjVrpvePzNPTU4wcOVKkp6cbVa85X/5CFN9rMn/+fBEYGKi3b4GBgWLBggUiNzfXqLo1nTlzRnTv3l3r8qCSl5OTk+jRo4fNL7sz5GmLnSN9eTxtsTOFZrulneiWYOyKBysaP368zjMyJS8/Pz8xZswYq53xN9bTHrejR4+KgQMHivLly8t+NpYrV0707t1b7N271+S2rMGe4lcaia4QPFbRZK+xc6RjFUtSCaHwQVNEVnDt2jUcP34cKSkpyMvLg4+PD+rXr4927drB3d291PpVVFSEmJgYxMXF4datWwCAypUro1mzZoiIiICTk+UeQX3nzh0cOnQI8fHxyM7OhqenJ0JDQ9GuXTsEBARYrB1LY+zKLsau7GLsgPz8fJw4cQIXLlzAnTt34OrqikqVKiE8PBzPPvusXb5Pnva45efnIy4uDhcvXkRGRgYePnwIDw8P+Pr6om7dumjRogXc3Nws0pY12Gv8bInHKlQWMdElIiIiIiIih2J/P3sSERERERERmYGJLhERERERETkUJrpERERERETkUJjoEhERERERkUNhoktEREREREQOhYkuERERERERORQmukRERERERORQmOgSERERERGRQ2GiS0RERERERA6FiS4RERERERE5FCa6RERERERE5FCY6BIREREREZFDYaJLREREREREDoWJLhERERERETkUJrpERERERETkUJjoEhERERERkUNhoktEREREREQOhYkuERERERERORQmukRERERERORQmOgSEZFdU6lURr9mzpxptf7s379ftu2hQ4fKlq9Vq5besrVq1bJav8mx8X1lvFWrVsn+La9ataq0u/hUiIyMNPozPjIysrS7TWUAE10iclgzZ86UfDHu37/f4m107dpV0oaTkxNu3rwpWWfo0KFGf4m7urrC19cXNWvWRMuWLfHqq69i/vz5OHfunMW3gYiIiMjRMNElIjJRZmYm9u3bJ5nXqlUrVKtWzey6CwoKcP/+fSQnJ+PUqVNYu3YtJk+ejCZNmiA8PBw//vgjhBBmt0NERETkiJjoEhGZ6M8//0ReXp5kXp8+faze7uXLl/Hyyy+jS5cuePjwodXbIyIiIiprmOgSUZl28uRJs+vIz89HXFyc0eU2btyoNa9v375m90epvXv3olu3bigsLLRZm0RERERlARNdIiqzDh48iGeffRZRUVE4e/asSXVs2LABDRs2ROfOnZGVlaW4XG5uLrZv3y6ZV79+fdStW9ekfpjq0KFDWLFihU3btCcrV66EEELrZc3BqIiIyHL279+v83N8yJAhpd01KuNcSrsDRESmmjx5MgBg9+7daN68OYYMGYIPP/wQ1atXN1j2xIkTGDduHA4dOqSet3DhQsyaNUtR23v37tVKjE29bDkwMFByJrigoAB37tzBqVOnkJiYaLD8ggULMHLkSJPaJttLSEgo7S6QA+L7iohIiokuEZVJp0+fxrFjx9TTRUVFWLlyJX799Ve89957mDRpks5yCQkJmDJlCn799VetwZy++eYbTJ06FeXKlTPYviUvW65Tpw6WLl2qNV8Igd9++w1Dhw5FTk6O3vKJiYm4cOECGjZsaFL7RERERI6Gly4TUZkUERGB2NhY9OzZUzL/0aNHmDNnDsLCwrB7927Jsk8++QTh4eH45ZdfJEluuXLlMHr0aMTFxSlKcouKirBlyxbJvBo1auCZZ54xY4u0qVQqvPTSS5gzZ47BdU25x5iIiIjIUfGMLhGVWY0bN8bmzZtx9OhRTJkyBdHR0epl6enpSE9Pl6y/bds2ybSTkxNefvllzJ49G8HBwYrbPXbsGNLS0iTzevXqBZVKZcJWGPbqq69i3Lhxsuvcvn3brDYKCwsRFxeH69ev4969e8jIyICrqysCAgJQtWpVtGrVCj4+Pma1Yc+Kiopw/PhxXLlyBWlpafDy8kL16tURERGBoKCg0u6eyYQQOHbsGK5evYrU1FS4u7ujbt266NChA7y8vAyWv3z5Mo4dO4abN2/C1dUVlSpVQkREBBo1amTRfpZcqn/r1i3cu3cPjx49gq+vLwICAlCvXj00btzYan9fmgoLC3Hs2DHEx8cjNTUVbm5uqFy5Mlq3bo3atWubXX9qaiouX76MGzduICsrC9nZ2VCpVPDw8ICfnx9q1qyJkJAQBAUF2Wyb5RQWFuLs2bO4du0aMjIycO/ePTg7O8PPzw9+fn5o3LgxwsLCbNofa8bHUh48eICTJ08iPT0d9+7dQ2ZmJipWrIiAgADUrl0bLVq0gLOzs0XaevjwIS5fvoyrV6/i7t27yM7ORl5eHsqXLw9vb29Ur14dQUFBqFOnDtzd3c1qKyEhAVeuXEFSUhIePnyI7OxsODs7w8PDAwEBAQgKCkJISIiiW4iIrE4QEVnA1KlTBQC9r969exusIz09XVSpUkVvHS4uLuLQoUN6y+/YsUNERETI9qPk1aNHD3Hu3DmTtnXChAla9e3evVvv+kOGDJHtS8eOHQ226e/vL1vHRx99ZPR2FBYWivXr14uuXbsKb29v2fqdnJzEM888Iz7//HORk5NjdFvmkOvXypUrzao7JydHfPDBB6JatWo661epVKJjx47ijz/+UJfZt2+fbJ+GDBki22ZwcLDessHBwbJlDb2X9u3bJ4QQoqCgQCxYsEDUqlVL53oeHh7i3XffFffv39fZzpYtW2T/loKDg8W3334rCgsLjdjbUklJSWL8+PEiPDzc4N9rQECAePnll0VsbKxRbdy4cUNxrG7evCnGjBkj+xnUqFEjsWHDBqO3NTExUYwbN06EhYUp+nwCILy9vUXbtm3F2LFjxYYNG8SdO3dk2zDnfaWpsLBQ/PHHH+KFF14QFSpUMNjXqlWrisGDB4tjx44Z1U5px2flypUW/Xy5ffu2mDVrlmjatKlwcnKSrbtChQqib9++Ijo62qg2SuTl5YkVK1aIyMhI4eLioug95ezsLMLDw8WgQYPE8uXLxYULFxS1deHCBfH222+L6tWrK37/+vn5icjISDF58mSxbds2kZmZafQ2yn3eKfneJGKiS0QWUVBQIDp06CD7xfftt9/K1tG9e3fZ8vPnzzfYj6KiIjF06FDZepYsWWLWttapU0dSn4+Pj8jPz9e7viUS3cDAQNk6vvzyS6O2YcuWLSI0NFTxQYvmQe3PP/9sVHvmsOSB6JPOnDlj1D4YMGCAyM7OtvtENykpSbRp00bRNjVs2FAkJCSo68/NzRWvv/664n3St29f8fjxY6P2+4MHD8Rrr72m+OD8yZdKpRL9+vUzmPSVUJpI/fLLL6JixYqK+/Huu++KoqIiRX2YN2+eKFeunEl/a7Z6Xz1p586dWp9xxrw6dOggrly5oqit0o6PpRLd3NxcMX78eFG+fHmT9llkZKS4ceOGoraEECImJkaEhISY/Z4C5NOAgoICMWbMGINJu5LXjBkzFG9fCSa6ZC4mukRkMSkpKaJSpUp6v5i8vLzEtWvXdJZdunSp7Jdk9+7dDR64HDhwQLRr187gF65KpRIvvfSS4oOxJ50/f16rvsGDB8uWMTfRLSwsFO7u7rJ17N27V1H/8/Pzxbhx44RKpTL7wGXs2LGioKBA6a4zmSUORDWdPn1a+Pn5Gb3NHTt2FNu2bZNdpzQT3fXr14t69eoZtU01a9YUmZmZIj8/X/To0cPoffLaa68p3u8xMTGidu3aZr/3goODxenTpw22pySRmjt3rkl9mDVrlsH2Z8yYYfa22uJ9JUTxj4Tvv/++RT4bvL29xS+//GL38bFEonv9+nXFVxLJvfz9/WWvDCpx7tw54eXlZbH3lRxDnzfGvJjoUmlgoktEFrVz507ZA6U2bdpoJUcXL16U/SW8Zs2asmdwzpw5I7p162b0F6+Li4sYPny4uHnzpuLtmzNnjlY969evly1jbqJ7/Phx2fKenp4iKytLUf/feustix24ABCjR49WuOdMZ+6BqKaMjAyDZ8jlXnXr1pVdXpqJbkBAgEnbNGrUKDFu3DiT98lff/1lcL9fvHhR+Pj4WOy95+/vr/eHsxKGEim5H+YMvVxdXcXly5f1tn3hwgWTzlqXxvtKCCHGjx9vsb4Cxbc7bNy40W7jI4T5ie7Nmzdl97uxL3d3d4OXfyu9WkPpS5+dO3datB0mulQaOOoyEVlUVFQUpkyZonf50aNHMXfuXPV0Xl4eBg0apPfxOS4uLvj111/h7++vtezatWsYNGgQIiIisH37dsmyypUro02bNpJ53bp1k4yqXFBQgK+++gqhoaGYNm0aHjx4YHD7NB8r5O7ujq5duxosZ6qioiLMmDFDdp1BgwYpGlho8eLF+Prrry3VNQDAZ599hlWrVlm0TmsbPXo0UlNTTS5/5coVC/bGsu7cuWNSueXLl2PRokUmt/v555/LLr937x5eeOEF3L9/3+Q2NN29exe9evXCo0ePTK7DnEHc8vPzsXz5cr3LV69ejYKCApPrt6VVq1Zh4cKFFq2zqKgIgwcPxvnz502uw5rxMVdeXh569uyp6FnnSj1+/Bh9+vTBzZs3dS6/dOkSjh49arH25Hz33Xc2aYfImpjoEpHFzZ49G+3bt5ddfurUKQDA+++/j9jYWL3rzp07VythBYAzZ86gfv36+PnnnyWPCnJ3d8fkyZNx7do1REVFScpMnDgRly5dQr9+/STzHz16hI8++giNGzdGXl6e3r4kJyer+12ic+fO8PT01FvGFIWFhbh16xY2b96MTp06YceOHXrX9ff3x4cffmiwzvT0dEyfPl12ndq1a2Px4sWIiYlBSkoK4uPjsWnTJnTr1k223IQJE/Dw4UODfbAHly9fxtq1a2XXcXFxwejRo3HkyBEkJyfj4sWL+PLLL1GjRg0b9dJ8zZs3x4YNG5CQkIDLly9j9uzZcHLS/5VfVFSk/jtSqVR46623cOzYMaSkpODIkSPo0qWLbHtbt26Vfdbzxx9/jISEBL3LS0ZA37JlC65fv47U1FTExMTg448/1vkjV4mLFy/iiy++kO2bUv369cOuXbuQlJSES5cu4aOPPoKHh4dsmXXr1uld9uRzvjVVrlwZCxYswLFjx5CUlIS0tDRcuXIFx48fxw8//ID3338fnTp1Qvny5U3eHqWys7MxceJE2XVUKhVeffVV7NmzB4mJibh27Rp+//13REZGml23UpaOj7m+/vprre8DTT179sRvv/2GK1eu4ObNmzh79iw+//xz2ZHc09LSMHv2bJ3L5N5TKpUKr732GrZv345r164hLS0NCQkJOHv2LLZs2YIFCxZg4MCBCAwMVLR9cm2FhoZi6dKliImJQXJyMm7evInLly/jyJEj+P777zF+/Hi0adMGrq6uitoisprSPqVMRI4pOTlZ9rKzevXqic2bN8te5tyzZ0+99+UWFRWJZ555Rr2uSqUSAwcOFImJiep1NO+PKxmRVgghDh48KFq2bClZPmnSJNlt+uKLL7T6+N133xncF5a8z+nJV4UKFcThw4cVxWP06NGydfXt21d2NGVdl2w/+TJl1Gel5No19tLld999V7a+cuXKiV27dukse/fuXdGwYUODcSnNS5cBiHbt2ukcIOrtt99W9L5atmyZVtnHjx8bHPxG33sxNTVV9h5zDw8P2Uuf//nnH72jRwPFo7vqG9HV0KWxJa/FixfrLG/ofmwAIiUlRWdZuXulY2Ji9G7vk3Jzc8Xu3bvFsGHDxLhx42TXNfV9ZegeWCcnJ9nB5wx9tgAQR48e1Vm2NOMjhOmXLj969EhUrVpVdp/99NNPetu9f/++aNGihd7yrq6ukkHiSsjF6t1339Xbnqa///5bfPTRR6JJkyZ613Fzc9PZTrly5RTf7pOdnS02btwoBg4cKBYuXKi4fyV46TKZi4kuEVnNjh07ZBNZuZEcg4KCxL1792Tr3717twCKD+yPHz+utVwu0RWiOFn+4YcfRFBQkPD19TXY3nPPPSepz9nZWdy6dcvgfrBGotumTRtx6dIlg22XbKfcjw6BgYEiOzvbYB1NmzbVW0ejRo0U9cUUphyI6mPo3tyJEyfKlo+JiTE4WE9pJrrOzs7i77//1ln2zz//NPi+at++vd62DT1C7Pvvv9dZTtcPRE++9CUxT9qwYYNsHfruk1eSSPXp00e2bUM/buhL0ps0aaK3jNJRo41h6vtK7u8agBg+fLhsuwUFBaJx48aydei7l7804yOE6Ynuli1bTNreJ50+fVq2Dl2J4aJFi4xa3xz6HitVoUIFsx4rZgwmumQuXrpMRFbz/PPPY/LkyXqXFxUV6Zzv6uqKdevWwdfXV7b+zp07Y9++fTh06BCeffZZo/unUqkwePBgXL58Gdu2bZNt7/79+4iOjpbMa9u2LSpVqmR0u+Zo2bIlNm/ejCNHjiA8PFxRmdOnT8ve6zZkyBCDlwCqVCo899xzepefP39e731l9iIhIUH23lyVSoV33nlHto6IiAi0a9fO0l2zmA4dOqBevXo6l+mb/6S33npL77LGjRvLltV3/+3OnTv1lnF1dcWwYcMM9qtz586yy3fv3m2wDn3kxhQAgGbNmsku17fdtWrV0ltm2LBhFr2301Tp6ek4e/as7Drjxo2TXe7s7Iz//ve/suvs2bPH6L6VsFZ8zCH3ngaAkSNHGqyjefPm8PPz07tc13ta7j21cOFC7NmzR+/3qrH0tZWZmYmRI0fi1q1bFmmHyJpcSrsDROTYPvzwQxw6dAgHDx5UXGbevHlo1aqVonUN3SOmhLu7O1q3bi27ztatW7UGlunbt6/ZbRsrJiYGX331FRo0aIDQ0FBFZeTutQKK74N+coAwU506dQo9e/Y0ux5rOXPmjOzyOnXqoGbNmgbr6dKlCw4dOmSpbllUp06d9C5T8qOM3N+T3EE5AGRlZemcL/f+y8/Ph7e3t8F+GXLy5EmTylWpUsXgj2QBAQGyy/Vtd7du3bB582adyzZu3IiNGzciKCgIdevWRe3atVGnTh3Uq1cP4eHhCAsLg0qlUrYRZjh58qRkjANNtWvXRlhYmMF6nn/+ednlFy5cQHZ2ttHjGVgzPuYw9Jmq5EclQ3S9p//1r3/Bzc0Nubm5WsvS0tLQpUsXeHt7o0GDBqhduzZCQ0PV76n69esbtf+7deum90eQFStW4Ouvv0ZoaCjCwsLU79+SdoKDg5VvKJEVMdElIqtydnbGzz//jObNmysaQbN379547733bNAz4/zxxx9a8/r06WPzfhQVFWHbtm04evQofv/9d9nEpoStfnm391/4Db3/lJ4hV7peaZA7wHZ3d5ctW758edkBtwwNLKPrTFJhYSHu3r0rW84STH3vGTpLDcDggFD6zqANGTIEc+fORVJSkt6ySUlJOpf7+vri//7v/9CtWzcMGDDA4NUtpjK03xo2bKionpo1a8LLy0t2ULrbt28bnehaMz7msMVnXUZGBgoKCuDi8r9D9YoVK+K///0vPvnkE73lsrKycPz4cRw/flwy38XFBREREejUqRMGDx5scN+OGTMGy5Yt0/tDgRAC165dw7Vr17SWValSBe3bt0evXr3w73//2+IDNhIpxUuXicjqqlevji+//NLgel5eXli5cqUNemScx48fa12q1qRJE4SEhFik/sDAQIwaNQqjRo3CkCFD0LFjR7i5ucmWycjIQJ8+fRQ96sacR3QYw1btmCojI0N2ecWKFRXVo3S90iDXtycfrWVsWVPdvXtX9oyhpZj63pMb0bmEqSPHli9fHps3b1bUhqaMjAxs2bIFI0eORLVq1TBlyhTZUa1NZehxVD4+PorrMrSuKTGyZnzMYYvPOiGEzvjMmTMH3bt3N7q+goICnDhxAvPnz0eTJk3QqVMnXLx4Ue/6VatWxe+//27SyN/p6elYv349Xn31VQQGBmLhwoUoLCw0uh4iczHRJSKb+OGHHwyu8/DhQ4OPfjHGzJkzIYoH3YMQwuTLnHfv3o3s7GzJPEtetlynTh0sXboUS5cuxapVq7B//37Ex8fjlVdekS2XmZmJV155xSpnLEzx+PHj0u7CU8/QDyTWKlvadF3KqYShs9wAZB/LZEjTpk1x8eJFDBs2zORHBeXm5mLevHno2bOn7OPPHJG142PvdH2mlitXDlu2bMFXX31l1o+t+/fvR9u2bWVv6ejSpQvOnz+PF198UXJm2RiZmZmYMGECXnvtNVO7SmQyx/10ICK78emnn+q9V03ThAkTEBMTY+UeGWfjxo1a86x92XJgYCDWrFmDwYMHy6534sQJfPfdd7Lr2HrALHtl6PLPBw8eKKrHGoPbOCp/f3+b3GtqzypXroxvvvkGN2/exA8//IA33ngDjRo1MvqHhb1791rsmcElDN3fasx73dC6jvQ5VNrbolKp8Pbbb+P69evYv38/pk6dig4dOhh99cCDBw/w2muvyf5YWrt2bfz2229ITk7GN998g8GDB6Nu3bpGJ75r167F77//blQZInPxHl0isqpjx44ZHDXzSXl5eXjppZdw+vRpu7hEtLCwEFu2bJHMq1WrlsGRPi1l2bJl2Ldvn+xowTNnzsTLL7+s94xR5cqVZdtYvnw5hg8fblY/ywJDB6d///23onqUrkfF9+j7+/vrvUS2SpUqSEtLs3GvSkfFihUxePBg9Y9XRUVFSExMRGJiIuLj43H+/Hns3r0b58+f11vHsmXLDI6CbAxDnw1yl7Y+KTk5Wfb+XKD0k0NLqly5st57r52cnJCZmWmT+1JVKhU6duyIjh07qufdvXsX8fHxSExMxOXLl3H06FHs2rUL+fn5OuuIi4vD4cOH0b59e9m2qlSpgmHDhqlHSc/Pz8eNGzeQlJSE69ev49y5c9i+fTvi4+P11rFs2TL069fPhC0lMg3P6BKR1WRkZGDAgAF6v2D1iY+PxxtvvGGlXhnn8OHDWvdj2XIQqgoVKmDWrFmy66SmpmLFihV6lxsatdScR7OUJc2bN5ddfvXqVdmBg0o8LfvLUuTef+np6Th37pwNe2M/nJycEBISgsjISLz++utYtGgRzp07h4kTJ+otEx8fL/ujl7Fatmwpe8b9+vXruH79usF6DD1up2HDhg41IJHce7qoqAh//fWXDXsj5e/vj5YtW+LFF1/E1KlTsXXrVhw/flz2CgJjnopQwtXVFXXr1kXnzp3x9ttvY+nSpbh69SoGDBigt8zhw4ft5lYbejow0SUiqxk6dKjeZ0WqVCrZ55H+/vvvigawsrbSuGxZ09ChQw0+ruGTTz7Re59iixYtZC9R3Lx5s8FH7+hTUFCAdevWmXSgZGu1atVCYGCg3uVCCIPvuZiYGBw5csTSXXNoXbt2lV0+c+ZMk+uOj4/HggULTC5vTabeT2vo3nxLPq+6SpUqaNKkiew6ixYtkl1eWFho8JJqQ89BLmsMvafnzJlj8uBLaWlpev8mCgsLTUoUmzdvjkaNGuldrus9Zcr718nJSfZ2m9zcXIODAhJZEhNdIrIKQ/fljh8/Hjt27JB9RuO4ceNw+vRpa3RPsU2bNkmmAwIC8H//93827YOLi4vsWR6g+KzuN998o3OZk5MT+vfvr7dsQUEBevXqZdS+Pnv2LGbOnImQkBD0799f0Vkfe2DosrklS5Zgz549Opfdu3cPQ4YMsckowo6kb9++smeTNmzYgLFjxyo+sM7KysK6devQu3dv1KlTB8uWLbNUVy1q7ty56NChA1atWmXUI5YOHDggu9zS7z+5M3AA8NVXX2H9+vV6l0+cOBFxcXGydch9/pRFzz33nOyl2CdOnMCgQYMUP8P38ePH2Lp1K15++WUEBwfrvYrnn3/+QXBwMKZNm4YLFy4o7m9aWprsCP263lMjR45E9+7dsX79eqOeRWzr9y+RHN6jS0QWZ+i+3ObNm2POnDkoV64cfvrpJ7Rr107n5c25ubnq+3UrVKhgzS7rdPbsWa37jXr27AlnZ2eb9+X111/HnDlzZM/mzJ8/H2+99ZbOx8hMnToVK1euxKNHj3SWTU5OxrPPPou+ffuiT58+aNKkCfz9/SGEQEZGBm7fvo3z58/j9OnTOHDggOx9WPZs1KhRWLp0qd6Drby8PLzwwgsYNWoU+vfvj6CgIGRmZmLfvn34+OOPkZycbOMel301atTAiBEjsGTJEr3rLFmyBJs2bcLQoUPxf//3fwgJCYGHhwcePnyIjIwM3LhxA2fOnMGpU6dw4MABk0dZtiUhBA4ePIiDBw/CyckJzZo1Q/v27VG/fn2Eh4ejUqVK8Pb2hpubG7KysnD16lVs3LgR3377rWy9cs86NsW7776LRYsW6X1kTlFREV566SUMGTIEr7zyCurUqYOCggLExcXhiy++MHiZbrdu3dCmTRuL9rm0eXh4YOrUqRgzZozeddatW4fo6GgMHToUnTp1QlhYGLy8vPDo0SNkZGTgn3/+wZkzZxATE4N9+/ZpjeyvT3JyMj766CN89NFHCAwMRKdOndCkSROEh4cjKCgIFSpUgKenJwoKCpCSkoJDhw5hyZIlssmqrvdUQUEBtm3bhm3btsHFxQWtWrVC27ZtER4ejnr16sHPzw8VKlSAi4sLHjx4gEuXLuGXX37BL7/8orcdd3d3gwOgEVkSE10isqh79+6hf//+eu/L9fDwwE8//aROxlq2bIk5c+Zg0qRJOte/fv063nzzTfz6669W67M+f/zxh9Y8W1+2XMLd3R3jxo3D+PHj9a6TnJyM77//XufAUtWqVcOMGTP07meg+LK49evXy569Kevq1auHV155BWvWrNG7Tn5+PpYsWSKbmJFxpk2bhvXr18v+UHDjxg3MmDHDhr2ynaKiIpw+fdrsK1QaN26MqlWrWqhXxTw9PbFgwQLZx78IIbBq1SqsWrXKpLod0YgRI7By5UrZs9np6emYP38+5s+fb5U+pKam4scff8SPP/5oVj1RUVGyywsKCnD48GEcPnzYrHa6dOliVnkiY/HSZSKyGCEEhg4dKjugz+LFixEeHi6ZN2HCBNl7uNatW4fly5dbrJ9Kad6f6+HhUapf1MOHDzf4+Ih58+bp/ZFh4sSJ6hEzn2afffaZ7L26htSuXduCvXk6+Pv7Y/v27fDx8SntrpRpY8eOtUq9Q4cOlf0RzRROTk748ccfZe8NLcvKlSuHbdu2ISgoqLS7YpYOHTogIiLC6u2oVCrZM+BE1sBEl4gs5tNPP9V6FM+T+vTpg7feektrvkqlwtq1a2XveRo7dixiY2Mt0U1FEhMTtdrr2rWr3kf42IKnpydGjx4tu05iYiJWr16td/lXX32FsWPHPtXPNvXx8cGWLVvg5+dndNnWrVvj888/t0KvHF+jRo2wZ88ehIaGlnZXyqQBAwbInnU11/z58zFlyhSLfDZ4eXnhp59+Qu/evS3QM/sVGBiIv/76Cy1atCjtrpikatWqst8XljRp0iT861//sklbRCWY6BKRRRw7dgzvv/++3uWBgYGy955VrVoVK1eu1Lu85H5dYwbFMIc9jLasy7vvvmvwfuW5c+eioKBA5zJnZ2csWrQIO3fuRL169czuT1BQECZNmlTmLkmLiIjA3r17jUq6evXqhV27djnUY1JsrUWLFoiNjcXw4cN13ktuDBcXF3Tr1g0LFy60UO8sy8PDwyL1uLm5Ydq0aWZfnmqIk5MTPv74Y4ODBBrSoUMHxMTEONwAVPqEhobi6NGjmDp1Kry8vMyqS6VSoUOHDnofF+fi4gJXV1ez2ijRoUMHnDx5ErVq1dK53FLvX29vb3zxxReYO3euReojMgYTXSIym6H7clUqFVavXm3wstvu3bvjv//9r97lV69e1XlG2Bo07891cXFBjx49bNK2HB8fH4waNUp2nfj4ePzwww+y63Tp0gWXLl3Cjh070K9fP9mz6U9yd3dHhw4dMHPmTBw+fBgJCQmYN28eqlevrngb7EWzZs1w7tw5fPDBB6hWrZre9Vq3bo2ffvoJmzZtgre3tw176Ji8vLywfPlyJCUlYfbs2WjevLniAd6Cg4MxZMgQrF69Gqmpqdi2bRtefPFFK/fYNBMnTkR8fDxWrFiBwYMHIzw8HE5Oyg+7GjZsiMmTJ+PatWv48MMPjSprjqioKFy+fBkbNmxAt27dFA0EWKVKFQwaNAjHjh1DdHQ06tata4Oe2g9XV1fMmTMHycnJWLx4Mdq0aaP4h5yqVauif//+WLFiBRITExEdHa33e65GjRq4d+8etmzZgjFjxqBt27ZG/fDm5+eHQYMGYdeuXYiOjpYd2GzZsmW4cOEClixZghdffBEhISGK21GpVOrxNxISEvDOO+8oLktkSSrBcb6JiCTu3r2LKlWqSJ6D+Nxzz+l97IyjuHbtGs6fP4979+7h/v37ePToEby8vODt7Y1q1aohPDwctWrVstkBdwm5SylXrlyJoUOHmt1GUVERjh07hitXriAtLQ2enp4IDAxERESEUQd4ZJrs7GzExMQgJSUFGRkZuH//PpydneHt7Q1fX1+EhoYiPDy8VEZft6Ts7Gxcv34dSUlJSE1NRVZWFnJycuDi4gIPDw9UrFgRYWFhCA8PN/jDoK0UFhbi7NmzuHr1KjIyMpCRkQEnJyf4+fnB398fjRo1Qp06dUq7m3YnNzcXZ86cQWJiovo9LYRAhQoVULFiRYSEhKB+/fom3ULxpKKiIiQkJCAxMRFJSUnqz+7CwkJ4eHjAy8sLNWrUQL169RASEmLW5/eDBw/U79+0tDQ8fPgQOTk5KFeuHDw9PeHr64s6deqgXr16qFixolnbBRTfO67v0uqOHTti//79ZrdBjo2JLhGRhlWrVmndC/fFF1/wV+lSYso9gzNmzMDMmTMt3xkiIrKoyMhIREdHG1WGiS4pwUuXiYg02Ov9uURERESkDJ+jS0SkoW3btmjWrJl62sfHR/ZeJiIiIiKyL0x0iYg0TJw4sbS7QERERERm4KXLRERERERE5FA4GBURERERERE5FJ7RJSIiIiIiIofCRJeIiIiIiIgcChNdIiIiIiIicihMdImIiIiIiMihMNElIiIiIiIih8JEl4iIiIiIiBwKE10iIiIiIiJyKEx0iYiIiIiIyKEw0SUiIiIiIiKHwkSXiIiIiIiIHAoTXSIiIiIiInIoTHSJiIiIiIjIoTDRJSIiIiIiIofCRJeIiIiIiIgcChNdIiIiIiIicihMdImIiIiIiMihMNElIiIiIiIih8JEl4iIiIiIiBwKE10iIiIiIiJyKEx0iYiIiIiIyKEw0SUiIiIiIiKH8v9FStivpTw6MgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Plot the integrated expression\n", + "\n", + "fig = plt.figure(figsize=(5,3),dpi=200) # formats the plotted figure\n", + "\n", + "### BEGIN SOLUTION\n", + "plt.plot(x, d, linewidth=3)\n", + "### END SOLUTION\n", + "\n", + "# Format for publication quality\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=16,fontweight='bold')\n", + "plt.ylabel('\\u03B4* [dimensionless]', fontsize=16,fontweight='bold')\n", + "plt.xticks(fontsize=15)\n", + "plt.yticks(fontsize=15)\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QK8RXm8ZboYw" + }, + "source": [ + "### 2d. Define the entrance length\n", + "\n", + "At what value of x does the boundary layer become fully developed?\n", + "\n", + "Hint: What is the coordinate where $δ$ = 1?\n", + "\n", + "Store your solution as a numpy array labelled `Le`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "EYKTX9Qfc20I", + "outputId": "b0013768-a5a2-49c4-b16c-66610e32f5c9" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Le (x @ δ*=1) = 0.12694690354738747\n" + ] + } + ], + "source": [ + "### BEGIN SOLUTION\n", + "Le = np.array(x[-1])\n", + "### END SOLUTION\n", + "\n", + "# Print Value\n", + "print(\"Le (x @ δ*=1) =\", Le) # we want to know the dimensionless\n", + " # length at which del is 1 since this will give us our entrance length where\n", + " # flow is stil developing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SbcoTuHbtDak" + }, + "source": [ + "### 2e. Define an equation for Le using new value\n", + "\n", + "Using the obtained value of `Le`, make a general expression for the entrance length similar to the expression derived in part 1.\n", + "\n", + "*Hint*: The value obtained for Le is dimensionless." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z3iuGDfTvYyr" + }, + "source": [ + "Submit your answer and written work via **Gradescope**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W_TIpO1s6Mjl" + }, + "source": [ + "### 2f. Comparing integration methods\n", + "\n", + "Compare your previous results using the `RK45` integration method with alternative methods.\n", + "\n", + "Define your equation as `methods`.\n", + "\n", + "For more information on other integration methods for `scipy.integrate`, click [here](https://ndcbe.github.io/data-and-computing/notebooks/07/Systems-of-Differential-Equations-and-Scipy.html) to go to the relevant section of the class website. Further detail into integration methods for `scipy.integrate`, is also provided in the documentation [here](https://docs.scipy.org/doc/scipy/reference/integrate.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "eepM5dJK8emB", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8937dedf-d670-4be8-fec2-e0e386beb4f4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using method RK23\n", + "Number of RHS function evaluations: 53\n", + "Le (x @ δ*=1) = 0.12693195882302588\n", + "\n", + "\n", + "Using method RK45\n", + "Number of RHS function evaluations: 38\n", + "Le (x @ δ*=1) = 0.12694690354738747\n", + "\n", + "\n", + "Using method DOP853\n", + "Number of RHS function evaluations: 89\n", + "Le (x @ δ*=1) = 0.12694710642481696\n", + "\n", + "\n" + ] + } + ], + "source": [ + "# make a list of methods\n", + "methods = [\"RK23\", \"RK45\", \"DOP853\"]\n", + "\n", + "# loop through methods for best\n", + "for i in methods:\n", + " print(\"Using method\",i)\n", + "\n", + "### BEGIN SOLUTION\n", + " other_methods = integrate.solve_ivp(entrance, dspan, xo, method=i, t_eval= tspan)\n", + " d1 = other_methods.t\n", + " x1 = other_methods.y[0]\n", + " Le = np.array(x1[-1])\n", + "### END SOLUTION\n", + "\n", + "# print values for each method within loop\n", + "# some solver statistics\n", + " print(\"Number of RHS function evaluations:\",other_methods.nfev)\n", + "# calculated length from each method\n", + " print(\"Le (x @ δ*=1) =\", Le) # dimensionless\n", + " print(\"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_45mKgasR0Y6" + }, + "source": [ + "## 3. Discussion and Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OXqzw7jWR0Y6" + }, + "source": [ + "### 3a. Explain why the equation derived in Question 2e differs from the one obtained in Question 1.\n", + "**Discuss** in 1-3 sentences.\n", + "\n", + "**Answer**:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N93m2GRF90ci" + }, + "source": [ + "### 3b. Describe the integration methods used in 2f and how they differ in performance. Was the best method used originally in 2b? Why or why not?\n", + "\n", + "\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pKp85z-zsxMZ", + "tags": [] + }, + "source": [ + "### 3c. \tA Reynolds number of 1 was used as a starting point to simulate laminar flow. If the Reynolds number were increased, what would happen to the entrance length? Does it get larger or smaller? Why does this occur?\n", + "\n", + "**Explain** your reasoning using the derived equations for `Le` and the nature of turbulence.\n", + "**Discuss** in 3-5 sentences.\n", + "\n", + "**Answer**:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ga1hxJLNs1H0" + }, + "source": [ + "To visualize, plot the curve above with the following values of Re:\n", + "\n", + "1, 10, 100, 500, 1000, 5000.\n", + "\n", + "*Hints*:\n", + "\n", + "1. Use a [lambda function](https://ndcbe.github.io/data-and-computing/notebooks/01/Functions-as-Arguments.html#lambda-functions) to allow redefinition of Re.\n", + "\n", + "2. Make a semi-log plot for easier viewing of trend in results.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "iMNgZLshYyWg", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 774 + }, + "outputId": "34f89647-e23e-4de0-9ffe-30bcd839e019" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Le (x @ δ*=1) for Re = 1 = 0.12694690354738747\n", + "Le (x @ δ*=1) for Re = 10 = 1.2695003130784555\n", + "Le (x @ δ*=1) for Re = 100 = 12.695115409153276\n", + "Le (x @ δ*=1) for Re = 500 = 63.47563865495485\n", + "Le (x @ δ*=1) for Re = 1000 = 126.95129304465897\n", + "Le (x @ δ*=1) for Re = 5000 = 634.7565284345559\n", + "\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAJqCAYAAABKPP1jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydeXhU9fX/3zOTbbLv+54QEjbZwhJ2EBSKINKitlqpihb7Q/m2ArVaWqtWEZdWsS5FxaX6/bqxKooiJBAgIRDWhIRsZCcJ2SfbZOb+/qAZZzKTz2cSZu6dmZzX8+R57nLmkzOZJffcc97nyARBEEAQBEEQBEEQBGFl5FI7QBAEQRAEQRDE8ICCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRIGCD4IgCIIgCIIgRMFJageI4UlXVxfOnz8PAAgKCoKTE70VCYIgCIIgbIne3l7U19cDAMaOHQs3N7cbXpOu+AhJOH/+PKZMmSK1GwRBEARBEIQZZGdnIzU19YbXobIrgiAIgiAIgiBEgTIfhCQEBQXptrOzsxEWFiahN9LR2dmJjIwMAMDs2bOhVCol9oiwFPTaOjb0+jou9No6NvT6Do6amhpdpYr+tduNYNHgIz4+3pLLWRSZTIbi4mKp3SD+i77GIywsDJGRkRJ6Ix2dnZ0IDAwEAERGRtKXoANBr61jQ6+v40KvrWNDr+/QsZQ+16LBR1lZGWQyGQRBsOSyFkEmk0ntAkEQBEEQBEEMa6xSdmVrF/q2GAwRBEEQBEEQxHCDNB/DCEEQcPr0aZw5cwZ1dXUAgJCQENx0002YOHGizQWNBEEQBEEQhGNhleDDljINYl1QV1VVITs7G1lZWcjOzkZOTg7a2tp052NiYlBWViaKL/1Rq9X45z//iX/84x+oqqoyaRMZGYn169fj0UcfhbOzs8geEgRBEARBEMMBq2c+pLqbLkYAlJmZiZdffhlZWVmorq62+u8bChUVFVi+fDlyc3OZdpWVlXj88cfx6aefYvfu3YiIiBDJQ4IgCIIgCGK4YPXgw5ayIJbm5MmT2Llzp9RuDEhdXR3mzZtn1OVLqVQiPj4eWq0WpaWl6Orq0p07deoU5s2bh2PHjum6QRAEQRAEQRCEJbCa4FwQBMhkMmzevNkav4LL008/LamGwdPTE+3t7ZL9fgBYvXq1QeDh5uaGF154AWvWrIG7uzsAQKVS4Z133sGf/vQnXRBy+fJl3H///dizZ48kfhMEQRAEQRCOidUzH3/5y1+s/StM8vTTT4v2u7y8vDBp0iSkpqZiypQpSE1NRWlpKebNmyeaD/05cOAA9u/fr9t3dnbGd999h9mzZxvYeXh44H/+538wceJELFy4EGq1GgCwd+9eHDp0SNLnQBAEQRAEQTgW1O3qBrjtttuwaNEiJCcnQy6XG5wrLS2VyKvr/PnPfzbY/+Mf/2gUeOgzZ84cbNq0Cc8++6zu2FNPPYXMzEyr+UgQBEEQBEEML+R8E2IgEhISMGrUKKPAQ2rOnz+P7Oxs3b6Hhwc2bNjAfdzGjRvh4eGh2z927Bjy8/Ot4iNBEARBEAQx/KDMhwOye/dug/1Vq1bBy8uL+zgvLy/84he/wI4dO3THdu3ahZSUFEu7aBEEQYBKpUJrayu6urqg0WikdmnQaLVaBAQEAADKy8ttLpAlBodcLoeLiws8PDzg5ERfrwRBEATRH4v/d7Sl7la25IuYfP311wb7ixYtMvuxCxcuNAg+9u3bhyeeeMJSrlkMrVaL8vJydHZ2Su3KDSEIApRKJQBAo9FAq9VK7BFxo/T09KC9vR1arRbu7u7o6OiQ2iWCIAiCsBksGnzcd999llzuhrAlX8REEAScO3fO4FhaWprZj58xY4bB/tmzZ3Wdy2wFQRCMAg+ZTAaFQiGhV0On729Ld8rtH41Go7vpIZPJ4OnpSa8r4ZD09GrhrJDZ1P8Gq9LbAzi5SO2FaKi1ajjLbXvgsKDVAlotZDf4HStoBQiCALnCtisPNL29kCsUDvGZs+h/xffff9+Sy90QtuSLmFy5csXgTquHhweio6PNfnxMTIzB3VqVSoWKiopBrWFtVCqVLvBQKBQIDQ2Fp6enXZYsabVatLa2AgC8vb3t8jkQPyEIArq7u9Ha2opr167B1dUVwPVsSF+GiyAcgbfSi/GfrCuYGheAqfH+mBoXgIQgD4e4MDLJJ78AWmuA2BlAzAwgdibgFSq1V1ZBrVFjzmdzkOCTgMmhkzEpZBImBE+Ah7MH/8Ei0nXhAsp/cz+UEyfCPTUV7qmToRwzBjLnwQVNV8tasee1MwhL8EVEki/CR/giKMYLChsLRk5/sxunvtmNyJQxiBo1BpEpY+AfEWWXnzm6JedgFBQUGOxHRUUNeo2oqCiDdQoKCmwq+Oi7WAeA0NBQeHt7S+gNQfyETCaDm5sb3NzcIJPJUFtbi56eHrS2tsLHx0dq9wjCYmSVXsPV1m7sOVuNPWerAQCBnq6YGuePqfH+mJEYiIQgT4m9tBC9PUB5FtDbCTQUADnvXT/un/DfYGQmkDAf8AyS1k8LcfHaRbT1tOFM/RmcqT+D7ee3QyFTIMU/RReMTA2bCqWTtDdUOk6ehFalgurIEaiOHAEAyJRKKMffBPfUVHikpkI5eTL34ryqsAnqLg3KL15D+cVrAAAnFzlC433+G4z4ISzRR/KL/Mr8C1A1NaLgWAYKjmUAAJTePohMGY3IlDGIGTseAZG2c63GwrbCOuKGqaurM9iPjIwc9BoRERHMNaWmbxhiX1kLQdgivr6+kMlkcHJy0r1nCcIR6OnV4tSVJqPjDe3d+Pp8DTbvvoh/Z5RI4JmVqDlzPfDoT2MxcPpDYOdDQPGPortlLXKu5hgd0wgaXLh2ATsu7sC6H9ehpbtFAs8M6cg+aXRM6OxEx/ETaHjtdVRt3GTWOtWXm42O9fZoUXmpCVl7SvHDjjzJAw+tVoPK/ItGxztbW3A56xgO7XgHWTs/k8CzoUGZDwej/1R1/da55tL/MUOZ1F5ZWck8X1NTo9vu7OwclHBcrVZDEASdxsOeRdr6vtvz8yCMkclkkMvlkMlkUKvVdt8cgTBEP6AcbsFlbkULutTs76sJkV52+57v/9o6FR0Gr5CnK3QSBDt9vv3Jrs5mng/3CIeP3EfS11fQaKA6dYpp4zpxgsnPpv6xDlUnaorYgVRIvPTv5forpejpZDcvCUkcaRU/rbGm3QUftbW1qKmpgSAIiIyMRHBwsNQu2RT9AwU3N7dBr9G/Nn0owcdgyr0yMjIQGBhotn1AQACUSiXc3d0NSrDsnaH8nQnbpu9uWWNjIy5fviyxN4S1yMjIkNoFUfm+SgaA3eCj88o5HKg9x7SxBzIyMjCtaC9CGDYqlyD8cOIiAOM70/aGRtDgVAv7oj5EHYIDBw6I5JFpXKuqEMP5n1ns5oZcjp8/fpMJdTf7Ju21rnIcOCBtJq/50nmuTUlDIyqt8Lo0NDRYfE27KLvq7e3Fq6++ihEjRiAiIgKTJ09GamoqwsLCMH78eHz44YdSu2gz9I/yXVwG352jTyTbh9QRP0EQBGE7FLWwS1ACXAX4uTJN7AaZoEGAqpBpc80zWSRvrE+NpgY96GHaxCpixXGGgbKklGvTGRfHtelu5HfJdPWTfoZYZ10N87zCTQlnL/vRFUqS+WhsbMTjjz9udDwwMBAvvviiwbGuri4sW7YMBw8eNDm349y5c/jNb36DAwcO4OOPP7aaz/ZC/0xHTw/7S8QU3d3dzDXNoaKignm+pqYGU6ZMAQDMnj17UNqU8vJyaDQaODk52b3YXKvV6jIe9tqxizCNfhmdv78/Jk2aJKE3hKXp6urSZTxmz549pO9Je6RXq8UTp44AGPiCbHZKGBYtGiWeUxZG/7WdO9IfTmfYZXWh01Zi0Vjz52nZMv8p+A9wlm3z63m/RoRnBNvIytR99x1YRUiKwEDM/eUvTWo19F9fT1kIWjBw2ZW7jwsW336zpJoPQavF+3v+l2kTO248brnlFqv8fl4Z/VCQJPjIyMjAjh07jF7MBx980Mj2b3/7G3744QcAGPDFFwQBn376KRITE/HXv/7V4v7aE/0F2EOpRe6f6RiKqHswwYRSqRxUG1K5XK67sHOki3W5XO5Qz4f4CYVCQa12HRg3N7dh8/qeqWhGRw/7TnBaYrDD/D2UV9klSADgMmIe4CDP9+w1duQR4h6ChMAEyS/Gu0/nMm08pqTC3d2dvY4A1F9hl25FJPlx17E2DeVl6GpvY9rEjhlvtc+cNdaV5ErnyH9bogHXA4e+jMadd95pYNfc3IxXX30VMtlPg4z67PUfJ5PJIAgCXnzxRVRXV4v0LGyT/oGCSqUa9Br9H0MdpQiCIAgAyCq5xrWZFh8ggifiIK84zjbwjgR8Y8RxxspotBqcqmMHW5ND+a1rrU13URE0zc1MG/fUVO466jY5ejrYgXREku8gPLMOFfkXuDaRo8aI4InlkCT4yMrK0m33vYmVSiVmz55tYPe///u/uhIg/WBDH/1j3d3d+Ne//mUNl+2G/gL8oaTLqqqqmGsSBEEQw5Os0kbm+XAfN0T6OUYWAIIW8sostk3sDMAOh7yZ4nLzZbT1sO+wTwqRvny046Rxi93+uE+ezLUxR+8RPsLXHJesSmUeO/hQennbzXyPPiQJPs6fP2+QyZDJZJg2bRqcnAyrwPbv32/02L4siH42pA9BELBnzx7rOW4HjBw50mCfp70wRf/HJCc7jpiOGBp1dXXYt28fNm/ejMWLFyMwMFD3GVy9erXU7hEEIQIarYCTnOBjWnyA5HfGLYVPZzlk3ZyOijFp4jgjAqfMKDGbHMK/qLc2HTnGc0j0Ufj5wSUxkbtODyf4UHq7wDdE2pIrQRBQycl8RCSPtrvPnOiaj/LycrS1tRn9oaZPn25ke/ToUQO7vvIq/X3gpwBGEARcvHgRTU1N8PPzs9IzsG1iYmKgVCp1ug2VSoUrV64gJsa8tPCVK1fQ0fGTjMvDw2NIU9IJxyIkhNVokiCI4UB+TSvaunuZNlPj/UXyxvoEtF/iG8XMtL4jIpFTy76oD3ALQKx3rDjODIAgCOg4yfbT3Yyp5oIAdDexg4/wRF/JL+qbaqrQ0dLMtImys5IrQILMR2mp6fZoo0YZdsYoKipCU5PxBNWNGzfi/Pnz2LZtm26AV/83x6VLZnxhOCgymQzjxo0zOHbs2DGzH5+ZmWmwP27cOMk/fIRtER0djUWLHKOzC0EQ5nPCDL3H1DjH0XsEthewDTxDgIAEcZyxMoIgcDMfk0ImSX490FNaBg1n7oR7Kj8709suh7aHfQlsDyVXABA5aqwInlgW0YOPgcqARowYYbCvH0D0ZTvGjBmDF154AaNHj8YjjzyCBx54wKQOpKioyIIe2x9Lly412P/+++/Nfmx/29tuu80iPhH2zebNm7F3717U1tbiypUrePvtt6V2iSAIkeHpPUK8XRETIG2ZisUQtPzMR4zj6D1KWkrQ1G18w1efyaG2UHJlht7DDLE5L+sB2IbYnFdy5erhgcBo+2t4IHrw0dho+surf5lUQYHhHQeZTIaFCxcaHFuxYoXJtVpaBu7ZPBxYtmyZwf7nn39u1vTstrY2fP755wbHli9fblHfCPvk6aefxtKlS6n8iiCGKVqtgGxO8DE1znH0Hl5dVXDRcLpFxs4QxxkR4JVcATai9+CUXMm9veGalMRdhyc2d/Vwgn8Ye/K5tREEgdvpKmLkKMjl/EDK1hA9+NDXE+jTf1jc5cuXjWzGjDGsa+ufLeH9juHCuHHjkKoX+be3txsNbzTFiy++aNBmd9q0aUblcARBEMTw41JtG1o61UwbR9J7BA43vcdV9kW9j6sPEnylLTG7rvdgZz7cJ06ETMG+GBcEgRt8hCf6QiaXNpBuqbuK9mvsEjN7LLkCJBCcmyqTAowncZeUlBjZxMfHG+x7eXmZXKu3ly2Iszf630k6dOgQ5s6dy3zM3/72NyxevFi3/8ILL+Dmm282amfcR3p6OrZs2WJw7Nlnnx2awxLSpdagvNF+gs/rE86v++vZKbvhIYPR/u5wc7a/uyAEQdg2WaXDS+/BLblyDwSCRrJt7ARBELjBx6TgSZDLpB2Cq66sRG9tLdPGnJKr1oYuaLvtQe9xnmsTlWJ/YnNAguDDw8N0Gqu6uhoRERG6/cLCQqOL7v4dm/pmgPRHzMmqmZmZRhPBAeDsWcMpoV1dXbpJ7f0JDw+3eIbh1ltvxaJFi3DgwAEAgFqtxi233IIXXngBa9as0U3sVKlU+Pe//40nnngCavVPd7WWLFmCBQsWWNQnMShv7MCiVzOkdkMyDvzPbCSFmA7KCYIghkpWCbvkKtDTFQlB0papWAxBQABPbB6T5jB6j/K2cjR0su+w24Teg1NyBQDuU/jBx9ViTvtkXJ9sLjWV+ReZ553dlAiOs8+GB6IHHwNlK44cOaIrFSovL0d5eblB8OHq6moUfLS1mR6GM9DvsAa/+tWvcOXKFa7d1atXjTQrfdx3333YsWOHhT0DPvzwQ0yfPl3XYayrqwvr16/HE088gfj4eAiCgJKSEnR1dRk8LiEhwSr+EARBEPaHIAjILuPpPfwdRu8hayyCWy9vvgfpPcSGV3Ild3eHW0oKd50aTvDh4qZAQKTnoHyzBpX57MxHxMgUyDklZraK6Dm0uLg4g/2++Rxbt27F2bNn0dTUhPXr1+vO95VpmdJ31NfXm/wd4eHhlnPYjgkJCcGhQ4dw0003GRzv7OzExYsXkZeXZxR4jB8/HocOHUJQUJCYrhIEQRA2yuW6djSqepg2jqT3kFcc5xs5kNj85FX2Rb2nsyeS/PgibmvTkZ3NPK+cOBEyJ/Y9dUEQUFvEDj7CEn0hl1jv0Vpfh5a6q0ybSDstuQIkCD70J3ALgqALLq5evYqJEyciMDAQu3fvNhouOHXqVKO1BprnER1tX2PmrUlMTAyys7OxZcsWZlAWHh6OF198EVlZWTRUkCAIgtCRNczme8jLOcGHmy8QPFoUX6yNIAg4WcsOPiaFTIJC4o5KPZVVUFdVMW3cp0zhrtPa0AVVMzuQDreBFrsV5ug9Rtun2ByQoOwqLCwMiYmJKC4uNppY3l+Mrh+AzJs3z2it/Px8o2NyuRwJCeLVwJWVlVn9dwwk0jcXFxcXbNy4EY8//jhOnTqFs2fPoq6uDgAQHByM8ePHY+LEiTcsdiYIgiAcjxOcFrt+7s4YESx9mYpFEAQoeJmPmDTAQf5fVrRVoK6jjmmTGsrXUVgbXskVAHiYofeoKmTPMgFsQ+/BCz6cXF0REm+646s9IHrwAVyfQ/HKK68YZTcGQqlUGg3OA67rRProu0BPSkoSVXBuT8jlcqSmphq04SUIgiCIgRAEgSs2nxLnL3mZisVoLIGsnd1RyZH0HrysB2AjYvOsLOZ5mbs73Ebzs1G84MPZTYGgKOkD6YqLPL3HKCg4JWa2jCSh+2OPPQYXFxcAPwUdfSVY+qVYgiBAJpPhV7/6lZGIvLGxEWfOnDEKYCZNmiTSsyAIgiAIx6akQYWGdtOdJftwpJIrXMnk2wwzvUeyX7JI3gwMT+/hPnEiZM7OTBtBEFBd2My0CU/0hVwhbVarpe4qWuvZeo8oO53v0Yckf+GoqCg8/fTTuiBDJpMZ/fQREBCA5557zmiNvXv3QqvVGh0faI4FQRAEQRCDg5f1ABxLbI4yTvDh6g2EjhPHFytjV3qP6mqmjXl6j060N7EDaVvQe1RyppoD9q33ACQquwKATZs2obOzE3//+991QwH7a0Cio6OxZ88eBAYGGj3+vffeA2CshxionS0xPIj2d8eB/7GfAPT6kMHrU+U9PT0sMmSQIAjCUvCGC3q7OSE51Fskb6yMIPAzH9HTAIkvxi2F3eg9OFkPwFy9RzPXxib0HpySK3vXewASBh8A8Ne//hV33nknPvjgA5w4cQJXr16Fq6srYmNjsXjxYtx3331wc3MzepxarcaCBQswf/58g+Pu7u5Gs0CI4YWbs8KuhuxptVq0Kq8H0N7eXiT6JwjCZjBX76FwFL1HUxnQUsG2iUkTxRUxsBu9Byf4cDi9B0dsbu96D0Di4AMAUlJS8MILLwzqMc7Ozti8ebOVPCIIgiAIoryxA7WtXUwbh9J7lB3l28TOsr4fIkF6D0NI7yEekgcfBEHYPkePHkVRUZFuv6GhQbddVFSEHTt2GNivXr1aJM8IgrAWw0/vcYR93sUTCBsviivWRhAEnKwhvYc+pPcQDwo+CILgsn37dnzwwQcmz2VmZiIz07BOmoIPgrB/TnD0Hp6uThgV5kB6D17mI3o6oHCMy6bytnLUdTqI3mMqP/gwR+8ROdL29R7Orm52r/cAJOp2RRAEQRCEbcPLfEyO9YOTxGUqFqOpFGhlT9BGnAOVXJmh97CH4EPu7g63UaO46/D0Hi5uCgRG2oHeI9n+9R6AHWU+Ojs78dVXX+HIkSOoqamBIAiIjIzEokWL8LOf/QzOnHo/giCGzo4dO4xKqwiCcFwqGjtQ1dzJtHEovUcpp+QKAGJnWt8PkeAFH17OXhjpN1IkbwaGF3woJ02yiN4jbIR96D0iHUDvAUgYfJSXlxsdk8vliIyMNDp+4MAB/OY3v0FtrfHU0bfffhtJSUn4z3/+g4kTJ1rFV4IgCIIYTmSV8vUe0xxK78EpuXLxAkJvEscXKyMIAnJqc5g29qP34GdnzNF7RIyQvuTKLL0HBR9DJzc3F5MnG7dvmz59Oo4eNfwCOHHiBJYtW4aenp4B1ysoKMD8+fNx/PhxpKSkWNxfgiAIghhOHC9m6z3cXRQYE+EjkjdWRhD4YvOYtGGl97CHFrsA4GGG2Nys+R4jfc3wyLqYp/dIFMkb6yJJjikjIwOCIBj8AMCqVauMbB955BH09PSYnIKuPw29tbUVv/rVr0R9HgRBEAThiJwoYQcfk2L84Owoeo/GEqCthm0zjEquANJ7SMFw0XsAEgUffdkN/eABAO644w4DuxMnTuDMmTM6m/4BS99P3/mzZ89i165d4jwJgiAIgnBAzNF7TE9wJL1HBt9mGInNSe8hPsNJ7wFIFHzoBxR9xMXFGek9Pv30U912X3akf8ajPx9//LGFvSUIgiCI4QOv5AoApsc7UPDB03u4+gCh48TxxcqQ3sMY0nuIj+jBh0qlQklJiW6/L3Mxd+5cI9v09HSDff0MiP5+37YgCPj++++h1Wqt4DlBEARBOD68kisPh9N7cIKPmDRA4otxS0F6D2NI7yE+ogcfly9f1gUP+owbZ3hXobW1FRcuXDDKcAQGBmLlypWIjY3VBS7667W3txtMYiYIgiAIwjwEQcBxTvCRGufvOHqPa0VAu3EnTQNI7yE6Yuk9nEnvIQmif3uYarELwKhLVV5enlEGw8PDAydPnsTnn3+Oc+fO6R7TP0ApKCiwoMcEQRAEMTy4cq0DNS1dTBvHKrmi+R76DDe9R2i8F+k9JED0v3hNjemOEhEREQb7ly5d0m33ZThuvfVWREdHA7geiDz66KMmsygD/Q6CIAiCIAaGV3IFANMcKfjgDBcUXH2AUMe48LMfvUelRfQeLfV8vUdoovTlg7ysB+BYeg9AguCjvb3d5HEfH8M3QGFhoZHNlH71fVOnTjW5lkqlGqJ3BEEQBDF84ZVcebk6YXS4t0jeWBkz9B7aqGmk9xCZjizL6D14WQ8ACEuQ/r1cyQk+HE3vAUgQfHR2mm7f5+LiYrBfXFxsZJOUlGSwHxoaanKtjo6OIXpHEARBEMMTQRC4na6mxPnDyVH0Hg2XARX7YlwTPUMkZ6wP6T0MkTkJ8I/wGJRv1mC46T0ACYIPNzc3k8dbWloM9k0FH30lV33I5abdd+bUARIEQRAEYUhpgwp1bewyFYcquSrjz/fQRqeJ4Ig42IPeQxAEqE5aRu/B63Tl6qeBXGF6bINYXNd7sANgR9N7ABIEH56eprsK5OXl6bZ7e3uRn59vJCRPSEgw2G9razO5loeH9JEsQRAEQdgTvJIrwMGGC3JKrnoUHhCC+XfY7QF70Xuoq6rQW83W7Zqr91A1swNpV//eQflmDYaj3gOQIPgICgoyefzDDz/Ube/atcuoPCskJAReXl4Gx1pbW02u5e/vf4NeEgRBEMTwgldy5e3mhJQw6WvkLYIZeo9rnsmAzDFKzEjvYYxrgMYcl6zKcNR7AIDoRWT6ug39OR07d+7E7bffjpiYGOzYscNgoKBMJsPYscaRX2lpqcnf0b88iyAIgiCIgREEASdKGpk2U+ICoJBLW6ZiMeoLAFU906TBMwW+4nhjdUjvYYjMSYCzl/QDqYej3gOQKPhwc3NDd3e3wYBAQRCwd+9e3Xb/kqs5c+YYraXfjlef2NhYyzpNEARBEA5McX07GtrZZSqOVXLFn+/R4JUMR7nnzNV7uNiJ3mOy5fQeUie1zNF7RI0exzxvr4j+p3d1dcX8+fON5nP0BSKmppYDwK233mq01pkzZ4yO+fr6Gs0MIQiCIAhiYI5zsh7A8Bou2K3wRKtbpEjOWBdH0nuYU3Jllt4jgPQeUiJJ3HfvvfcaHesLOvoyHn0BiEwmw5gxYzBx4kQj+0OHDhmVZ02YMMH6T4AgCIIgHIgTHL2Hr7szkkO9mDZ2wzDTe1xpvcLVe6SG2EDJVVYW18bdjOCjqoBdcgUArv7S6z0qLp5jnnd2UyI4LoFpY69I8slatWoVbrrpJgAwCDj6Mh/9sx5/+ctfjNY4deoUrl0z/rIcaPAgQRAEQRDGXNd7sIOPqXH+kDuK3qMuH+hgP98Gr2SRnLE+2bV8EbctiM1VJ9jBh9l6D07w4eymgLO3tHoPQRBQzgk+IkamOKTeA5Ao+JDJZPjqq68QHBysCzT6ghD9YAQAHnroIdxxxx1Ga3z88cdGawLAggULrOg5QRAEQTgWl+vacU3Vw7RxrJIrdtYDABo8HaPFLgBk1bAv6r1dvG1C79Fx4gTTRpk6GTLOxbggCKjkBB+hCd6QSRxHN9dWo/1aA9PGUfUegETBBwDExcXhzJkzuOuuu+Ds7GyQ9RAEAaGhoXjjjTfw5ptvGj1WrVbjP//5DwDDbIlSqcTMmTPFfioE4fDU1dVh37592Lx5MxYvXozAwEDdjYLVq1cPer39+/djxYoViIyMhKurKyIjI7FixQrs37/f8s4TBMGE12IXAKY5lNicPVxQUPqjzS1cJGesi1bQcsXmqaGpkus9ekpL0VvP7j7mMXUad53GGhU629RMm/ARPoPyzRqUX2BnPQAgesxNIngiDZLmc0JCQvDJJ5+gtbUVp0+fxtWrV+Hq6orY2FiMHz9+wMc5OzujnvMmJQjCcoSEhFhkHa1Wi4ceegjvvvuuwfGqqipUVVVh165dePDBB/H2229DLneMemuCsHV4wYe/hwuSgh1E76HVAmWZbJPoNIfRe1xuuoymbnYmYEooX0dhbVScrAcAeEzjl9Wbo/cIG+GNqgtmuWU1eCVXru4eCI6LF8kb8bGJYjJvb2/MnTtXajcIgjCD6OhoJCcn48CBA4N+7JNPPqkLPCZMmICNGzciISEBxcXFePHFF5Gbm4vt27cjKCgIf//73y3tOkEQ/dBqBWSVsoOPafEOpPeozwc62Z29NNFpALsixm4wR+8xNUx6rWwHT+/h4wPXZL4Op/ISO/hw83SGX6g7IGHwIWi1XLF55KixkEucjbImNhF8EARh22zevBmpqalITU1FSEgIysrKEBcXN6g1CgsL8dJLLwEAJk+ejIyMDCiVSgBAamoqli1bhjlz5iAnJwdbt27F/fffj8RER+myTxC2ScHVNjR1sMtUpjmS3qOUP99DG5UGNJSL4Iz1ya5hBx8BbgGI95H2Drug1XI7XXlMmQIZJxuu1QqovtzMtIlI8oNM4kC6obIcna0tTJvoMY6r9wAk1HwQBGE/PP3001i6dOkNlV/94x//QG/v9d7qr7/+ui7w6MPd3R2vv/46AKC3txevvvrq0B0mCMIszNF7OJbYnBN8uAdCCJRWfG0perW9yLnKnu8xJWyK0VBnsekuKICmhX0x7m5GyVVDRRu6O9jzOyKT/QblmzWouHCWaxPtwGJzwIaDD5VKhdLSUmRnZyMjIwMZGWyBGEEQtosgCNi9ezcAIDk5GdOmmRYOTps2DSNHXv/Hv3v3bqO22wRBWBZei91ATxckBnuK5I2V0Wr4wUfsTEjeCslC5F/LR7u6nWkzNVT6kitei10A8Bjgf4Y+vC5XABA5Uvrgg6f3UHr7ICAqRiRvpMGmyq5OnDiBTz/9FN9//z0KCgoMzslkMt1d04aGBnR0dBg9PiwsDM7OzqL4Stgo6i6gqVRqL8xHq4Vcpbq+3eUB3KjI2i8OcHa7cb8sTGlpKaqrqwEAc+bMYdrOmTMHBQUFqKqqGlJ5F0EQ5nFd78HWP0yND5D8zrjFqDkLdLHvsCNutji+iEBWLf+ifkqY9GJzXotdRVAgXOL5pWE8sbmHryt8gpXo6uoalH+WRKvRoOIie7J59OhxjvOZGwCbCD7y8vKwYcMGfPvttwDAvdv50Ucf4fHHHzc6/uqrr+LRRx+1io+EndBUCvyLf4fEVpAD8Lbkgo+cAIJTLLmiRcjLy9NtJ3NEg/rn8/PzKfggCCuRV9OKlk623sOhSq5K0/k2ceybI/YET+8R7hGOSM9IkbwxjaBWo+MkuxWwx9Rp3ItxTa8W1UXswDJypJ/kF/V1pcXo6TS+ea6PI7fY7UPysqvdu3dj2rRp+Pbbb3XzOgYaONjHAw88AHd3d6PZIB999JEEz4AgCB6VlZW67chI9j+7qKgo3XZFRYXVfCKI4Q6v5AoApjvSfI9STvm2dwQQkCCOL1amR9OD3Lpcpo0t6D26Ll6E1kQliz7mtNitK2tFb7eGaRNhByVXABDl4GJzQOLg45NPPsHKlSvR3t5uEHQAPw0PNIW3tzfuueceADB4zOnTp1FUVCSO8wRBmE1bW5tu29OTXT/u4eGh225vZ9crEwQxdHjBR5CXK+IDPZg2dkNvD3DlONsmbrbD6D3O1Z9Dl4ZdXmQb8z34pWHuFtJ7RIz0Ncclq1LOEZt7BQTBNyRMJG+kQ7Lg4+zZs1izZg20Wq0ugNDPYvBYtWqVyeN9pVsEQdgO+jW2Li4uTFtXV1fddmdnp9V8IojhTK9Gi6wStt5juiPpPSpPAr2c7xMH0nuYM9/DJoKPLLbewzk8HC6cbDnA13t4B7rBO0DJtLE2ml41qi7lMW2iRo91nM8cA8mCj9/85jfo7Ow0yHQAGLDUqj+zZ8+Gv7+/0fEff/zRso4SBHHDuLn9JILv6elh2nZ3d+u2+7fjJQjCMpyvakFbN7stqWPN9zCjY6YDBR9ZNeyMQqx3LEI8ht463RJou7vReZpdGmZO1qO3R4OaEr7eQ2pqLhegt6ebaTMc9B6ARMHHvn37cObMGZOBh/4+C4VCgXnz5hk8VhAEHDnCHyBEEIS4eHl56bZ5pVSqvu5f4JdoEQQxNI6ZMd9jRqIjBR8csbl/AuAjrfjaUnSoO3Cuga0tsIWsR+eZsxC62Rfj5ug9akpaoO1lXzdG2MB8j/ILZug9Ro8VwRPpkST42LZtm25bX+shCAKcnJwwceJEAOBmQPrs9GlsbERdXZ1lHSYI4obQF5nri89NoS8y1xefEwRhOTKLGpjnI3yViPZ3F8kbK9Ojul52xSLecbpcnak7g14tO6tlEy12OSVXAOA+lR98VF0yQ++RJH3wUcERm/uGhsE7MFgkb6RF9OBDrVbjyJEjusCiL+gAgJ/97GeorKxETg57ImcfEyZMMHk8Pz/fMs4SBGERRo0apdu+dOkS01b/fEqK7bUNJgh7p0utQc4V9gXbjEQH0nuUHwc4F+MOVXJlxnyP1NBUETxhwxObu8TFwTmEXxrGE5v7hXnAw8eVaWNt1N1dqC5k/++LHj08Sq4ACeZ8ZGdnm9R6jB49Gjt37oSTk/kuhYWZ7ghQXl5+444S9olf3PVZF3aCVqtF+3/LjDw9PCC3xJBBGyQuLg7h4eGorq5Gejq7/CEj43ptdkREBGJjY0XwjiCGF6evNKGnV8u0SUsIFMkbESgxY75H7Czr+yESvPkeSX5J8Hcz1syKiValQuc5dibA3YySq57OXtRdaWPa2ILeo6ogH1oNOwAeDi12+xA9+DAVGMhkMvz+978fVOABAH5+pt9Qra2tQ/KNcACc3WxyyN6AaLXQ9r1fvb1vfMK5jSKTybB8+XK8+eabuHTpEk6cOIFpJoSEJ06c0GU+li9f7jh3XgnChsgsZpdcAUDacJrvETIW8HCMYKu1pxV5jeyOSrag9+g4fRroZV+Me0zli82ri5ohaNl6D1sIPio4LXYBIGrU8NB7ABKUXTU0mP7SS0tLG/Ra+i059dGfKUAQhG2wfv16KBQKAMC6deuM2uh2dnZi3bp1AAAnJyesX79ebBcJYljAE5uPCPZEsLcb08Zu6GwCajgXfg5UcnWq9hS0AjurNTWMn1GwNqoT5ug9+EESd76HDAhP8jXTK+vBGy4YGBUDD1/pgySxED3zMVCnG19f30GvNVCGo+8ChyAIy3D06FGDAZ76NxGKioqwY8cOA/vVq1cbrZGUlIQNGzbghRdeQE5ODmbMmIFNmzYhISEBxcXF2LJlC3Jzr7dd3LBhA0aMGGGV50IQw5m2LjXOVbLbkjpU1qPsKABOB00HCj548z3kMjkmhUwSyZuB6eDoPVyTk+E0QHWLPrz5HkFRXnDzcB6Ub5amu0OFq8XsAdjDqeQKkCD48PHxMXm8qakJwcGDU/kXFBSYPD5QORZBEENj+/bt+OCDD0yey8zMRGZmpsExU8EHADz33HOoq6vDe++9h9zcXNx1111GNg888ACeffbZG/aZIAhjskoaoeGUqaQlOkYJEgB+yZVMAcQMvvLCVuGJzUcHjIaXixfTxtpoWlrQlccuDfMwo8tVV7saDRXs1u0RNlByVZl/AQInGzWcxOaABGVXpgYDAsCpU6cGvdaBAwdMHqfggyBsE7lcjnfffRdff/01li9fjvDwcLi4uCA8PBzLly/HN998g+3bt9+48J4gCJPw9B5ymYMNF+SJzSMmAm7e4vhiZRq7GnG56TLTxib0HidPApx5buaIzasK+S12bUHvwZvvIZPJETlqjEje2AaiZz4iIiJMHv/3v/+NX/7yl2avU19fjw8//NCkIDUhIWHI/lmC4uJiZGdno7KyEj09PfDz80NycjLS0tIMJj2LTXNzM06ePInS0lI0NzdDq9XCx8cHkZGRSE1NRWhoqGS+EbbNjh07jEqrboQlS5ZgyZIlFluPIAjzOM7Re4yJ8IGPUtoyFYvRVgs0mK6Q0BHnOPM9TtZyZpnANuZ7qLLYpWFQKOCeym8FzCu5kstlCEs0XW0jJrz5HsFxCXDzGF4DdUUPPiZPngxnZ2f0/rfLQd+cj4yMDLz88sv4wx/+wF2jo6MDq1atQmtrq1Hw4e7ujnHjpKmd27VrF5555hmcPn3a5HlPT0+sXr0af/nLXxAYKF5a+6uvvsK2bdtw+PBh5vT4CRMm4Le//S3uv//+QXceIwiCIGybhvZuXKplN2RxqBa7pUf4No6k9+C02HWSO2FCsOn5aGLSwRGbu40ZDYUn/2KcJzYPjvWGi5u01zIdrS2ov1LKtIkeZnoPQIKyK6VSiYkTJ+ougvsmnAuCgI0bN2LlypX44YcfTD728uXLeOONNzBmzBhkZGQYDCjsW2fKlCmil2x0d3fjnnvuwYoVKwYMPIDrYvtt27Zh1KhRulkG1uTatWv42c9+hpUrV+LQoUPMwAMAcnNz8fDDD2PatGkG4mKCIAjC/uF1uQKuDxd0GEoPs88rXIEo6TMBloInNr8p6CYonZQieWOa3oYGdF9ml4aZ02JX1dKNptoOpk1ksvQlV5V557k20aOHX/AhSUh45513IivrJ1GUfgCya9cu7Nq1S3dc3yY5OdnguKmSq3vuuceKnhuj1Wpx5513Yvfu3QbHFQoFoqOj4ePjg9LSUrS0/NRdpL6+HosXL8YPP/yA6dOnW8Wv1tZWLFq0yGQwFBQUhKioKMhkMlRVVaG2ttbg/KlTpzBv3jwcOXKEhrwRBEE4CMc5eg8XhRyTY6QdPmdReGLz6KmAs7QX45aiVlWLstYyps3UUOlb7HZkc0quAHiYo/fgtdiFbYjNeXoPuUKBiOTRInljO0ii6lyzZo2uta7+pPO+AGSgO/R952Qymc5WPwAJCAjAr371K6v7r8/WrVuNAo/f/va3KC8vR0lJCXJzc9HY2IivvvoK0dHROpu+0jH9oMSS/OlPfzIKPJYtW4bTp0+jrq4Op06dQk5ODmpqapCXl2f0d6usrMRDDz1kFd8IgiAI8cksYmc+JkT7QuniIK3qG0uBZuOhxgY4UMmV3eg9OC12Zc7OUE7gl4bxSq4UTnKExkvfSIA33yNsxEg4S6gFlgpJgg8PDw9s2rTJKMjQDyxMoX+uf1ZEJpPhqaeegouLi/Uc78e1a9fw3HPPGRx7/vnn8eabbyI8PFx3TC6XY8WKFTh27JhBJqGyshKvvPKKxf2qq6vDW2+9ZXBs7dq12L17NyaY+FCnpKTg448/xt/+9jeD499//z2OHz9ucf8IgiAIcalo7EB5I7tMZcZwarELAHFzre2FaJyo4egoFG4YFyh9eQ9vuKBy/HjIlexslCAIqLzEDj5CE3zg5CxtIN3W2ICm6kqmTdQwa7Hbh2T9LDdu3Iibb77ZKHthTuajf9mVTCbDwoUL8eijj1rfcT1efPFFg2nqs2fPxqZNmwa0j4iIwPbt2w2Ovfrqq7h2jV+HOxj27dsHjUaj2w8KCsJLL73EfdyTTz6JlJQUg2N79+61qG8EQRCE+PC6XAEONlyQF3y4eAHh0ouvLYEgCNzgY2LIRDgrpO1i1lNZCXU5OxtlTovd1oZOtF3rYtrYRIvd82e5NsNRbA5IGHzIZDJ88sknmDBhAjfjMdDjgesfuvHjx+Pjjz+2lqsm0Wq1eP/99w2O/fWvf+U+hwULFmDWrFm6/ba2Nnz22WcW9a3/8MVbbrkF7u7u3Mf1ZWj0IeE5QRCE/cOb7+HhosBNUb7iOGNtBIEffMSkAQrH6OpY2lqKuo46pk1qKL91rbVRmVFJYc5wwYp8+9B7XDl/hnneydkFYSOSxXHGxpB0kldgYCCOHDmC2267zSCbYc5PXwZk8eLFSE9PF7V1LQAcO3YM9fX1uv34+HjMnTvXrMc+8MADBvt9AntL0djYaLAfFRVl9mP1dSnA9dkgBEEQhP0iCAK309WUOH84KxxkuGf9JUDFvhhHvOPM9zhRzc56AMD0cOs0txkMHZzgQ+7uDuVN/DKkykuNzPPObgqExEo7xV0QBJRzgo+IlNFwcnaQmTqDRPJvGnd3d+zevRt79uzB2LFjDUqr+us69H9Gjx6NXbt24euvv4anGf2gLc3XX39tsL9w4UKzMzcLFy402D98+DBUKpXFfPPxMRyq09nZafZj+9uKHdQRBEEQluVyXTvq27qZNo4138McvYfjiM15JVc+rj5I9pP2Drug1UJ1nO2ne2oqZJyLca1W4IrNI5L8IJc4kL5WWQ5VM9vPmLHjxXHGBrGZnOPSpUuxdOlSXLx4Ed999x1OnDiBuro6XXYhKCgIwcHBmDJlCm699VaMGSPtKPozZ84Y7KelpZn92PDwcMTGxqKsrAwA0NPTg7y8PKSaMdHTHMaPH2+wf/IkvwtGH9n92uBNmSJ9dwyCIAhi6BwrYpdcAUCaI833KElnn3cPAIIdo71pr7aX2+lqSugUKOTSiq+7CwqgaWJfjHuk8bMzDRVt6Fb1Mm2iUqQvueJlPQAgmoIP22H06NEYPdr2vxTy8/MN9keNGjWox48aNUoXfPStZ6ngY+nSpfDw8NBlUzIzM3H8+HHuTJGioiJ8+eWXun03Nzf88pe/tIhPBEEQhDRkckqu/D1ckBIqfVtSi6DpBcqOsm1iZwEiDyO2FhevXUS7up1pMy2MP7TP2qiO8fUe7mbMPeN1uQKAyGTpZ9Xw9B5uXt4IjokTxxkbxDE+fSLT2dmJ8n4dGwajqzBl318kfiP4+vriT3/6k8GxlStXMjMg+fn5WLJkCXp6enTHnn32WQQHB1vML4IgCEJcejVanChhBx/T4wMgl5vf8MWmqc4Fujnzsxyp5MocvUeY9HoPnthcERgI1xEjuOtU5LP1Hh4+LvAL5TfYsSaa3l5U5F1g2kSPuQkyBwmAh4LNZT7sgYaGBgM9irOz86Av0iMiIgz26+o44rhB8sc//hEXL17EJ598AgCoqanB9OnT8bOf/QyLFi1CTEyMbsL5jz/+iK+++gpqtdrg8X/4wx8s6hNBEAQhLherW9HWxS5Tme5ILXZLDvFt4uda3Q2x4Ok9IjwjEOkVKZI3ptH29KAjJ4dp4zF9Olc329ujQU0RO7CMTPEfVOdUa1BbVAh1F1trGzN2eM736IOCjyHQ3m6Y4nR3dx/0m93Dw4O55o0il8vx8ccfIy0tDU8//TTq6+uh0WiwZ88e7NmzZ8DHzZgxA08//TQWLFhwQ7+/spI9WKempka33dnZOShRvFar1QV/Wq12aA7aCPr+2/tzIQzRfz01Gs2g3uOE7dPV1WVy29ZIv1TDtZkU6ekw70+XooNgqRu03pHoVoYBjOdrL69tZ28nztSfYdpMDpos+XPozMmBwPHBZfJk7nuwurAFml72/8mQBP572dqvb3EuO9ACgJARyXbzmbOGnxR8DIH+gYKbm9ug11D2m+Bp6eADuN62+He/+x2WL1+OtWvXYt++fUz7GTNm4A9/+APmzZt3w797MGVoGRkZg+qqFRAQAKVSCZlMhtbW1qG4Z5NY4z1A2AaNjY24fPmy1G4QViIjw4zuShKxL08OVoW1r4uAgpyjKHSAqiuFpgtLKtni6wrnBJz5/nuz17Tl17ZQXYheLTur5XbVDQcOHBDJI9MEfPcdeLm17K4u9HL8bClwAeDKtLlcfQYlB0wPqjaFNV7fykx2wwMnTy+cyOUPILQVGhr4DSsGi0WDj7/97W+WXG7IbN682arr94+UXVxcBr2Gq6vhB8gakaVKpcKf//xnvPXWW2atn5mZiczMTCQnJ+P999/HtGnSi9QIgiCIodGjAUpa2VFFko8AiatULEZAewHkgoZpU+dl+w1tzKW4t5hrE+8UL4InbNwvs4cVdwcFodfXh2kDAF3X2JesTp4aKNzMDzysgVbdg64Gdhm9e2gE8/xwwKLBhzkTvsXA2sFH/0yHvkjbXLq7DXuuDyV7wqK6uhoLFizApUuXdMdGjhyJxx57DPPnz0dkZCTkcjlqampw5MgRvP766zh16hQA4NKlS5g1axY+//xz3H777UP6/RUVFczzNTU1uja+s2fPRmSk+TWp5eXl0Gg0cHJygre3fXdo0Wq1uoyHp6cn5MNYgOZo6Jdd+fv7Y9KkSRJ6Q1iarq4u3V3T2bNnW/w73BJkFl9Dbzb7DusdM0Zj0U1hInlkXZwPHgVK2DZjbnsEY9zZmXZ7eG0BYMd3OwDG+JaRviOxYtEK0fwxhaa1FRVP/IlpEzh/PkYuWsS06VKp8cm37HKmpIkRmLaI30HKmq9v2ZlTKBHYAdD0W5YgIVX6JgDmwiujHwpWKbsSOH94ayJG8NN/qOFQagb7ZyIsOSixq6sLixYtMgg8HnzwQbzxxhtGWZr4+HjEx8fj17/+Nf785z/jueeeAwD09vbi7rvvxunTp5GSkjJoHwYTTCiVSqMyNBZyuVx3YedIF+tyudyhng/xEwqFYlDvccK+cHNzs8nXN7u8jWszf1Q4lErbvLgeNOWcFruh46AMGFxnSlt9bRs6G1DUws4opEWkSe5769GjAEfP6DN7FtfPqrw2gHNpGTcmeNDP19Kvb21hPttAJkPChMmSvy6DwRq+WuVKRyaTSfIjFv0DhY6OjkEHXP0nmlsy+NiyZQsuXryo258/fz7efvttZnmYTCbDs88+i3vvvVd3rKurizpeEQRB2ClHLrNrtUeGeCHY20ECj7ZaoC6PbeNAXa6ya7K5NrYw36OD02IXcjnczRhmXHmJ3WJXJpchPMl3EJ5ZB95wwZC4BCi97LtiwxJYJfgQBEH0HzEJDAw0CHbUavWgW+VWVVUZ7FtqnoZGo8G2bdsMjj377LNm31F/7rnnDGy//fZbbgkVQRAEYVvUt3Ujv4bdkGPmCPMbfdg8vKnmAJBw481UbAVei11nuTMmhEwQyZuB4Q0XVI4dC4WXF3edCs5wwdA4b7i4SdtDSdXchIaKK0yb4TzVXB+q8RgCSqUS0dHRBsf6Dx3k0d8+OTn5hv0CgHPnzhl0JggMDByUcDwqKgo33fRT/2lBEHD0KCeVTTg8dXV12LdvHzZv3ozFixfrAnCZTIbVq1cPer39+/djxYoViIyMhKurKyIjI7FixQrs37/f7DV6e3vx1ltvYdasWQgKCoJSqURCQgIefvhhg8wfQQxHjhXzO9Q4VvDBme+hcAWi7afOnoUgCDhew76onxA8AUonaUt71NXV6CkrY9q4p/Ffk9aGTrTWs5vmRCb7DcY1q8DLegBAzJjxVvfDHrBKmGgLonNrk5ycjCtXfopw8/LykJqaavbj8/MN6wItFXyUlpYa7MfGxg769YiLi0Nubq5uv3+Whhh+hISEWGQdrVaLhx56CO+++67B8aqqKlRVVWHXrl148MEH8fbbbzOzdQ0NDViyZAlOnjRsq1lSUoJ33nkHH3zwAbZt24YHH3zQIn4ThL3BK7lyUcgxNc5fJG+sjCAAJYfZNtHTAGf7qbNnUd5WjlpVLdPGFkquVMf509c9pvODj0pO1gO4PlxQaq6cZzd3UDg7Izx58BpaR8TimQ8pSq6kKL0aP368wf6xY8fMfmxNTQ3K9O4GODs7Y9SoURbxq38XLSenwceXzs7OBvsaDbt1ITG8iI6OxiJOZ5KBePLJJ3WBx4QJE/Dpp58iOzsbn376KSZMuF4isH37djz11FMDrqHRaLBixQpd4HHHHXdg//79yMrKwmuvvYbg4GB0d3fj4YcfHlQmhSAcBUEQcJQTfEyM8YW7i4OM+qovANo4wxQdSO9xopp/UW8bwQc7OyNTKqHsdy1ligqO3sPZVYGQOGl1FIIg4MqFM0ybiJGj4OzCnlMyXLDoN8+hQ5y0pwOxdOlSbNmyRbf/ww8/QBAEs7IM/Qf+zJs3z2KC84AAw1E+1dXVg16jf6YjKCjohnwi7J/NmzcjNTUVqampCAkJQVlZGeLi+C0N9SksLMRLL70EAJg8eTIyMjJ0XTRSU1OxbNkyzJkzBzk5Odi6dSvuv/9+JCYmGq3zwQcf6EoBH3nkEbzxxhu6c1OmTMHixYsxadIktLa24tFHH0V+fv6QgnCCsFeK69tR28ruwjhrhAN9r/OyHsCw0nt4OXthVIBlbmgOFUEQuMGHe+pkyDlz0gStwM18RCT5QqGQVkXQVFOF9mvsgJ/0Hj9h0f/Ic+bMseRyNk1aWhoCAwN1+oqSkhIcPnzYrOng/UtOli9fbjG/YmNjDfbLy8tRXFyMhIQEsx7f1tZmVMpi7mMJx+Xpp5++4TX+8Y9/oLf3+jTe119/3ah9n7u7O15//XVMnz4dvb29ePXVVw0Ciz76Ahh/f39s3brV6HxiYiKeeOIJPPHEEygqKsLOnTvxi1/84ob9Jwh7gVdyBQCzhpPeQ+kHhI4Txxcro9FqkFWbxbSZEjYFCrlCJI9M0114GZpr15g2HtPTuOs0VLWjq13NtIlMtoWSqzNcmxgKPnSQ4HyIyOVyI6Ht008/zS3/OnjwII4cOaLb9/LywqpVqyzmV1JSktGMjb6LNXN45ZVXDEq33N3dadI5ccMIgoDdu3cDuK5vGug9NW3aNIwcORIAsHv3bqPPU2FhoU4vtWrVKri7u5tcR/+zuXPnzht1nyDsCl7Jla+7M0aH8ydK2wUaNVDGaYoSNweQ+GLcUuQ35qOthz2/xTZKrvil6B5miM0r883Re9i+2NzNwxPBcdJPm7cVqBbhBti0aRPeeust3YTq9PR0bNmyBX/84x9N2ldVVRkJYB977DEEBrLvQPUv5Tp06BDmzp07oP0999yDF154Qbf/9ttvY/r06fj1r3/N/D179+7Fs88+a3Dsrrvugqur/dQodmu6UdFqP62BtYIWqvbrM188tB6Qy27sfkCUdxRcFbb3epWWlupKAHkZ0jlz5qCgoABVVVVG5V36nddY64SGhiIpKQmFhYXIzMy8Qe8Jwn5Qa7Q4UcK+4zwjIRAKuYM0hqnMAXra2TbDqOQKsJXgg11ypQgIgOuIEdx1ePM93L1d4B/mMSjfLI1Wo0HFxfNMm6gx4yB3kADYElDwcQMEBgbiT3/6E/70pz/pjj3xxBMoLy/HU089hfDwcADXO/zs2bMHjz32mEGL3fDwcKsM8du4cSPeeecdNDZe/9AKgoD77rsPhw4dwuOPP47Ro0cb2BcVFeGf//wn/vWvf+kmhwPXsx6bN2+2uH/WpKK1Aiv2rJDaDcnYuWwnEv2MdRJSk5f30/AvXmc3/fP5+fkGwcdg1yksLERFRQVUKhU8PKT9B0UQYpBb3gxVD7tJiGO12D3MtxlGYvNQj1DEeMeI5I1phJ4edJzMYdp4TJsGGWf+mEatRfXlZqZNZIqf5B1Wr5YUobtDxbShkitDKPi4QTZt2oRjx45h3759umNvvvkm3nnnHcTExMDHxwelpaVobm42eJxSqcRnn30GX19fi/vk5+eHnTt3YtGiRQYlVDt27MCOHTsQHByMyMhIyGQyVFdXo6bGuEuIXC7HJ598gpgYab/ECMegsrJSt92/LLA/UVFRuu3+Ay6Hso4gCKisrNSVcxGEI3P0cj3XZmaiIwUfHL2HXxzgFyuKK9ams7cTp+tOM22mhU2T/GK889w5CB0dTBtzSq5qS1rQq9YybaLsRO9BYnNDSPNxg8jlcnz++ee46667DI5rNBqUlJQgNzfXKPAICAjAN998gxkzZljNr9mzZ+OHH34wGTzU1dXh9OnTOHXqlMnAIyQkBHv37rWoEJ4Y3rS1/VSjzOvspp+h6CtptPQ6BOGoHCli6z1iA9wR5W9aK2V3dLVeL7ti4UBZj9yruVBr2eJrmyi5MmP0gDnzPSry2SVXgG0MF7xyPpd53jsoGL4hYSJ5Yx/YTOaju7sbubm5KCgoQHNzM9ra2gxKgAaD2KVCbm5u+PTTT/Hzn/8czz77LM6cOWPSzsPDA/fddx/+8pe/IDg42Op+zZw5E+fPn8e7776Lt99+G5cuXWLax8bG4sEHH8Rvf/tbo5a9BHEjdHX91PbThdNaUV9j1NlpONXWUusQhCPS0qnG2Ypmpo1DlVyVHQUEzhwqB9J7HKvmX9RPDZsqgids2jk6O5eYGDj/tyydBS/48At1h6ef26B8szQ9XZ2oLmBfW0WPGS95NsrWkDz4SE9Px2uvvYZ9+/bp2nDeKFLpFFauXImVK1eiqKgIWVlZqKqqQk9PD3x9fZGSkoIZM2bAzW3wH5QbGaDo5eWF9evXY/369aitrcXJkydRXV2N5uZmCIIAHx8fhISEYPLkyYiOjh7y7yEIFvrv+56eHqatfqlg/3a8/ddhfZ5Y6xCEI3K8+Bq0nH8XMxOH03wPGRA7SwxPROFYDTv4GOE3AoFKaYNLTXMzus5fYNq4m1Fy1dneg7pydlcvW2ixW3HxPLQa9rVrzNibRPLGfpAs+FCr1Vi7di3ef/99ADd2ga2PLUSXiYmJJoejSU1oaChuu+02qd0ghiFeXl66bV4JlEr1k3Cvf2lV/3VYwQdrHYJwRI4WsfUechkwPcGBsto8vUf4BMBd+gtUS1DXUYfLTZeZNmlh/LkZ1kZ14gTAqVrxNKPkvDK/CeBcFkaNkv61LTvL1uBAJiO9hwkkCT4EQcDdd9+NnTt36oIOSwQNlgpgCIKwLPricH3RuCn0Reb64nNT67DaVPetI5PJuOJ0gnAEePM9boryhY/SWSRvrExLFdBQyLZxIL3H8Wp261oASAu3geCD19pcoYD7VH5pWDmn5EoulyEiyXcQnlmHK+fYeo+QuAS4ezvITB0LIongfMeOHfjqq68AXL8w6As8BEEY8g9BELbLqFGjdNs87ZH++ZSUlBteJyoqitrsEg5PRWMHyq6xOwzNcqQuV8U/8m0cSO+RWc2+qHdVuGJiyESRvDGNIAhoP8r2Uzl+PBR6GeyB1qm4yJ5VE5rgAxc3aZUDLXVX0VRTxbSJvUna18RWkeSVe+aZZ3TbFDgQliTKOwo7l9nPRGuDIYOelhkyaIvExcUhPDwc1dXVSE9PZ9pmZGQAACIiIhAbG2twbubMmbrt9PR0oy5zfdTW1qKw8PpdUWt2lSMIW+Eop8sVAMwc4UB6j+KD7PNOSiByiji+WBmtoOXO95gUMgluThKLr0tL0Wuig6Y+HjP42ZnGGhVULWxtoC2UXPGyHgAQM26CCJ7YH6IHH/n5+SgrK4NMJjMKPGxBr0HYN64KV5scsjcQWq0WrfJWAIC3tzfknKFL9opMJsPy5cvx5ptv4tKlSzhx4gSmTTNuCXnixAldxmL58uVG3wlJSUlISUlBfn4+PvvsM7z88stwdzduG7pjxw7d9ooVw3foJDF84JVcebgoMCHaVxxnrI1WAxRz9B6xMwBnaS/GLUV+Yz6aupuYNjZRcnX0KNfGU+8G0kBU5PFb7EbbQPDB03s4uykRnsQehjtcEf1KJyfHdE9uKr0iCMdm/fr1UCgUAIB169YZtb/t7OzEunXrAABOTk5Yv369yXUef/xxAEBjYyM2btxodL64uBjPP/88gOvNHyj4IBydXo2Wm/mYFh8AZ4WD3NyozgW6mtk2CQtEcUUM7EXvwWuxq/Dxgdvo0dx1eMGHm6czgqLYpVvWRqvRoPzCWaZN1OixUDg5iMbKwoie+aivN+zGoR90ODs7Y9GiRRg/fjwCAwOhVCrh7OzssHeDCcJeOHr0KIqKinT7DQ0/XegUFRUZZBoAYPXq1UZrJCUlYcOGDXjhhReQk5ODGTNmYNOmTUhISEBxcTG2bNmC3NzraewNGzZgxIgRJn2577778N577yEzMxNvvPEGamtrsWbNGvj5+SE7OxvPPPMMWltbIZfL8dprr8HJSfKO4gRhVc5WtqClkz18zqHmexRxSq4AINFxgo/MKvZFfbAyGIm+0mb8tT096Mg+ybRxT5sO2X9vQA1Eb48GVZebmTZRKf6QyaWtlKkpKkR3h4ppQ3qPgRH9v7L+4ED9wCMgIAAHDx7EuHHjxHaJIAgO27dvxwcffGDyXGZmJjL73fEyFXwAwHPPPYe6ujq89957yM3NNanZeOCBB/Dss88O6ItCocCuXbuwZMkSnDx5El9++SW+/PJLAxtXV1ds27YNixcv5jwzgrB/0gvZLXYBYHbSMNJ7eEcAgUni+GJlVGoVztSfYdpMD58uedl65+nTEDjDXM1psVtT1AKNmt2qNypF+pKrK+c4LXYBxJLeY0BETylEREQY7AuCAJlMhmeeeYYCD4JwcORyOd599118/fXXWL58OcLDw+Hi4oLw8HAsX74c33zzDbZv387NdgYGBuLYsWP417/+hZkzZyIgIABubm6Ij4/HmjVrcOrUKTz44IMiPSuCkJYMTvAR6adEfKCDdHzrbAYqTZdv60iYDziIhjSnNge9WvYQuxkR0jfV4LbYBeBhRvDBa7EL2IjegyM29wkOgW8of4r7cEX0zEdSkum7EbfccovInhAEYS47duwwKq26EZYsWYIlS5bc0BpOTk5Yu3Yt1q5dayGvCML+aFL14GxlM9NmdlKQ5HfGLUZpBiBo2DaOVHLFabErgwzTwoybd4gNr8WuS0ICnMPCuOtU5LFb7PqHe8DD13VQvlmarvZ21F5mz5iJGTfBcT5zVkD0zMekSZOM2mcC0AlRCYIgCIIwjyNFDeD1W5kznEquZPJhNVxwVMAo+Ln5ieSNaXobGtCdn8+08ZzJz3qoWrpxrYqto7CFrEf5xbMQBHZpGOk92Eii5L733nuNulOdO3dOClcIgiAIwm7hlVw5yWVISwgQyRsrIwhAEWe4YMQkQCntxbilqGqvQllrGdPGFrpcqY4d49qYU3JlTotdW5jvwWuxK5PLETWaZAQsJAk+Hn/8cYSHG9bCvfbaa1K4QhAEQRB2iSAI3OBjYowfvNwcpN3ntSKgpZxt40Atdo9V8y/qp4dPF8ETNjy9h8zZGe6TJ3PXKecEHwpnOcITfQfjmsURBIE7XDAscSTcPDxF8sg+kST48PLywocffgiFQqEbNnjw4EFd/36CIAiCINhcqm1DXVs308ahSq6GWYvdY1Xs4MPdyR3jg8aL48wACFot2jPZfionT4LcxDBYw3UEVHDE5uEjfOHkIm2JflNNFVrr65g2VHLFR7IBGvPnz8f7778PuVyuC0BeffVVpKam4ssvvzQaQEYQBEEQxE+Y02LXoYIPnt7DzQcId4wLv15tL7Jqspg2U0KnwFkhbVaru7AQmgb2gEtzWuw2VLajq509q8YWWuyWnWVnPYDrYnOCjSTTt+bPn6/b9vHxQWNjoy4AOXXqFFatWgW5XI74+HhdC01zkclkOHjQjLsjBEEQBGHHpBewg49ATxeMCvMWyRsr09sNlB1l28TPBRSOMVT0QsMFtKnbmDZpETag9zjKeU0AeMycybUp53S5AmxDbM6b7+Hq4YHQRNMDcomfkORTevjwYaMWZH3zPgRBgCAI0Gg0uHz5ssFUZR59axAEQRCEI6Pq7kXOFXaZyuwRQZBLPAnaYpQfB9QdbJthpvewBbF5O0fvoQgMhOsAIxb04YnNPXxc4B8u7ayaXrUa5RfZzZFixoyHXE7dW3lIeougf8crU8FDf5uBoKCDIAiCGC4cL74GtYb9/3HOSAcquRpmeg/efI8IzwhEe0WL5I1ptB0d6Mw5xbTxnJEGGWdobE9XL2qKW5g2UaP8Jb/Oqy7IR283W2MVQ3oPs5A0+Oh7I+kHGH3bfeekfrMRBEEQhK3B03vIZMDMxECRvBGBYk6L3cCRgE+kOL5YmZbuFlxouMC0SQtPk/z6qCMnB4KardMwp8VudWEztJxA2hZa7PJKrgAg9ibSe5iDTWU+zD1nCqk/hARBEAQhFhmX2cHH2AgfBHhKOwnaYrTVAlfZF+OOlPXIqsmCljPEbkY4/6Le2rSbo/dI45eG8VrsQmYfYnP/8Eh4BwaL5I19I1m3K4IgCIIgBk9ZgwpXrrH1D47V5YqT9QAcSu/BK7lSyBSYEjZFJG8GRnWEHXy4pqTAKZCffSu/yBabB0V5QenpMijfLI2quQl1ZcVMmxjKepiNTZRdEQRBEARhHua02J3tSMEHT++hcAVipBdfWwJBEHC0in1RPy5oHLxcvETyyDQ9lZXoKS1l2njO5Gdnmus60FLPHq1gC12ueFPNAZrvMRgkCz4GW1ZFEARBEAS4U8293JwwIcpXHGesjVYLlBxi28SkAS7sIXb2QmFTIeo62EPsbGGqeXtGBtfGHL0HL+sB2IbeozQ3h3le4eSEqJSxInlj/0gSfGi17FpGgiAIgiCM6e7V4Fgx+4JtZmIgnBQOUlVdkwt0cC5QHUjvwct6AMDsiNkieMJGlXGEeV7u7g73ifxMwJULbL2Hi5sCoQk+g/LN0mg1Glw5x9Z7RI4aC+dBzKQb7jjItxNBEARBOD45ZU3oVGuYNg5VcnX5e76NA+k9jlSxL+r93fyREpAikjem0XZ3Q3XiBNPGPW06ZC5snUZvjwZVhU1Mm6gUfygkDqRrLhegS9XOtIkbP0kkbxwDCj4IgiAIwk748RK7JAdwtODjAPu8VzgQLO3FuKVo62nDmbozTJsZ4TMgl0l76dZxMgdCVxfTxnMWPztTVdgMjZpdCRM9JmBQvlmD0jPsWSYAEEvBx6Cg4IMgCIIg7IRDnOAjMdgTEb5KkbyxMqoGoIoj9B2x8PpQEwfgRM0JaAR2VmtW5CyRvBkY1RG+3sNzNt/PK2boPaJH2ULwwdZ7+ASHwD/cMWbMiAUFHwRBEARhB5Q1qFDSoGLazE92oDkDRQcBcJrTjFgkiiticKSSo6OQyZEWLn1Xr/Z0dvDhOmIEnMPCuOtcucAOPgIiPeHpJ+2sGlVzE+pK2S12Y8dPpu6tg0TSVrsDIQgCLl26hPr6etTXX+/qERQUhKCgICQnJ9OLTBAEQQw7DhXwS67mjXSg4INXciV3BuLniOOLlREEAZlV7PkeYwPHwsdVWvF1T0UFesrKmDYeZmQ9mq92oJXTYjdmtC1kPfglV6T3GDw2FXx89tln+N///V8cPnwYLS0tJm18fHwwd+5c3H333fjFL34hsocEQRAEIQ08vYeXqxMmx/qJ5I2V0WqAYs58j5jpgKu08y4sRWFTIeo62a/vrAjpS67MabFrjt7DnJKrmDE20GKXE3wonJ0RPXqcSN44DjZRdvXjjz/ipptuwt13343du3ejubkZgiCY/Glubsbu3btx1113Yfz48Th0iNP/myCIG0Ymk5n1M3fuXO5a+/fvx4oVKxAZGQlXV1dERkZixYoV2L9/v9n+9Pb24q233sKsWbMQFBQEpVKJhIQEPPzww7h48eINPFOCsE06enqRVcJuSzorKRDOjtJit+oU0MnuhORQJVecLlcAMDNypgiesOG22PXwgPtE/qRv3nwPF6UTQuJtocUuW3MUmTKGWuwOAcm/pd544w3ceuutuHDhgi7A4F3g9NmdO3cOt9xyC/71r39J/TQIguCg1Wrx4IMPYsmSJdi1axeqqqrQ09ODqqoq7Nq1C0uWLMGaNWu4c4AaGhqQlpaGtWvX4ujRo2hoaEBXVxdKSkrwzjvvYNKkSdi+fbtIz4ogxCGz6Bp6NOzPxtzhVHIFOFbwwdF7+Lv5I8XfBlrsZmUxbTzMaLGr7tGgqqCZaROV4id5i93qy5fQrWJrrOLGTxbJG8dC0rKrf/7zn/j973+vm3aur+UYaAJ6XwDSR29vL9atWweNRoN169ZZ12GCGOasXbsWjzzyyIDnPTw8Bjz35JNP4t133wUATJgwARs3bkRCQgKKi4vx4osvIjc3F9u3b0dQUBD+/ve/m1xDo9FgxYoVOHnyJADgjjvuwJo1a+Dv74+srCw8++yzqKurw8MPP4yIiAgsXrz4Bp4tQdgO5ug95o4cRi12faOBwCRxfLEyrT2tOFt/lmkzM2Km9C12s09yW+x6zOKXhlUVNEHTy2mxawN6jzJz9B4TKPgYCpIFHydPnsTGjRt1mQ5g4IBDH30b/UzIhg0bkJaWhkmTSPhDENYiODgYY8aMGfTjCgsL8dJLLwEAJk+ejIyMDCiV19uBpqamYtmyZZgzZw5ycnKwdetW3H///UhMTDRa54MPPsDRo9cnAD/yyCN44403dOemTJmCxYsXY9KkSWhtbcWjjz6K/Px8ODnZlLSNIAaNIAjcFrvjIn0Q7OUg5R9tV4Ea9sU4Eh2oxW61GS12bUHvYVaLXb7eo/wiu3wQsBGxeS47+PAJCYVfWLhI3jgWkoXRa9asgVqtHjDwGKjkSh/9jElPTw/WrFkjjvMEQQyKf/zjH+jt7QUAvP7667rAow93d3e8/vrrAK5nM1999VWT6/QFMP7+/ti6davR+cTERDzxxBMAgKKiIuzcudNiz4EgpOJSbRtqWth3nB2q5KroB76NI5VccfQecpkc08Oni+TNwKh4LXaTkuAcGsq0EQQBVy40MG0Cozzh4Stti932pkbUlbFb7MaNn0TdV4eIJMHH999/j3PnzhnoN/rQDzL6i837n++z6ePs2bP44QczvrQIghANQRCwe/duAEBycjKmTZtm0m7atGkYOXIkAGD37t1GNyQKCwuRn58PAFi1ahXc3d1NrrN69WrdNgUfhCNgTsmVQ8334JVcKVyBOOkzAZbAnBa7NwXdJH2L3fJy9Fy5wrQxZ7BgS10nWhvYgTSVXDk+ktQjvPnmmyaP9wUjAODq6ooRI0bA19cXANDc3IzLly+ju7vbyLb/2jfffLN1HCdsHm13N9Tl5VK7YTZarQC1qh0A0O3hCbn8xu6iOEdHQ+4q7R2j/pSWlqK6uhoAMGcOuyf/nDlzUFBQgKqqKpSVlSEuLk53rq/cirdOaGgokpKSUFhYiMxM9j91grAHeCVXAR4uGBch7cWpxdD0AsWcLpaxMwGXgfVl9kRBUwHqO+uZNjMjpO9y1c7pcgUAHua02OUMFgRspOTKjBa7UaPGiuSN4yFJ8JGenm6QvdDPdCxevBi///3vMXfuXCgUCoPHaTQaHD58GP/4xz/w9ddfGwQgfdvp6eniPRHC5lCXl6PktmVSuzEk2Ilo84jfuweuI0ZYYCXTfP755/jss89QVlYGhUKB0NBQpKWlYfXq1Zg3b57Jx+Tl5em2k5OTmevrn8/PzzcIPga7TmFhISoqKqBSqZhCeIKwZVo61Dh1hd1yds7IoBu+cWEzVGYD3abnfOkYsVAcX0TgaNVRro1NBB8cvYclW+yGxnsPyjdLc73Fbi7TJmrUWDi7OojGSgJEL7u6ePEimpquf5H2ic37AohXXnkFX3/9NRYsWGAUeACAQqHAggULsHfvXvzzn/80ejwANDU1UZ9/grASeXl5yM/PR2dnJ9rb21FUVIQPP/wQ8+fPx4oVK0wOB62srNRtR0ZGMtePiorSbVdUVNzwOoIgGDyOIOyN9Mv10HJ6sQyrkivAsfQenBa7AW4BSPZn32yxNtquLnSc4LXYTYPM2Zlpo+7RoKqwmWkTleIPudQtdgvz0d3Ba7FLzY1uBNFf4YKCAt12X+Agk8mwYsUKrF+/3ux11q1bhzvuuMOgW5ap30EQxI3j7u6Ou+66C//+979x5MgR5Obm4sCBA3jyyScREHA9Rb5r1y4sX74carXa4LFtbW26bU9PT+bv0c9QtLe3W2UdgrAneCVXCrkMs0Y4Uovd79nn/eOBgARxfLEydtNi9+RJCP8teR8IDzP0Hua02LWHqeYA6T1uFNHLrhobTbdYG0qnqoceeghfffWV2b+DIIihUVVVpdNf6bNw4UKsW7cOixcvRm5uLtLT0/Hmm2/i0Ucf1dl06fWFd+EMn3LV06t0dnYanLPUOgRhL2i0AtIL2XqASTF+8FGy7zjbDa3VwNULbBsHynpkVmVyW+zawlTz9kOHuTaeZsz3KDvP13vYgti85PRJ5nnfkDD4hUWI5I1jIno4PVBgMGrUqEGvlZJietpnX1kXQRCWwVTg0UdISAi++OILOP835d7XMrcPN7ef6mJ7enqYv6db7+5a/3a8llqHIOyFs5XNaFSx3+sOVXJV+B3fJtFx9B7plWyNqlwmx/QwaVvsCoKA9sOHmTZmt9g9b0aLXR9pG6a01tehobyMaRNLJVc3jOjBx0A9kbVadirOFOYMJSQIwvrEx8dj4cLrFwVFRUW67lYA4OXlpdvmlUCpVD/V2fYvrbLUOgRhL/BKrgBgniPN9yj8ln3eSQnEzhDHFyvTq+3l6j3GB42XvMVud+FlqPW+z03hyeliCAANle1ob2KXbsWMkT7rUXw6m2sTPzFVBE8cG9GDD39/0/V8+p1szGUgYflAv4MgCOuhn72sqqrSbeuLw3nib32Rub74fKjryGQyrjidIGyVH/LZwUeErxJJIQ4SXPd0ACWH2TZxswFnx8hknq0/i9aeVqbN3Ki54jjDgJf1AADPATod6sPLegBA7LhAc1yyKrySK2dXN2qxawFsJvh45513Br3Wv//9b5PH+wSwBEGIx0BZTf2g5NKlS8w19M/3L6scyjpRUVHUZpewSyqbOpBfw7k4HRnkOBOWS9OBXvbwOYy8VRxfRCC9gj8WYE4kP6NgbdoPsWeuKPz8oLxpHHed0nNsvYfSyxkhMdK22O3p6kTFBXYDgJhx4+HE0RwSfEQXnOtfUOi3yt2zZw9eeeUV/P73vzdrnVdffRW7du0y6JjVB28GAOG4OEdHI37vHqndMButVkD7f4cMelpoyKBU6Gcvw8PDddtxcXEIDw9HdXU1dw5PRsb1XvIRERGIjY01ODdz5k/Cy/T0dNx1110m16itrUVhYSEAYMYMxyjRIIYfBzlZDwC4eVSICJ6IRMF+vk2SAwUfHL1HlFcU4nzimDbWprexEZ1n2RfjnrNnQ2ZiNII+Ha09qCtjB9IxYwMhk3hWzZXzZ6Dp7WXaxE+aIpI3jo3owUdycjICAgLQ2NhoEDgIgoANGzbgxx9/xB/+8AfMmTMHcrlhYkar1SI9PR2vvPIKvvnmGwAwCjwCAgIo+BjGyF1drTpkz9JotVp0t17/Unb19jZ6z9sLpaWl+P776y0yExISEBHxUycQmUyG5cuX480338SlS5dw4sQJTJs2zWiNEydO6DIWy5cvN7qjm5SUhJSUFOTn5+Ozzz7Dyy+/DHd3d6N1duzYodtesWKFJZ4eQYjOD/lXmefdXRSYHu8gWX6tli82D7sJ8A5n29gJFa0VKGkpYdrMiZwjeVarPT0D4GhrPefN5a5TZk7J1Vjp38slp8zQe0wgvYclkORKZ968eQZicf0AZP/+/bj55pvh6emJ8ePHY+7cuZg7dy7Gjx8PLy8v3Hzzzfjmm2+Mgo6+/blz50rwjAjCcdm7dy96GXeDrl69ipUrV+o6UD3yyCNGNuvXr9cNDl23bp1R+9vOzk6sW7cOAODk5DTgzJ/HH38cwPWueRs3bjQ6X1xcjOeffx4AkJiYSMEHYZe0dalxooRdpjJrRCDcnNl3nO2GmjNAey3bJmmxKK6IAS/rAQBzomyg5Iqn93BygsdMfivgK5wWu3InGaJSpNXqClotV+8RmpgED18/kTxybETPfADA2rVr8cUXXxgc6z+tvKurC+fOndMFGP07W/WfbN6HqQsfgiCGzrp166BWq7Fy5UpMnz4dsbGxUCqVaGhowOHDh/H222+joeH6na2ZM2fid7/7ndEaSUlJ2LBhA1544QXk5ORgxowZ2LRpExISElBcXIwtW7YgNzcXALBhwwaMGCB7dd999+G9995DZmYm3njjDdTW1mLNmjXw8/NDdnY2nnnmGbS2tkIul+O1116Dk5MkX3EEcUNkFDZArWHfcb45xYFKrnhdrgAg6Rbr+yEShysPM897OHtgUrC07VyFnh6ojh5l2rinToaC001Qo9aiPJ89ey0iyQ8ubtJ+V18tKUJHSzPThrpcWQ5JXu158+ZhwoQJOHPmjEEQYSqboR9g9D/Xd6zvcRMnTqTMB0FYgerqarz++utGMzz0WblyJbZv324w4E+f5557DnV1dXjvvfeQm5trUrPxwAMP4Nlnnx3wdygUCuzatQtLlizByZMn8eWXX+LLL780sHF1dcW2bduweLHj3Cklhhe8kiuZzMHme/D0Hp6hQNh4UVyxNu097ThVy56gnRaeBmeFtIMjO3JyoNVrWW4KLzOut6oKm9DbzR6kaAslV+a12CW9h6WQLNR85513MGPGDKjVaqMABLgeVJiqdxwoGHFxccHbb79tZa8JYvjxwQcfID09HcePH0dJSQkaGhrQ2toKT09PREVFIS0tDffddx+mT2cPw5LL5Xj33XexcuVKvPPOOzh58iQaGhoQGBiI1NRUPPzww2YFDIGBgTh27Bj+/e9/45NPPkF+fj5UKhXCw8OxYMECPPbYYxg9erSlnj5BiEqvRosfOfM9JkX7IcBT2mFsFqOlCqg9x7ZJugWwUz1cfzKrM9ErsEXNttBit81CLXbNmWoeO9YGWuyeYpdcefoHIDg2XiRvHB/Jgo9JkyZh69ateOyxx3SBRn8diDn02b300kuYOHGiVXwdLMXFxcjOzkZlZSV6enrg5+eH5ORkpKWlGUxplgqNRoNTp04hLy8PdXV1UKvV8PT0RGRkJFJSUpCcnGy3wmfC8syZMwdzzBgiZS5LlizBkiVLbmgNJycnrF27FmvXrrWQVwRhG+RcaUJLp5pps2C4lVyNdJwsZkZlBvO8DDLMjODrKKyJIAhoP3SYaeMSHw8XTndFQRBQdo4tNvcP94B3oLSzW9quNaCurJhpEz8xVfIGAI6EpEV269atg1wux/r166HVak2WVfWnv41CocA///lPm9B67Nq1C8888wxOnz5t8rynpydWr16Nv/zlLwgMFD/SLy0txdatW/Hpp5+iubl5QDtvb2/MmzcPDz300A1fJBIEQRDmc5BTcgUAC0c5UMkVd6q5GxAnvfjaEmi0Gu5U85uCboK/m7Ti656SEqj1Br6awpwuV43VKrQ1sme32ETWgyM0B4CESVNF8GT4IPnt7d/97nf49ttvMWrUKAONR182pP8P8JMWZMyYMfjuu+8kDzy6u7txzz33YMWKFQMGHgDQ3t6Obdu2YdSoUbp5BmKg1Wrx/PPPIyUlBW+++SYz8ACA1tZW7N69Gx9++KE4DhIEQRAQBAHf57GDj9gAdyQEOcpUcxVQwun8FD8XcDFuqW2PnGs4h6buJqaNTXS54gwWBMzTe9hNi12O3sPJxRVRY/iDFAnzsYlWMAsWLMC5c+fwf//3f/i///s/HDp0CK2tpgfS9N2Vv+uuu7Bq1SrJ02BarRZ33nkndu/ebXBcoVAgOjoaPj4+KC0tRUtLi+5cfX09Fi9ejB9++IFbJ3+jqNVq/OpXv8Lnn39udM7HxwdhYWHw9vZGW1sbrly5go6ODqv6QxAEQZimuF6Fsmvs7+CbU0Ik/79nMUoOA5puto0jDRa0k6nmPL2H3McHygkTuOuUcaaau3k4IyTeZzCuWRx1dzfKz7MHKUaPvQnOLg6isbIRbCL4AK5nOu666y7cdddd0Gg0uHTpEurq6nQtPAMDAxEcHIzk5GTdvABbYOvWrUaBx29/+1v8+c9/1k151mq12L17N9avX4/y8nIAQEdHB1atWoULFy7Ax8d6H74HHnjAIPBwcnLCww8/jPvuuw+TJ082+Cem1WpRWFiI7777Dp999pnj/IMjCIKwA3hdrgCaam7P8OZ7hHuEI9E3USRvTNPb1ITO07lMG89ZsyDjtDHvbOtBbWkL0yZmTADkEk81r8o7j151D9MmgbpcWRybCT70USgUGD16tM13rLl27Rqee+45g2PPP/88/vjHPxock8vlWLFiBaZMmYKZM2eirKwMAFBZWYlXXnkFTz/9tFX8+/jjj/HRRx/p9sPDw7F//36MG2c6fSiXy5GcnIzk5GQ89thjaGpip4cJgiAIy/EDp+TKR+mMyTEOMuTMrKnm4wHvMFHcsTaVbZUoai5i2syJkn6querIkeuvDQNz9B5XLlwDOH2DYsdJr/coO5PDtYmbOFkET4YXkms+7JkXX3wRbW1tuv3Zs2dj06ZNA9pHRERg+/btBsdeffVVXLvGb0U3WBoaGvA///M/un0fHx+kp6cPGHiYws/PQf7JEQRB2DjX2rtxupx9w2feyCA4KRzk33Z1LqBitxR2pC5Xhyr4OgqbKLk6+CPbQKGApxlTzUvPsvUecrkMUaMknmouCCjNZQcfwXEJ8PKXPkhyNBzkW0x8tFot3n//fYNjf/3rX7l3LRYsWIBZs2bp9tva2vDZZ59Z3L/nnntOV7IGAH//+9+RmChtOpcgCIIwzaGCemg5d4odq+Tqa76NA5Vc/VjOvqhXOikxOVTaO+za7m60H2F343KfOBEKTqm4ukeD8ovsm6phI3zhqpS2+KaroQ6drezSMBosaB0o+Bgix44dQ319vW4/Pj7e7OnqDzzwgMH+rl27LOjZ9e5b+p2qQkND8fDDD1v0dxAEQRCWg1dy5ayQYXZSkEjeiMAlTvDhFQaE3SSOL1amqasJp+sG7oQJADMjZsJVIa2oWXX8OARO0xnPBfO561TmN6JXzS7dirtJ+myCqrKMa5M4mVrsWgMKPobI118bfnEuXLjQ7FrNhQsXGuwfPnwYKpXKYr7t3LkTjY2Nuv277rrLpkT6BEEQxE90qTXIuFzPtJkaFwBvN2eRPLIyDUVA/SW2TdKtgIM0PUmvTIdWYF+Mz4viTwu3Nu0HD3JtvBYs4NqUcEquAOmDD0EQuMGHV0AQguMSxHFomGHR4EOhUBj9OJnoiGDKzlI/pn6fNThz5ozBflpamtmPDQ8PR2xsrG6/p6cHeXl5FvLMODCaN0/6LzWCIAjCNJlFDejo0TBtbk5xoMGCl/bxbVKWWt8PkeCVXClkCsyOnC2SN6YRNBq0/cjWpbiOHAmXqCimjVbLn2oeGOUJ7wBpp5qrW5uhbjM90qGPxNRpkjcAcFQsGnz0Df/r/2OunaV+xCA/P99gf9SoUYN6fH/7/uvdCCdPGk7rvOmm66lrjUaD/fv346677sLIkSPh4eEBX19fjBgxAqtWrcL7779Pcz4IgiBE5ruLtVybBSkOpPfglVy5egOx0l6MW4rO3k4crz7OtJkcOhk+rtLOu+g8ew4aTvMbc7IetcUt6GpXM23ix0tfPtheeYVrk5g6TQRPhicWTxPoR4msQMAa0aRYgUdnZ6duXkcfUZy7Af3pb19QUHDDfgFAS0sLCgsLdfsKhQIxMTEoKSnBPffcg+PHjb8EW1paUFRUhM8//xxPPfUUXnjhBdx7770W8YcgCIIYmF6NFj/ks7s+pYR5I8rfMaZ8o60WqGRPlMaIRYCTizj+WJlj1cfQpeli2syP4usorE3bwR+4Nl43m1NyxS4fBIC4m6QPPnglV64eHohItu1xD/aMVWqUBEEwK7iwZLAgZmqsoaHBwHdnZ2cEBw8uJR4REWGwX1fHaTloJiUlJQa+eXl5IS8vD2lpaQZT1geiuroav/71r3Hx4kW88MILFvGJIAiCME3OlSY0qthDzm4Z7UBZj4Jv+DbJP7O+HyLBK7kCgPnR0gYfgiCg7Qd28OEUHgbXlBTuOqVn2MGHd6AbAiI8Bu2jJVE1NaL7GtvP+IlToBCpjH84Qn/ZIdDe3m6w7+7uPujgx8PD8MPXf82h0tzcbLAvk8mwdOlSXeDh7u6OX/7yl5g9ezYCAgJw7do1pKen45NPPkFnZ6fucVu2bEFERATWrVs3JD8qKyuZ52tqanTbnZ2dBr+bh1ar1QVYWs4wJFtH3397fy6EIfqvp0ajGdR7nLB9urq6TG4Plq/Psr8rAWBuop/DvH9cLu4Bq/2JoHBBV+RMQMLna6nXtlfbi/QK9lTzZL9k+Mh9JH19e4pLoL5SzrRRzpnL/Vs0VqvQ2sC2iRrtd0N/U0tw+SS7DA4AosdNdJjP3I1ijb+DVYIPcy/E7VXI0z9QcHNzG/QaSqWh2MpawUdTU5NuUvmkSZPw1VdfITo62sDm3nvvxVNPPYXly5fj3LlzuuMbNmzALbfcgqSkpEH7MZgytIyMDAQGmt/5IiAgAEqlEjKZDK2tbMGYPWGp9wBhezQ2NuLy5ctSu0FYiYyMjCE9ThCAfbkKAAP/LwxwFVB25hiu2Oe/SwOcNB1YXMb+W131SEFWOv/iUCyG+toCQGlvKVp62BUHEZ0ROHDgwJB/hyXw//EQeP+B87w80cnxs7XIBQC7XXBdVzEOHChk2lib6kPsLI9MrsDlumsolvh1sRX0Z8ZZCqu02jVX+G2PQnPA+E6Ii8vga1NdXQ0/oJaKLAe6gI2MjMT3339vFHj0ERsbi4MHDyI0NFR3rLu7Gy+99JJF/CIIgiAMqVQBTT3sqGKcv+AoHWcR0noOcoHd1avWZ6JI3liffDW/kcwo58E1q7EGnhcvMs9rlEp06nXoHIjOq+z72XJnLVx82a+/tdH09KDjajXTRhkaAbmzg7S1tlEsmvmYPXu2WdkMc+1slf6Zjp4edr2uKbq7u5lrDpWB1tm6dSv8/PyYjw0MDMQLL7yA1atX64599NFH+Oc//2mUqeFRUVHBPF9TU4MpU65PDp09ezYiIyPNXru8vBwajQZOTk7w9vYelF+2hlar1QWMnp6ekMtp9I6joF925e/vj0mTJknoDWFpurq6dHfFZ8+ePaTv8H/+WAKgjGnz4K2TMTHad/AO2iDOu79knhcgw8jlv8dID2kFyZZ4bQVBwBvfvAF0D2wT6RmJe269R9Lrod66Om6ZtPf8+Vi0eDHTpr2pG5/tZw9STJgQglm3Jg7aR0ty+UQmSjklzlNuWYJRc/ji+uEC7/0xFCwafBw+fNiidraKp6enwf5Q6hf7Zzr6rzlUTK3j7++PlStXmvX4O++8E4899phOI9LV1YXs7GzMmTNnUH4MJphQKpWDCm7kcrnuws6RLtblcrlDPR/iJxQKxaADeMJ+cHNzG9Lr+2MhZx6CpyumjwiFXG6/N+t09HYDJWzxtSxqKpSBprPzUjHU17agsQA1qhqmzYLoBXB3l7aLWdOxY1wb31sWcf8Gl0+w2/QCQOLEUMm/B8vPnmIbyGRImT5Tcj9tCWv8LehKZwj0v8Dv6OgYdNlX/4nm1gw+pk+fDmczU4hubm66jEQfOTk5FvGNIAiCuE5pgwqFV9k6r4WjQhwj8ACA0gygp41tM4wGCwLSd7kCgLYf2FPNZa6u8Jw5k7tOKafFrpOzHFGj/Aflm6XpVatReoZ9PROelAJ3H19xHBrGUPAxBAIDAw3SpGq1etCtcquqqgz2B9uqdyBCQoxbMg5WMD5y5EiDfUu1ASYIgiCuY85gQYdqsZu/l28zcon1/RCJHyvYwYe/mz9uCrpJJG9Mo2lrgyori2njkZYGOSc706VSo6qwmWkTNcofzi6sPmfWp+LiOfRw9LU0WFAcKPgYAkql0ki43X/oII/+9snJyTfsFwAkJCQYCeAHq4vob9/XLYsYvtTV1WHfvn3YvHkzFi9erAvAZTKZgUbIXPbv348VK1YgMjISrq6uiIyMxIoVK7B//36z1+jt7cVbb72FWbNmISgoCEqlEgkJCXj44YdxkSOg1KehoQGbN2/GuHHj4O3tDW9vb4wbNw6bN2/GNc7EX4IYKrzgw9PVCdMTAkTyxspoNfz5HsGjgIAEcfyxMhVtFbjUeIlpMzdqLhRyaS/G2w8dAnp7mTbmDBYsO9cAQcuu/rCFqeaXszK5NomTp4rgCUFzPoZIcnIyrly5otvPy8tDamqq2Y/PzzfsgmGp4EOhUCApKQkXLlzQHesvbufRX8MidU0qIT2mMmpDQavV4qGHHsK7775rcLyqqgpVVVXYtWsXHnzwQbz99ttM/UtDQwOWLFmCkydPGhwvKSnBO++8gw8++ADbtm3Dgw8+yPQnKysLt99+O2prDS8Ez58/j/Pnz2P79u3YtWuXUSkiQdwIV1u7kFvezLSZlxwMVydpL04tRuVJQMWZfJ3sOCVXP1zhTwu3hanmrbxWsnI5POfN465TnMt+bWUyIHas+e30rYFWo0HRyRNMm4DIaPiFRTBtCMtgV5kPtVqNEydOYOfOnfjqq6+QnZ0NjUaatm3jx4832D9mhmirj5qaGpSVlen2nZ2dMWqU5drtTZxo2Krw6tWrg3p8/zKrgAAHuftGWITo6GgsWrRoSI998skndYHHhAkT8OmnnyI7OxuffvopJkyYAADYvn07nnrqqQHX0Gg0WLFihS7wuOOOO7B//35kZWXhtddeQ3BwMLq7u/Hwww8zMykVFRW47bbbUFtbCycnJ2zcuBEZGRnIyMjAxo0b4eTkhJqaGtx2221W6fZBDF8O5PG/kx2q5OriLr6NA001//7K98zzSiclpoZJe4dd066CKuMI00Y5cQKc/Nk6jZ7OXpTnsTPE4SN84eYpbevayvwL6GxjzwVLTJ0ukjeEXWQ+Wltb8ec//xnvvfceOjo6DM4FBATg//2//4cnn3wSCoV4d4mWLl2KLVu26PZ/+OEHCIJgVsu8/gOF5s2bZzHBOQAsW7YMH374oW7/1ClOd4d+9LfvrwEhhh+bN29GamoqUlNTERISgrKyMsTFxQ1qjcLCQt3cmMmTJyMjI0PXRSM1NRXLli3DnDlzkJOTg61bt+L+++9HYqJxW8YPPvgAR48eBQA88sgjeOONN3TnpkyZgsWLF2PSpElobW3Fo48+ivz8fDg5GX/VPfnkk6ivv37H7pNPPsEvfvEL3blZs2Zh0qRJuPPOO1FXV4ennnoKO3bsGNTzJYiBOMApuXJxkmPuSMvoACVHqwXy97BtfKKAMGn1D5aiur0a5xvOM23mRM6Bm5Nl2usPFVVGOgTOmADvRbdw1yk73wBtL7vkKmGi9O/lwhP8kqukaTNE8IQAJMp81NTUYP78+UY/9957r5FtU1MTZs+ejW3btkGlUhkNFmxoaMDTTz+Nm2++GWq1WrTnkJaWZjCVu6SkxOwWwv1LTpYvX25J13Drrbca9CU/d+6c2dOVL168aFQSNnfuXEu6R9ghTz/9NJYuXXpD5Vf/+Mc/0Pvf+uLXX3/dqH2fu7s7Xn/9dQDX9RyvvvqqyXX6Ahh/f39s3brV6HxiYiKeeOIJAEBRURF27txpZFNbW4v//Oc/AIBbbrnFIPDoY9WqVbjlluv/fD/66COj0iyCGAotHWocL2bfKZ6ZGAhPV7u4N8in6hTQWsW2SVkGR5mkaE7J1cKYhSJ4wqb1O/70bq9FfD+LT3PK6WTS6z20Wg0uZ7OrU3xDwhAUM7gbasTQkST4yMjIwOHDh5Geno709HTddlCQ8Rv0j3/8I86dO6fLKpj6EQQBGRkZeOyxx0R7DnK53Eho+/TTT3Nb7h48eBBHjvyU6vTy8sKqVass6puHhwfuueceg2PPPvusWY/929/+ZrA/Z84ci3XiIoYvgiBg9+7dAK7rm6ZNM91RZNq0abpM2+7du40+T4WFhbrgeNWqVQPqkfQ/m6aCjz179uhmxfzmN78Z0O++dbRaLfbs4dy9JQgz+LHgKno54lyHKrnK28W3GWXZG3BSwiu5clO4YWYEv3WtNdF2dqL9v0MUB0I5fjycQ0OZNj1dvbhykR1IhyX4wMPXddA+WpLqgnx0tDQzbUZMm2HXw6/tDUlurWQM8KbvfxFeW1uL9957z+AN0f9iRD8A+fe//43169cPurXsUNm0aRPeeust3YTq9PR0bNmyBX/84x9N2ldVVRkJYB977DGDDIop+n8gDh06xM1G/OUvf8HHH3+sE49/+OGHmDNnDu6///4BH/Ovf/0Ln332mcGxvjvI9kKvWoOWenYrPVtC0ApoV133t7ddAdkN9vT3CVLCydn2RKqlpaWorq4GAO7Ayjlz5qCgoABVVVVG5V195Va8dUJDQ5GUlITCwkJkZhqn281dR/9cZmYmHnroIabvBMHj63PsDJpcBtyc4iDBhyAAebvZNl7hQKT5zVpsmauqqzhTf4ZpMzNiJtydpW3i0n7kCAROy1mvW/glV+UXG6FRs6eFJ0yQ/uZloRldrpKmUsmVmEgSfPTvUANcb+86daqhAOs///kPNBqNLrgwhb7OQqvV4q233sIrr7xieadNEBgYiD/96U/405/+pDv2xBNPoLy8HE899RTCw8N1fu3ZswePPfaYQYvd8PBw/OEPf7CKb5GRkdi0aROefvpp3bEHH3wQp0+fxqZNmxAVFaU7Xl5ejueffx5vv/22wRp33323ruzEXmip78T//i1bajck467NUxAQbjn9kKXIy8vTbfM6u+mfz8/PNwg+BrtOYWEhKioqoFKp4OHhYbSOj48PQhl398LCwuDt7Y3W1lajckSCGCxtXWpkXGaXqUyO9UeAp7R3ii1G9WmgpYJtM2oZwOhsZ08cLGcP7ANso+SqzZySq4XmlFzxZ4DFT5C25ErQanE5i11y5R0UjJB4Y30hYT1E/8QLgoCLFy/qAoa+4GHGDOOUV39hNgCjkiv944IgYO9eMwYZWZBNmzZh6VLDFoFvvvkmoqOjkZCQgIkTJyIgIAArVqwwCDyUSiU+++wz+Pr6Ws23P//5zwa+CYKAN954AzExMUhISMCUKVOQkJCAmJgYvPXWWwYB3sSJE/HOO+9YzTdieKHfLSoyMpJpqx8YV1QYXrgMZR1BEIy6VfXt89bQX6e/LwQxWA7m16Gnl32nePEYdqmLXcHLegDDquTKRe6C2ZGzRfLGNNru7uvzPRi4jRkDl0h2y1l1jwZlF9glVyFx3vDyl1ZYX1NUiPZGtp8jpqRRyZXIiB58lJSUoNNEuq9/1kOj0eD48eMmA4y+nz70t0tKSgbdWvZGkMvl+Pzzz3HXXXcZHNdoNCgpKUFubi6am5sNzgUEBOCbb77BjBnWTfMpFAp88cUXuO+++wyOC4KAkpISnDx5EiUlJUaPW7ZsGdLT0y3agYsY3rS1tem2ee8r/QxFX0mjtdYx5z3et07/NQhisHxzvoZrs3hMmAieiIAg8FvseoYAUY4x1K2hswGnrrI7S6ZFpMHTRdr/q6rMTGj7dQ3tj9ct/FbqFRcb0dvNHnVgNyVX1OVKdEQPPvTnW+iTkpJisF9YWGjyn/2//vUvtLW1Yd++fXBzczPKgABAQUGBxfw1Bzc3N3z66af44osvjOZ/6OPh4YFHHnkEeXl5onWQcnV1xY4dO7B//35msCOTyTB16lTs3bsXu3fvpsCDsCj6gytdXFyYtq6uP5Wc9L9RYel1eGvor2PqpglBmEt7dy8OF3JKrmL8EOoj7Z1ii1FzFmi+wrZJWQZIPOXbUvxY/iMEsBsJ2EbJ1XdcG28z5jgVmVFylTBR4pIrQeBONffw80dYIo0TEBvRNR8DlS707+d/6dIl3XZfadbUqVPx29/+FgCwZMkS/O53v8NLL71kFHyUlJRg9mzxU5srV67EypUrUVRUhKysLFRVVaGnpwe+vr5ISUnBjBkzDFrgmguvg5Y53Hrrrbj11ltRVVWF48eP48qVK+jq6oKfnx/CwsIwY8YM6mpFWA39930Pp7d8d3e3brt/O97+67A+T7x1Ojo6uL7or9N/DYIYDAfzr3JLrpaMdZCsB0AlV/1wkjthTiS72Ya1EXp60PYju+TKNSUFLjExTBuNWouy8w1Mm6BoL3gHSvudebWkCK317CApfvJUyBxEc2RPiB58tLS0mDzu4+NjsG8qezFv3jyD/SVLluh6/uujX5ohBYmJiSaHo9kCERER+PnPfy61G8Qww8vLS7fNK19SqVS67f4ZuP7rsIIP3jodHR1mlVL1rUPZQOJGMKvkaqyD6D0Egd9i1z0QiEkTxR1r09TVhJO1xo109JkWNg0+rj5MG2ujOnECWs71kbc5JVf5jVB3cUquJM56AOBmPQAgYTJNNZcC0cM9/QsCffr/Yy8qKjKyGTVqlMH+QBOWB/odBEFIg76wu7/4uz/62VF98flQ15HJZEbC8r593hr66/T3hSDMRdXdi8MF7JKridG+CPNxkOza1QtAo7Ge0ICU2xym5OpQxSFoBPbF+KIY/kW9tWk1o+TKy4ySK3O6XEmt9xAEgav3ULgpETpCnNEMhCGiBx/yAdJb+iUSAEwKoWNjYw32BxowZokyJYIgLIf+jQP9kkpT6J/vrwUbyjpRUVEG4nP9dVpaWpiTy2tqatDa2mrSF4Iwl4OX6tBNJVeGjL7d6m6IxYEr7Na1CpkC86LmMW2sjaBWo/0Hditg1xGJcI2PZ9poerUoPccuuQqI8IBviLSzTOqvlKK5lp1t9IiKhdxBAmB7Q/Syq/4XAX2Ul5cb3J28dOmSkZajf/AxkAB0oKCEcHx8gpS4a/MUqd0wm+tDBq+X/nh6eFpkyKAtEhcXh/DwcFRXVyM9PZ1p2zeENCIiwugzP3PmT5OB09PTjbrM9VFbW4vCwkIAMNloYebMmfjoo49069x5550m19H31drd6QjHZb8ZJVcOE3yY0+VK6Q/ESDvl21K0dLcgqzqLaZMamgpfN19xHBoAVVY2NAOUvffhtYg/16vyUhO6O3qZNgkTpdePFp7gl1x5RpmuniGsj+jBR39tRx8//PAD0tKu13/m5+ejtrbWIPhwd3dHRIRh3+mBtB36deHE8MLJWWGTQ/YGQqvVwqn1erre29tjwMygvSOTybB8+XK8+eabuHTpEk6cOIFp06YZ2Z04cUKXsVi+fLnRDYikpCSkpKQgPz8fn332GV5++WWTNxt27Nih216xYoXR+WXLlmHt2rXQarV4//33Bww++taRy+VYtmyZuU+XIHR09PTiUAG7TGVCtC/CfW3zxsGgqcsHrl1m26QsBRSSzDi2OD9c+QG9Avti3Ba6XLV+8w3XxpwWu5dz+KMMbKHkquBYBtNG7uoGZbCDBPx2iOhXOgkJCQb7fbM7XnnlFezevRu5ubl46KGHdOf7SqhMTTMeqFyif5BCEIT0rF+/HgrF9RT3unXrjDKXnZ2dWLduHQDAyckJ69evN7nO448/DgBobGzExo0bjc4XFxfj+eefB3C9+YOp4CM0NBS/+tWvAADfffcdvvjiCyObzz//HN/9t0b63nvvZU5CJ4iB+PFSHbrU7JKrnzlK1gMALn7Ftxl1u9XdEIv9ZfuZ5+UyOeZHzxfJG9Noe3rQ9j1nAGJsLFxHjGDa9Ko1KDnD1i75hbrDP9x0hYtYXC0pQvNVdrbRMzKGulxJiOi3HkaO/Kmfsr42o7W1FXfccYduv/9wwenTjTsSDFTzHcNpE0cQxOA4evSoQROIhoafan6LiooMMg0AsHr1aqM1kpKSsGHDBrzwwgvIycnBjBkzsGnTJiQkJKC4uBhbtmxBbm4uAGDDhg0YMcA/wvvuuw/vvfceMjMz8cYbb6C2thZr1qyBn58fsrOz8cwzz6C1tRVyuRyvvfYanJxMf80999xz+Pbbb1FfX4+7774bOTk5WLp0KQBg3759ePnllwEAQUFBePbZZ83+WxGEPuZ0ubrVUaaaCwJw4Uu2jZsvECftlG9L0dDZwO1ylRqSikBloEgemUZ19Ci/y9WSxdwp3+UX+F2uEidJX3J1iZP1AADPmASuDWE9RA8+AgMDMXbsWFy4cEGX9QBgsN2H/gdh/nzjOwd5eXlGx5ycnIyyKwRB3Bjbt2/HBx98YPJcZmYmMjMN62tNBR/A9Qv+uro6vPfee8jNzTWp2XjggQeYF/sKhQK7du3CkiVLcPLkSXz55Zf48kvDCx5XV1ds27YNixcvHnCdqKgo7N27F7fffjtqa2uxZcsWbNmyxcAmNDQUu3btMuqWRRDm0NHTix8vsUuuboryRaSfg+gUq3P5Xa6SlwIKZ3H8sTIHyg5AK7CzWrfG3SqSNwPT+jW/5Mp7yRKujTklV4mTQ8zyyVoIWi0Kjh9h2ii9fajkSmIkyTmtWLHCZEeqvmnl/aeW+/j4mLyISE9P19n1rTdq1Cg4OzvGFxtBOBpyuRzvvvsuvv76ayxfvhzh4eFwcXFBeHg4li9fjm+++Qbbt2/nal8CAwNx7Ngx/Otf/8LMmTMREBAANzc3xMfHY82aNTh16hQefPBBrj9Tp07F+fPn8dRTT2HMmDHw9PSEp6cnxo4di6eeegoXLlzA1KlTLfX0iWHG4YJ6M0quHCTrAfCzHgAwdqX1/RCJb8u+ZZ53kjnh5uibRfLGNNqODrT9+CPTxjUpCa6c2WQ9Xb0o43W5ivSEf5i0JVdVhflov8b2MyF1GpVcSYwkiq9HH30Ur776Ktrb23UZD1NZj77J5mvWrIGrq6vB+draWuTl5RmVZ02ePFmU50AQw4kdO3YYlVbdCEuWLMESM+60sXBycsLatWuxdu3aG1onMDAQzzzzDJ555pkbWocg+rP3bDXXZvEYB7kDq9UCF3eybdwDgVjHKLmqaa9Bbl0u02Z6+HTJu1y1p6dDGKAzaB/mZD3KzjeglxNIj5gsfckVT2gOACOmzsD5sgquHWE9JAn9/P398frrrxuUXA2U9YiPj8fmzZuN1uhfZtHH3LlzreIzQRAEQZhLW5eaX3IV6YMofwcpuarIAlqr2Dajb3eYLlfflfEH9i2OG7jsUyzM6XLlvYTv5+WT/MGCIyQuudJqNNwWu54BgQhNHMm0IayPZHmnX//613jvvffg5eWly3z0/5kyZQoOHTpkcjbIe++9BwBGWZObb5Y2xUkQBEEQ3+dd5Q4WXOxIXa7MKbka83Pr+yESvC5XLnIXyQcLatra0J7OzgS4jR0Ll+hopk2XSo3yi9eYNiFx3vAOlLZddMXF8+hoaWbajJw+i0qubABJb0GsXr0at912Gz7//HOcOHECV69ehaurK2JjY7F48WLccovpgTdqtRqPPfaYUamWUqlESIi0kTdBEARB7DGj5Oq2m8JF8EQENL1A3i62jXcEEOUY+qkrrVeQd8244Y0+syNnw9NF2plTbQcPQujpYdqYU3JVerYeWo2xTlcfqbMegHldrpLTHKPsz96RPP8ZEBCA3/72t/jtb39r9mOcnZ3x61//2opeEQRBEMTQaFT14Ohltuh1cowfIhxlsGDZEUDFnv+A0SsAB7nj/G0pW2gO2EiXK3NKrhbz/bycwym5kknfYlfTq8blbHbJlW9IGELiE9HV1SWSV8RAOMY3AUEQBEHYCPsv1KBXy75TvGy8g2Q9ADNLroZPlyulkxKzI6W9w97b1ATVseNMG+XkSXDmDE/taO1B5aUmpk3ECF94+LoybaxN2dlcdKtUTJuRabO5s0wIcaDggyAIgiAsyJ4z7JIrucyBulz1dgP5e9g2fnFA+ARx/LEyl5suo6i5iGkzL2oelE7SZrXaDnwP9PYybcwpuSrJrYPACaSlnu0BmNflKjltlgieEOZAwQdBEARBWIjali5klzUybWYkBiLIS9o7xRaj+Eegq4VtM2Yl4CB3nPeXsoXmgJ10uZLL4T2ArlYfXsmVTC5DwsSgwbhmcdTdXSjKyWLaBERGIzA6VhyHCC4UfBAEQRCEhdh3rhomZuga4DBCc8DMwYKO0eVKEARuyZWXixfSwtNE8sg06ro6dGRnM208pk2DU0AA06a9qQvVRc1Mm6gUPyg9XQbrokUpzc2Buos9y4SE5raF5ILzPrq7u5Gbm4uCggI0Nzejra0NWi27TeFAmJoLQhAEQRDWhjdY0EUhxy2jHWSqeU8HcIlzhz14FBCcIo4/VibvWh4q2tjD6W6OvhkuCmkvxtu+/Q68CNj7Z/ySq6JTdQAnkLaXLlcjqeTKppA8+EhPT8drr72Gffv2oZdTn2guFHwQBEEQYlPWoMLZSnYJ0pyRQfBROovkkZW5/B2gZot8MeYOcXwRgX0l+7g2ttDlqmUfx09nZ3iZMROtMPsq87zcSYa48dKWXHWp2lFy+iTTJiQ+EX5hESJ5RJiDZMGHWq3G2rVr8f777wOA0cyOoUKdDAiCIAgp4GU9AGCZI5Vcnf+CbzPaMYKPXm0vV+/h7+aPKaFTRPLINN2lpeg6d45p4zlzJhQ+PkybxhoV6svbmDYxowPgqpT2HvblrGPQqNVMm5FUcmVzSPKuEQQBd999N3bu3KkLOiwRNFgqgCEIgiCIwbL3HDv4cHdRYEGKtPMQLEZHI1D4HdsmfAIQkCCOP1YmqyYL17rYU74XxiyEk1zai/HWvXu5NuZ0uSrMquXajEiVvuQq78iPXJuR02eK4AkxGCT5lOzYsQNfffUVZDKZQdBxI8EDZTwIgiAIqbhU24rCq+1Mm5tTQuDuInm1s2XI2wVo2XecHWm2hzklV7cl3CaCJwMjCAJa9rCDD7m7O7xuXsBeRytwS66c3RSIGxc4aB8tSWtDHSrzLjBtokaNhXeggwT8DoQk34LPPPOMbpuyFQRBEIS9szO3imvjUCVX5z7jGMgcJvjoUHfgYPlBpk2UVxTGBY4TySPTdOaegbqykmnjtXAh5Er2DJKa4ha0NbKngCdMDIaTi2LQPlqS/KPpXJuUWfNE8IQYLKIHH/n5+SgrK4NMJjMKPCh7QRAEQdgbWkHA7lx2yZW3mxNmJ0krzrUYTVeAcvb0bMTNBrwdI9j6seJHdPayW7kujV8q+TVMy17OsEcA3sv42ZmCbH7J1cgp0pZcCYKA/COHmDYKZ2eMmCpt22PCNKIHHzk5OSaP931oKRNCEARB2BPZZU2obWXfKV48JgwuTg4yWuv853ybcXda3w+RMKfk6mfxPxPBk4ERenrQ9g1bEK8ICoTHtGlMG41ai+JT7MGCHr6uCE/yG7SPlqT+SimuVZYzbRImToGbh6dIHhGDQfTgo76+3mBfP+hwdnbGokWLMH78eAQGBkKpVMLZ2RlyuYN8YRMEQRAOx55z/DvFKyY6SKtPQQDO/R/bxskNSJFW/2AprnVdw/FqdpZnXOA4xHjHiOSRadqPHoWmhd3m2ednSyFTsEulrly4hu4O9tiDpNQQyOXSZnnyOFkPgEqubBnRgw/9wYH6gUdAQAAOHjyIceOkrZkkCIIgCHPp0QDf5dUzbSJ8lZgS6y+SR1am5izQUMi2GbkEcPMWxx8r833599AK7IHHUmc9AHCF5gDgY6GSq6Sp0g7J1Go1uJTJ1nu4eXohbsIkkTwiBovoKYWICMO7P4IgQCaT4ZlnnqHAgyAIgrArzjfJ0NGjYdosHx8u+Z1ii8EVmgMYt8r6fojE/iucUiaZQvLBgpq2NrT/yG4565KYANcU9qT5LpUaZecbmDYBER4IjJS2lKniwnmomhqZNiOnz4TCyUGGeTogogcfSUlJJo/fcsstIntCEIS59LXF5v3MnTuXu9b+/fuxYsUKREZGwtXVFZGRkVixYgX272f/k9ent7cXb731FmbNmoWgoCAolUokJCTg4YcfxsWLF81ep6GhAZs3b8a4cePg7e0Nb29vjBs3Dps3b8a1a+ye/gQBACfr+UHFHY5ScqXpBS5wBgsq/YEEditXe6FeU4/8pnymzYyIGfB3kzar1XbgAISeHqaNz23LuIL44tN10PaydbdJU6TNegBA/lEzSq5mUsmVLSN62dWkSZMQGxuLK1euGBxXcOoQCYKwb7RaLR566CG8++67BserqqpQVVWFXbt24cEHH8Tbb7/N1Hk1NDRgyZIlOHnypMHxkpISvPPOO/jggw+wbds2PPjgg0x/srKycPvtt6O21rDM4Pz58zh//jy2b9+OXbt2YcoUaScWE7ZLaw9Q0My+oBsb4YPEYC+RPLIypelAO3v+A8bcATi5iOOPlTnbc5ZrszR+qQiesGnZze9y5bOUXxpWwBssKAOSJO5ype7uQmHWMaaNT3AIwkeyszyEtEii5L733nuNulqdO3dOClcIghgEa9eu1V2cm/p5//33B3zsk08+qQs8JkyYgE8//RTZ2dn49NNPMWHCBADA9u3b8dRTTw24hkajwYoVK3SBxx133IH9+/cjKysLr732GoKDg9Hd3Y2HH36YmUmpqKjAbbfdhtraWjg5OWHjxo3IyMhARkYGNm7cCCcnJ9TU1OC2225DJadvPjF8OX1NBi3YwceKCQ6S9QDMLLlyjC5XgiDgjPoM08bdyR1zo+aK4s9AqKur0ZGdzbRxT02FcwT7fdja0ImaIrZgPSLJD55+boP20ZIU5WRB3cVue5wya57kbY8JNpIMGXz88cfx7rvvoqamRnfstddew9Kl0t9BIAhiYIKDgzFmzJhBP66wsBAvvfQSAGDy5MnIyMiA8r+DrlJTU7Fs2TLMmTMHOTk52Lp1K+6//34kJiYarfPBBx/g6NGjAIBHHnkEb7zxhu7clClTsHjxYkyaNAmtra149NFHkZ+fDycn46+5J598Utd575NPPsEvfvEL3blZs2Zh0qRJuPPOO1FXV4ennnoKO3bsGPRzJhyfnHr2/TuFXIZl4x1j1gV6VEA+R9TsFwtEporijrUp15SjWdvMtLk55mYondgD+6xNy9dfc23Mme1ReJKT0QIwcqq0WQ8A3NkeAJAyc671HSFuCEkyH15eXvjwww+hUCh0wwYPHjyIxx9/XAp3CIKwMv/4xz/Q23u9fePrr7+uCzz6cHd3x+uvvw7gup7j1VdfNblOXwDj7++PrVu3Gp1PTEzEE088AQAoKirCzp07jWxqa2vxn//8B8B1rZl+4NHHqlWrdDq0jz76yKg0iyCK61WoULHvrs4eEYhAT1eRPLIyl74B1Cq2zbg7AQe542wPJVeCIKB1D7vkSubsDG+OplYQBBRySq4UznLETwgetI+WpKOlGWVnTzNtQhNGwD88UiSPiKEi2QCN+fPn4/3334dcLtcFIK+++ipSU1Px5ZdforOTnVYjCMI+EAQBu3fvBgAkJydj2gBDrqZNm4aRI0cCAHbv3m1UmllYWIj8/Oviz1WrVsHd3d3kOqtXr9Ztmwo+9uzZo2v5/Zvf/GZAv/vW0Wq12MP5B08MP8yb7eFAF0FnP+XbjHWMLlfdmm6cV59n2gQpgzAlVFo9WHd+ProvFzFtPOfNg8Kb3fa4vrwNTbUdTJu4cYFwVUpSLKPjUmY6BC277THN9rAPJHknzZ8/X7ft4+ODxsZGXQBy6tQprFq1CnK5HPHx8QgICICbm/k1hjKZDAcPHrSG2wRBDIHS0lJUV1cDAObMmcO0nTNnDgoKClBVVYWysjLExcXpzvWVW/HWCQ0NRVJSEgoLC5GZmWl03tx19M9lZmbioYceYvpODB+0WgF7z7ODD09XJyxMkb5MxSK0VgMlnHKX8IlAoHGppD1ypPoIOgX2DdAlcUugkEvbKKd55y6ujTmzPS4dq+HaSD3bAwAupLOv7WRyOUZOnyWSN8SNIEnwcfjwYSMxUN+8D0EQIAgCNBoNLl++jKIidlRvag1i+NLb04Pmq/wvUltBqxWgUrUDAHpaPG94FoBvSBicXKzXaebzzz/HZ599hrKyMigUCoSGhiItLQ2rV6/GvHmm7zjl5eXptpOTk5nr65/Pz883CD4Gu05hYSEqKiqgUqng4eFhtI6Pjw9CQwf+hxoWFgZvb2+0trbqMi4EAQBZpY2oaelm2tw6JhRKFwfp4nj2fwHOoD1Hmu2xr3Qf10bqwYJCTw9a97I1OHIfH3jMns206VVruHoPNw9nRI+Stp1wXVkJ6stKmDYx4ybAw9dPJI+IG0HSHFr/sgpTwUN/m4GgoIMAgOarNfjg8d9J7YZk3PfSGwiMirHa+voBAHBdV1FUVIQPP/wQt99+O3bs2AEfHx8DG/1uUZGR7DKUqKgo3XZFRcUNryMIAiorK3XlXPrr8NboW+fixYtGvhDDmy9P8zug3eEoXa4EATjzH7aN3AkYa6ydskfqOupw4uoJps0IvxFI9mffALE2bYcPQ9PczLTxXrIYcs7NqLJz19Dd0cu0GZEaAoWTZFX6AICLh3/g2oyePZ9rQ9gGkgYffQGDfoDRt913joIKgpAed3d3LFu2DAsWLEBycjI8PT1RX1+P9PR0vPXWW7h27Rp27dqF5cuX4/vvv4ez80+TZdva2nTbnp7sybj6GYr29naDc5Zeh7eG/jr91yCGL+3dvfj6HDu7GubjhmnxASJ5ZGUqTwLXOBUISbcCHoHi+GNl9pXsg5aT5bk94XbJr01azCi58r3jDq7NpeP8SoGUtDBzXLIaml418o8eZtq4unsgMXW6OA4RN4xNZT7MPWcKqb8ICMKRqaqqgq+vr9HxhQsXYt26dVi8eDFyc3ORnp6ON998E48++qjOpqurS7ftwrkL5+r6U2eg/k0nLL0Obw39dagBBtHHN+dq0KnWMG2Wj4+44RJKmyH3Y77N+F9a3w8REAQBu4p2MW2cZE6Sl1z11tejPSODaeOSmAA3Tlt0VXM3yi9eY9oERHggMIp/o8aalJw+ic62VqZN8ozZVi05JiyLtHk0giDsAlOBRx8hISH44osvdNmOvpa5feg3jOjp6WH+nu7un+ro+7fjtfQ6vDX01+m/BjF8+SyHX4L380kO0uWqpwO4aNwxzgD3QGDEInH8sTLnG86jtKWUaTMzciYClNJmtVr27gM07ADYd8UK7k3Zgqxa8O7zJk8Pk/zm7kWO0BwARs+5WQRPCEshafAhk8ks9kMQhHTEx8dj4cKFAK7rQPq6WwHX5/r0wStfUql+miPQvyzK0uuYU0rVt445JVqE41NS346cK01Mm4nRvkgMdpD3y6WvgW72HWeMuxNQOLNt7ITdRbu5Nrcn3m59RxgIgoAWEy3EDVAo4H0bu8uVIAjckiuZXIakKdJ2uVI1N6Hk9EmmjX9EFEITk0TyiLAEkgUffV2tLPlDEIR0jBo1SrddVVWl29YXduuLxk2hL+zWF58PdR2ZTGYkLO/b562hv05/X4jhyRen+O+ZX0x2oPfKmeFTctXV24X9pfuZNn6ufpgdwe4eZW26LlxE9+XLTBvPmTPhHMweCHi1rJU72yNmTADcvaUtZco/epg722P0nAV0E9rOkCT40Gq1VvvRcFKRBEFYh4G+/PWDkkuXLjHX0D+fkpJyw+tERUUZiM/112lpaWFOLq+pqUFra6tJX4jhh0YrcLtcuTnLsXSctOJci9FcAZSks23CbgJC2boCe+FQxSG0qduYNj+L/xmcJc7ycLMeAHxWrODaXDrOH5KZMl3a97IgCNwuVzKZHKOoy5XdQZoPgiAsgn4b3vDwcN12XFycbj89nX0xk/FfEWVERARiY2MNzs2cOVO3zVqntrYWhYWFAIAZM2YYnTd3Hf1zptYhhhcZl+txtZU922PJmDB4uTlGCRLO/S8ATkXB+F+J4ooY2EPJlbanBy1ff820Ufj4wHM+e8p3r1qDy7zZHp7OiBkrrbalrrQYDRVXmDax4yfC00/aGSTE4JG02xVBWBrfkDDc99IbUrthNvpDBj08LDNkUApKS0vx/fffAwASEhIQEfHTjAOZTIbly5fjzTffxKVLl3DixAlMmzbNaI0TJ07oMhbLly83yqQkJSUhJSUF+fn5+Oyzz/Dyyy/D3d3daJ0dO3botleYuAO4bNkyrF27FlqtFu+//z7uvPNOk8+pbx25XI5ly5ax/wCEw/NFDr/k6ueTHURoLgjAmU/YNnJnYMzPxfHHytSqanGs+hjTJtk/GSP9RzJtrE37jz9C29LCtPFeupQ726P0TAN6OtmzPZKmSD/b44I5sz1IaG6XUPBBOBROLi5WHbJnabRaLVz+W9rj7e0Nudz2kpF79+7F4sWL4eRk+uvi6tWrWLlypa571COPPGJks379erzzzjvQaDRYt24dMjIyDDpIdXZ2Yt26dQAAJycnrF+/3uTvevzxx/HAAw+gsbERGzduxLZt2wzOFxcX4/nnnwcAJCYmmgw+QkND8atf/QofffQRvvvuO3zxxRf4+c8NL6I+//xzfPfddwCAe++9lzkJnXB8mlQ9+D6Pfac40k+JaXEOMtuj/DjQyJ4mjZGLAQ/HeL57i/dC4GR5pM56AEDzV19xbcwpuco3Y7ZHssQlV71qNS5lsjPlbh6eSJg8VSSPCEtCwQdBEEzWrVsHtVqNlStXYvr06YiNjYVSqURDQwMOHz6Mt99+Gw0NDQCulzT97nfGE+aTkpKwYcMGvPDCC8jJycGMGTOwadMmJCQkoLi4GFu2bEFubi4AYMOGDRgxYoRJX+677z689957yMzMxBtvvIHa2lqsWbMGfn5+yM7OxjPPPIPW1lbI5XK89tprAwZMzz33HL799lvU19fj7rvvRk5ODpYuXQoA2LdvH15++WUAQFBQEJ599tkb/hsS9s3uM1Xo0bBFr7+YFOU4sz1Of8i3cZCSK62gxVeX2Rf1TnInLIlbIpJHplHX1EB1NJNp4zpiBNxGj2LatDZ0oiK/kWkTEOmJoCgvpo21Kco+hq52tgYneeYcODk7SJnjMMOmgw+tVouGhgbdULDo6GiJPSKI4Ul1dTVef/11oxke+qxcuRLbt283GPCnz3PPPYe6ujq89957yM3NxV133WVk88ADDzAv9hUKBXbt2oUlS5bg5MmT+PLLL/Hll18a2Li6umLbtm1YvHjxgOtERUVh7969uP3221FbW4stW7Zgy5YtBjahoaHYtWuXUbcsYvjxOafLlQzAykkRTBu7obMZuLiLbeMRDCQ6RrlLdm02KtvZr++cyDnwc/MTySPTNH/5FcDp+uRjxmyP/GM1XCmP1EJzADj/43dcGyq5sl9sKvioqKjAF198ge+//x4nT55EU1OTroWuTCZDby+7RpEgCMvzwQcfID09HcePH0dJSQkaGhrQ2toKT09PREVFIS0tDffddx+mT5/OXEcul+Pdd9/FypUr8c477+DkyZNoaGhAYGAgUlNT8fDDDzMDhj7+P3v3HR5F9fUB/Dvbkk2vpCckhBZK6L03BUEEBCwoTVSwgBVBELGLDf2hvCioIEhVigJKDS1A6CUJgfRCSO/JZje78/4RErMpM7vJzmw2nM/zRLK7ZyYnps2Ze++5bm5uCA8Px08//YTff/8d0dHRKCkpgbe3N0aOHImFCxeiU6dOvOfp27cvbty4gW+//RZ79uxBYmIigMoF8hMnTsSiRYvg6toyppWQxruZVoDIu9x7XfQNdIavc931Rxbpxk6goow7JnQ6IG1Wlw+Ntuv2Lt4Yc0+5YrVa5Ne6yVKHTAbHR7n39tBpdZXFBweJlEG7Ph7GpmhSeffuIvnmdc4YN78AeAQFi5QRMbVm8dsjIyMDH3zwATZs2ACNRgMAnPt2rFy5Eh988EGd53/88UfMnTtXsDwJeRANHToUQ4cONdn5xo0bh3HjmjaFQSaTYf78+Zg/f36TzuPm5oYPP/wQH374YZPOQ1qubReSeWOmdDf/nWKTYFng0q/8cd2fFTwVMeSqcnE0mXv3bHelOwb5DOKMEVrJ6dOoSOcuGuyHD4PMzY0zJikyFyX53B3bAkPdoLQ3794eN44d4o3pMmIM7e1hwcxefFy4cKF66kPNgqPmN1XtQuSFF17Ap59+Wr3AtcrmzZubRfERFxeHiIgIpKamQq1Ww9nZGR06dMCAAQNgbW1t7vQIIYQYoFRdgT1X7nLGKKUsRnVwFykjgaVdBjJucsf4DwDcW8Zu0n/F/YUKHfeMivGtx0MmMe+lUt7OnbwxTlOn8sZEneb+XgaAkEHevDFC0lZU8O7tIZXL0ZH29rBoZv2JOnr0KB599FGUlVUO8RpaxXp6emLq1KnYsmVL9TEsy+LUqVNIS0vTa/Mppj179uDDDz/E5cuX633dzs4Os2bNwooVK+DGc4dCDKWlpejatSvi4uL0np85c6Zeu1JCCHkQ/X0tHcXl3BenPdxYWMulImUksMu/8sf0nCV0FqJgWZZ3yhUDBo8GmrfNtiYzE8XHwzhjZN5esOXZi6g4rxxJN7I5Y+xdreHXwbx7ZsRfikBpQT5nTNs+A6C0M++CeNI0ZuvrmZSUhCeeeAJlZWVgGEaviKj51pD6FquyLIuDBw8KlnNDysvLMWPGDEyaNKnBwgMAiouLsWbNGoSEhFRvpmZOy5Ytq1N4EEIIqbQlgn/K1QAP7kXAFqO8CLjBs67A2hEIaRl73lzKuITEwkTOmDayNvCxM28jgYLdewCtljPGacoUMFLuAvjW2bvguKQCAIQM9AZj5o5t1w1YaN511MMiZEKEZLbiY/bs2cjJyalTdACGjYCMGjUKtra2dZ4/duyYaRPlodPpMH36dGzZskXvealUisDAQHTr1g2Ojo56r2VlZWHs2LE4e/asmKnqiYiIwLfffmu2j08IIc1Z5N0CXEvJ54zxs2XhW/fPkGW6sQvQlHDHdH0CkCu5YyzEH3d4Ci0AvRS9RMikYaxOh3y+KVcSCZymTOE5D4uo09xrRhgJg44DzLt2qSAzA4nXGr6BCwDOXj7w7dhZpIyIUMxSfJw6dQphYWF6hQcAvREQPlZWVhg+fLjesSzL4sQJ7k1pTO2LL77A3r179Z578cUXkZycjPj4eFy5cgW5ubn4888/9VoFl5aWYtq0aSjg2a1UCGq1GnPnzoXuftu++oo4Qgh5kG2LSOGNaTGjHgBweSN/TM+ZwuchgoLyAhxK5F7UbMvYooO8g0gZ1a/03DloUrnbANsNHgw5zyaoKdG5KMpVccYEdHaFrVP9bdLFcjPsMPiGZ2ihectgluJj9erV1e/XLh5YloWzs3P1c1x69uxZ57l79+4hPz/fZLlyycnJwccff6z33Keffoq1a9fC2/u/RVsSiQSTJk1CeHg4WrduXf18amoqvv76a1FyremTTz7BzZuViwp9fHzwwgsviJ4DIYQ0V5ULzdM4Y2wUUvR045nHYinSrwN3r3DH+PYGPPhbWFuCv+P/hlqn5ozpoegBGWMBC82nT+ONMWSheafB5l1ortNqcfP4Yc4YiVSGTkNHipQREZLoxYdOp8PRo0erC4uaBUbPnj1x5cqV6t2S+XTv3r3e56Ojo5ueqAFWrVqFoqL/duAcMmQIFi9e3GC8j48P1q9fr/fcN998g5ycHMFyrC0yMhKffvpp9eM1a9bA3p4WbhFCSJW/r6ejiGeh+YQuHrBqIevMDRr16NEyRj0MWWgOAD0VdW9uiqkiNxdFR7jbAMtatYLdkCGcMaWFaiRc476msnO2gn8n8+5plHD1Eopzua+Fgnv1hY2jkzgJEUGJXnxcunQJhYV1N2zy9/fHsWPHEBoaavC5/Pz86n0+ISGh0fkZSqfT4ZdfftF77v333+cdrRk5ciQGDx5c/bioqAg7duwQJMfadDod5s6dW92ieNKkSXjsscdE+diEEGIpthqw0HxqS9nRXF0KXOf5G6SwBzpPFicfgV3Pvo7Y/FjOmJ7uPeEmNW9HyoI9e4H7+541xHHyJDAy7tGZW2fTodNxj9B1GOAFiZkXmhuyo3mXkQ+JkAkRg+jFR3x8vN5jlmXBMAzefPNNo+/AV03Pqk2MdRTh4eHIysqqfhwUFIRhw4YZdGztvUj27Nljwswatnr1apw/fx4A4ODggDVr1ojycQkhxFJEpxfiSnI+Z0wXH0d08mohI8aRfwLl3Du4o8vjgKJlrA3cGcM/lWli0EQRMmkYq9Mh34Cbkk6PP85zHhaRfFOuGJh9oXlRTjbiL13gjHFw90BAl27iJEQEJ3rx0dCUKkMv3GuysbGp9/n6RlZMbf/+/XqPR48ebfAiqNGjR+s9DgsLQ0kJT5eRJoqPj8fy5curH3/66ad661IIIYQYNurxZB9/3hiLwLJAxE/8cS1kb498VT7+SfyHM8bRyhHDfYeLlFH9Ss6ehToxkTPGduBAKHx9OWOSo3NRmFXGGeMf4goHV/N2MLt+5CBYlrt5Q5cRY8BIzNaglZiY6F/JhkYl3N2N3yG2uLi43ufF6IRw9epVvccDBgww+Fhvb2+9hedqtRpRUVEmyqx+8+bNQ2lpKQCgf//+mD9/vqAfjxBCLE2ZWovdl/kXmj/arYXcuEm7DKRf5Y7xCgW8u4mRjeD2xO5BubacM2ZC0ARYSc3b9Slv61beGEN2NL95gvt7GQA6mX1Hcw2uH+WecsVIJOg8bJRIGRExiF58ODg41Pt8zYXbhoqNrX/eppOTk9HnMlbtRe0hISFGHV87XshF8uvXr6/e/0Qul+Onn36iVnWEiIBro1TS/Oy7lsa70HxiN2/YWZm3C5LJXHhwRj10rA7bY7bzxj3ejnsqk9A0d++i+NhxzhipmxvsR3CPzhRmlyGRZ0dzG0cFArqad6H5nfPhvDuaB/XoAzsX8+ZJTEv04sPFxaXe569du2b0uY4fr/8HtKG1IKZSVlaG5GT9ofmGFr83pHZ8TExMk/OqT3p6Ot56663qx2+//TY6dbLsdomS+0OvWq2WLu5Is8WyLHQ6HViWrf6eJc0Xy7LYGJ7EG/dUnwARshFBSQ5w80/uGCsHoAt/K1dLcCbtDFKLuffM6OPZB22c2oiUUf3yduwAdNxTkJymPg5GoeCMiTx1F+D589hpkDekUvP+brp66ABvTLeHHhEhEyIm0b/rPDw86n3+t99+M+o8xcXF+PXXX+u9gx8QIOwfh+zsbL2LXrlcjlatWhl1Dh8f/U4pmZmZJsmttgULFlTve9K2bVssW7ZMkI8jJsX9X7osy6K8nHsInRBzqZrmqNVqIZfLzZwN4XM5OQ9R6dzrBTv7OKCLr6NIGQnsym8AzxQkhD4JWNmJk4/ADBn1mN5+ugiZNIxVq5G/k6cNsEQC52ncBaFWo0PUGe6F5oyEQcgg83Zsy0pORNqtSM4YZy9vBHQ2vAsqsQyijx337t0bEomkzuaC+/btw44dOzCN54cKqLzofO6555CRkVGn+FAoFA3u/2Eqtdea2NjYGD2Nqfau4g2tX2mKHTt26HXSWrduHaytrU3+ceqTyrMra3p6evX7ZWVlKCvjXhRXk1wuh06nA8MwyM/PN7rwa050Ne5w6XjudhHLwbIscnNzodPpoNPpIJfLjfoeJ+L75XQ8b8zU7l7VX0eV6r8do2u+bxF0WlhdWM9791HVdQbYFvB9m1achpOpJzlj3JXu6O/eH2VlZWb72hYf/Adann2/bIYNRYWTEyo4vi6xF7OgKuZu0xvQxRlSa51Zfy9d3L+XNyZk2BioTHyT0aJ/ds1AiO8R0YsPBwcHdOnSBdeuXdPbaJBlWTz99NM4f/58g4uhVSoVjh49io8++ggRERHVx9X8t2fPnoLfZaxdKDTmgl6p1O8uYeriIycnB6+88kr149mzZ2P4cPE6eBgzDe3kyZNwczO8p7pUKoWrqysUCgWys7Oh0Whga2tr8VNbhChAibiqRuOKi4tRVlaG8vJysCyLS5cu0RTBZqxQDRy8KQXQ8E0kpZSFMjMShw7VvVN78iT3hW1z41FwFf0KUjhjsuxCEH4pAYDw+2YJ7d+yf8HyzEHqwnbBsSPH6jwv5tfW98cfUX8Pz//cDgrC1UOHOGMyz9oA4N4Bs9gqFYcO8U8zFIpWrUbiae61LYxUirsaHTJ4Pt+msLSfXXMwdONvY5hl1dykSZOq13jUHAHRarVYvXo1Vq9eXf1azREFe3v76rvDtV+rYsjISVPVrpQVPHMv62Nlpd9Nw9SV5aJFi6qncrVq1QpffvmlSc9vTlqtFsXFxbCzs6se/SgoKIBEIqGF9MRsqtZ4AJWjWOXl5dBoNCgoKKDCo5k7m8lAy3L/7ujbim0xO5oHZh/hjUlwHylCJsLTsBpcUl/ijJFAgl6KXiJlVD9FejpseNrrqt3dURoczB1TIIE6n/sbVWarhZWL1tgUTaoo4TbYCu7mDvatgyFVmLfzGBGGWYqPl156CZ9//jlUKlX1qEXNEYyaqh6zLAut9r8flpqjHVXs7Owwe/ZswfOvPdJRtWO4MWqvVTDldKiDBw9i8+bN1Y+/+eabBhf6CyUlhfuuWnp6Ovr06QMAGDJkCHx5+pXXxrIssrKy6owWWNpFHsuy1cWstbU1FU8WrmpKqVQqhVKpRHZ2NtRqNYYMGSLalEdinAqdDp+sPguAe2rH4ikD0Nr1v/vSKpWq+q6pJX19mbxEWF25wRnD2nmhy+OL0UVi+V29DiQeQGlEKWfMcN/heHzAf12uzPG1zf7oY/CNfXvOmol2D3Hv8n16exwywb2GtNdDbRAy2HwbC7Isi63H+ReaP/zsXLgFBJr841vqz6658E2jbwyz/GZxdXXFggUL8NVXX9W52Kp6XN9FZM3Ymq9XFSELFy40epf0xrCz01+A15g5g7VHOmqfs7GKiorw4osvVj9++OGH8dRTT5nk3MYwpphQKpV1pqEZIiAgACqVCvn5+SgtLdUrTi2FTvffnFs7OzuLnzr2oJNKpVAoFHBwcIBUKkVcXByAysKyMd/jRHgHb6Qjo4i78Bjazh0dfRtu9WlRX99TW8DXBonpPQdK25axg/uf8TwdvQA83enpBr9+YnxttUVFKDl4kDOGUSrhNnUqpBy5qEo0iL/EPUVGZiVFl8H+UCjNV1gm37yG/HTuPUi82nWAXwfjtjBoDIv62TUTIf7/mO2775NPPsGxY8dw9epVvdEPPjVjaq4Z6dmzJ1asWCFYvjXVLhRKS0sbnAbWkNo7mpuq+HjnnXeq2wDb2Nhg7dq1Jjlvc2VtbQ1PT09zp9FoZWVluHXrFgCgZ8+e9EuwBaEF5pZh49lE3phn+7eQ9rrqUuDKZu4YiQzoMVOcfAQWmR2J69nXOWOCnYLRy8O8U64Kdu8GW8o9OuM4fjykDeyTVuXW2XRUaLgbl7Tv62nWwgMArvzzN29M9zHUXrclM9ttVrlcjp07d8LPz6/6wp3v4r2+woNlWfj5+WH79u2QSsWZkOvm5qaXq0ajMbpVblqaftVvio5NCQkJesXGypUr9XZSJ4QQ8p/bGUU4F5/LGePrrMSw9pbbUU/P9e1AWR53TMdHAfv6W+Jbms3RPIUWKtvrmnO6K6vVInfzFt4456ee5Hxdp2Nx/Tj/9JguQ83bXrcg8x7iLp7njFE6OKJtv0EiZUTMwaxzPIKCgnDu3Dn07NlTb+G5IW9AZeERGhqKs2fPIjDQ9PMCG6JUKuHv76/3XO1NB/nUju/QoUOT86q9sPWtt94y6P/lypUr9c6zceNGvdfF2DGeEELE9ttZ/m4/z/QLgFTSAtZisSxwzoCR8D7zhM9FBJmlmfgn8R/OGBuZDcYHjRcpo/oVnzgBDc/1g7J7d1h37MgZk3gtG0U53FPAvYId4epj3n1brvzzN1iWe3Smy4gxkNHeSC2a2SeYe3p6Ijw8HN999x08PDyqp1/VNwWr5mtubm5YvXo1IiIi4OUl/sKp2sVCVFSUUcdHR0dzno8QQohwCso0+OMy951iK5kE03oZ3ja8WYs7BmTHcMe06gT49xcnH4Ftj9mOCh13N6UJbSbATmHei/HcXzfyxjgbsG7z6lH+G6BdhhnX2MXU1GWluHGMu20uw0gQOmqsSBkRczF78QFUTsF6+eWXER8fj7/++gsvv/wyevXqBT8/P1hbW8Pa2hp+fn7o1asXFixYgH379iExMRGvvvqq2XYO7tatm97j8PBwg49NT09HYo2WenK5HCEhwi+sIoQQUmn7hWSUqrmbVDwa6g1nW+NbqTdLhox69HsRaAEd91QVKuyM2ckb91RH8Zux1KSKjkZpRARnjMzdHQ4PjeGMyUwqRHpsAWeMrZMVgrq7G52jKd0MOwp1GffaluA+/eDg3kKmOZIGNas+etbW1njkkUfwyCPNf6HR+PHj8fnnn1c/PnLkiMGLzg/V2jBn+PDhJllwHhwcjMOHDxt93KZNm/Dbb79VPx4zZgzeeuut6sfmKvAIIUQIFVodNobzT7l6tn9r4ZMRQ9ZtIJbnb4ONK9Blqjj5CGx//H7klXOvbRnkMwhBjkEiZVS/3E2/8cY4P/0UGJ69xK4fM2CtxzAfSKXmu9+s02lx5eA+3rge4yaKkA0xt2ZVfFiSAQMGwM3NrXrnx/j4eISFhRm0i/iGDRv0Hk+caJofNjs7O4waNcro406fPq332MvLq1HnIYQQS/BP5D2k5XN3I+vu74Quvo4iZSSw8waMevSaA8gtv9sey7IGLTR/JuQZEbJpWEV2Ngr/5u76xFhZwWn6dM6YkoJy3LmYwRkjk0vQabB5F5rHX76I/Ix0zhiPoLbwaU+zQB4EzWLalSWSSCSYNWuW3nMrV67kbRd89OhRnDp1qvqxvb29KLuyE0IIqbThdAJvzNxB4jUxEVRpLnB1K3eMRA70fk6cfAR2Lv0cYvNjOWPaOLZBfy/zrm3J27oNrEbDGeP46KOQOTtzxtw8kQadlvu6o31/L1jbmncGw+UDe3ljeo57lDbafUBQ8dEEixcv1psudeLECb2pWLWlpaXhuef0f8EvXLgQbm5unB+ndneqsLCwJuVNCCEPqsvJebiSnM8Z4+OkxMOdLHf/ID2XNwIVPHvOdJ4C2LeMz9eQUY8ZITPMepGrKy9H3rZtvHEuz3KPzlSotbh5knuzPgDoOty8C80zE+OREsm934qtswva9af2ug8KKj6awM3NDUuXLtV7bsmSJViwYAHu3r1b/ZxOp8OePXswYMAAvYXm3t7eeOONN8RKlxBCHniGjHrMHBAAmRnnx5uMVgNE/MQf1+9F4XMRQWJBIk6mnuSMcbJyMnt73cL9B6DNyeGMsR0wAFZt23LG3L6QAVUx9+iJfycXuHjZGp2jKV02YK1HtzGPQCqj9aUPimaz5iMuLg4XLlxATEwM8vPzUVRUBJ2Ouxd0fRiGqbOmQkiLFy9GeHg4/q4xd3Pt2rX48ccfERAQAEdHRyQkJCA/P1/vOKVSiR07dtAeGoQQIpLUvFIcvME979xWIcX03v6cMRYjeh9QyHNn3H8A4N1dnHwEtiWaf7O+qe2mwlpmLUI29WNZFrmbNvHGucx8lvc8146m8J4ndIR5W0WXFuTj1ukwzhiZXIGuox4WJyHSLJi9+Ni4cSO+++47XL16tcnnquo2JWbxIZFIsHPnTsyePRvbagyjarVaxMfH13uMq6srdu3ahYEDB4qVJiGEPPA2hidCxz09HlN7+cFR2QLuwLIscPYH/rh+84XPRQQF5QXYG8e9rkDGyDC9PfcCbqGVno9A+a1bnDGKwEDYDh7MGZN6Kw+5d0s4Y5w9beAX4mJ0jqZ09dABaCu491vpOHgYbBxaSHMHYhCzjSsXFBRg9OjRmDNnDq5evaq3gWBj38zF2toaW7duxa5du+rs/1GTra0tFixYgKioKAwbNky0/Agh5EFXXF6BbRHcd4oZBpg9sLU4CQkt+SyQdpE7xskf6ND8W9sbYnvMdpTxrG15KPAheNh6iJRR/XIMuDnq8uwzYCTcl2dXDvG3ig4d6WfWtS2achWu/svd0Qug9roPIrOMfKjVaowfPx5nzpypfs4UPyDmLEAAYMqUKZgyZQpiY2Nx/vx5pKWlQa1Ww8nJCR07dsTAgQNhbW38cK/Qn9f777+P999/X9CPQQgh5rTzYgqKyrnvwI7u6IEAV/POjzeZM9/yx/R5AZBIhc9FYKoKlUFTrp7paN72uqqYGJTU6HZZH4mDAxx52u9nJRchJZp7HxMrWxna9TVvE4GbYUdQVlTIGRPQtTvc/AJEyog0F2YpPv73v//hzJkzegVHUy+wm1N7tuDgYAQHB5s7DUIIIajcVPCXM4m8cS2mvW5GFHD7H+4YhR3Qw7wX46ayL24fclW5nDHd3Luhk1snkTKqnyGjHk5TH4fExoYz5srhZN7zdBrkA7nCfIWlTqvFpb9388b1GPuoCNmQ5kb04oNlWaxataq6WDD3aAUhhJCW7eDNe0jOLeWM6ezjgD6B5p0fbzLh/+OP6TETsLb8efZanRYbIzfyxs3qPEv4ZDho0tJQuP8Ad5BcDpdnuAvCwuwyxF7K5IyRyBizt9e9ff4MCjK5Nz909fVHYLeeImVEmhPRi49Lly4hKysLDMPUKTya0+gFIYQQy8eyLP7vRBxv3NxBgS3jb1BBGnBjB3eMRNZiFpofTT6K5CLukYDWDq0x3G+4SBnVL2fjRkCr5YxxHD8eck/uqVJXj6SA5ema0L6vJ2ydrIzO0VRYlsWFvX/wxvWaMJl3bQtpmUQvPm7evFnv8/UVI4QQQkhTnLqTjci73PPOPRys8EgXb5EyEti5HwAd99oWdH4ccDJvC1ZTYFkWv9z8hTduVqdZkDDmu8ityMtD/s5dvHGuc2Zzvl5WrEb0mbucMQDQfbR5W0Un37iGzETugt/O2QUdBw0VKSPS3IhefGRlZek9rio6WJbFoEGDMHPmTHTp0gUuLi6Qy1tAu0NCCCFmY8iox5yBgVDIWsAd2LJ84NKv/HEDXxU6E1FczLiImzn139Cs4qZ0w/g25t1UMH/bNrBl3J247IYN491U8EZYGio03PufBYa6wdnTvE0TLvzFP+rR45HHaFPBB5hZ1nxUqSo8GIbBU089hd9++03sdAghhLRQ11LyER7HvZO0vbUMT/VtIZsKXtwAqIu5Y4JHAx7mXXhtKhtu8i/gntFxBqyk5puCpFOpkPvbZt4413nPcb6uKdfixvFU3vP0eMi8naMy4mORdP0KZ4yVjS26jqRNBR9kot/q8fev/5f8G2+8IXImhBBCWjJDRj2e6RcAe+sWcAdWowLO/R9/3KBFgqcihpjcGJxJO8MZYyu3xdT2U0XKqH4Fu3dDm8vdiUvZrRuUPXpwxkSHp0NVouGM8Qp2hGeQeZsIXPjrT96Y0NFjYcXT0Yu0bKIXHw3t6u3hYd6NfwghhLQc8VnF+CfyHmeMQibB7IEtpL3utd+BEu4uSPDpCQTU/zfY0vx882femKntpsJB4SBCNvVjKyqQ8zP/mhTX5+ZyNjvQanW4eoS/vW73MeYd9ci/l47bZ09zxkhlMnSn9roPPNGLDz8/PwwdOrTO4vLY2FixUyGEENJC/XQqHnw9TB7v6Qt3e/NNyTEZrQY4/Q1/3MCFldu4W7ikwiT8k8i9j4lMIsOMjjNEyqh+hfv3Q5OSwhmjCAyE3YgRnDG3z2egKEfFGePsZYvWnV2NztGUIvbuBMtyr0kJGTICds4tpKU1aTSzrLD76KOP6lT5a9asMUcqhBBCWpjMQhX+uJTGGSNhgOcHB4mUkcCu7wDyee6MuwQBHcy78NpU1t9YDx3PRe74oPHwsDXfjApWq0X2/63jjXOdO4ez3axOx+LSP4m85+k+2h+MxHyFZWF2JiJPHOMOYhj0mjBZnIRIs2aW4mPgwIFYsmRJ9WJzlmWxa9cuLF26FFqePtiEEEIIl/WnE6DWcl+cju3ihdZu5u0KZBI6LXDqK/64Aa8AEvPteG0qacVp+Dvub964WZ1mCZ8Mh6J//4U6IYEzRuruBodHuacgxV7MQEEmd6csW0cF2vUx79T1iL1/QKflbvEc3KsvXLzNu/khaR7M1lvwo48+wgsvvKBXgHz++efo0KEDPvnkE4SHhyMrKwsaDfcCK0IIIaRKTnE5fjubxBs3f2gbEbIRQeRuIJdnYb29FxD6lDj5CGzDjQ2oYLkvckf6j0QbJ/N9fVmdDtlr+Rf/u86eA4lCwXEeFhcP8n8vdx8TAKkZW0UX5+bg5vFDvHF9J00XIRtiCURvtVvT2rVr0blzZyxatAg6nQ4syyIuLg7Lly9v9DkZhkFFBc8GS4QQQlqk9acTUKbhHkEfFOyGzj7m7QpkEjodcPJL/rgBrwJya+HzEdi9knvYE7uHN+75rs8LnwyHoqNHUX7nDmeM1NkZzk9wX4zHXclCXnoJZ4zSXo6QwebdIPPCX39Cy3OjuHW3nvBsw72PCXlwmLX4SE1Nxb///gutVguGYarXgdBO54QQQoyVV6LGpvBE3rj5w1rIqMetv4CsaO4YW3eg5yxR0hHar5G/QqPjvsgd4jsEIa4hImVUF8uyyDFg1MNl1ixIONrNsiyLiwcTec/TbZQ/5ArzTacrLcjH9SPci/8BoN/kJ0TIhlgKsxUf169fx9ChQ1FYWFg97QqAXhFiLCpaCCHkwfXzmQSUqLlHPXr4O2FAG/N2BTIJlgVOfsEf1/9lQGH5eypkl2Vj1+1dvHHmHvUoOXkSqqgozhiJgwOcn+aeBpd4Iwc5qdwbRlrZytB5qI/ROZrSxf17UKEu54zx79wVPu07ipQRsQRmKT7S09PxyCOPoKCgAAD0io3GFhCNLVgIIYRYvoJSDX49k8gb9+rIti3j78Xtf4F7N7hjlM5A77ni5COwjZEbUa7lvsjt59UPoe6hImVUF8uyyP5hLW+cyzPPQGpnx3mei/u5F6sDQOgIPyiszTeBpayoEFf/3c8b13cSjXoQfWb5rn3nnXeQlpZG06wIIYSYxC/hCSgq517vF+rriKHt3EXKSEAsC5xcxR/XbwFgZS98PgLLU+Vhe8x23rgXur4gQjYNKz17FmXXrnHGSGxt4fLsM5wxKVG5yEwq4oxRWEvRdbh5O0ddPrgPGhV3Jy7v9iHw69RFpIyIpRC9+MjNzcW2bds4C48WcVeKEEKIKApVGvx8mv9OcYsZ9Yg9CqRd4o6xcgD6mHcKkqlsjNyIsgrui9yeHj3Ry7OXSBnVxbIssr7/gTfO+emnIXVsuNkBy7K4YMCoR9cRfrCykRuVoymVFRfhysG/eOP6T57eMn7miEmJXnycOnUKGo1Gb50HQAUHIYSQxtkUnohCFfeoRydvB4zo0EqkjATEssCxD/nj+jwPKJ0ET0do2WXZ+P3W77xx5h71KDl9BmWXuAtCRqmEy6yZnDFJN3NwL76QM0ZuJUXoCD+jczSlS3/vRnkpdycuzzZtERDaQ6SMiCURvfiIi2u4H3nNRedOTk6wtraGgqMHNiGEkAdbcXkF1j9Iox639gPpV7lj5LaVU65agA03NvCOenR174p+Xv1EyqgulmWR9e23vHHOTzwBmYsL53nO74vnPU/noT6wtjPfqEdpQT4uH9jHG9dvyhMt42eOmJzoxUfNHcxrTr2ytrbGe++9h0cffRTt2rWDVGr5O7ESQggR1i+nE5Bfyt1+tYOnPUZ3NO8O0Cah0wHHP+GP6z0XsLX8jl73Su5hR8wO3rgXur5g1ovc4mPHoLp5kzOGsbKCy+xZnDHxV7OQncLd4Uoml6DbKH9jUzSpiL27oClXcca4BwQiqEcfkTIilkb04sPXV3+BVNUO519++SXmz58vdjqEEEIsVEGpBj+e4r9T/OrItpBIWsAd2KjdQGYkd4zcFhi4UJx8BPbT9Z+g1qk5Y7q6dcVgn8EiZVQXq9Mh67v/8cY5P/kk5K0anvan07GI+It/BK/LMF/YOJhvRkhRbjauHTrAGzdg2gwa9SANkoj9ATt2rL/X87hx40TOhBBCiCVbdzIORTxrPdq2ssPDnTxFykhA2grg+Kf8cf1eBGzdhM9HYKlFqfjzzp+8cS91f8msF7lF//6L8pgYzhjGxgau857jjIm9lIHcu9xrKORWUnR/yLyjHud370SFhrsg9GzTFm160qgHaZjoxUe3bt0QElJ391Fqt0sIIcRQmUUq/GLAvh6vtJRRjxs7gZw73DFWjsCAV8TJR2Drrq9DBctdWPb06In+Xv1FyqguVqtF1v/W8Ma5zJgBmWvD0+B0Wp1Box6hI/2gtDPfqEdhViZuHP2XN24gjXoQHqIXHwDw+uuv1yk2zp49a45UCCGEWKAfjsehTMO9m3kHT3uM7+IlUkYC0mqAMANGPfq/VLmxoIVLLEjEvjj+Bc0vd3vZrBe5hX//DXU897Q/iZ0dXOfM5oyJOZ+BgkzuRfVWNjJ0G2XeDldn/9gGnZa7IPTpEEIdrggvsxQfc+bMwSOPPFK93oNlWbz33nsoLORuL0cIIYSk5Zfh9/PJvHGvj27XMkY9rvwG5CdxxyidgX4tY93kD1d/gI7Vccb09+pv3n091GpkrfmeN85l1ixInZwafF2r0Rm0r0e3Uebd1yP3bhoiTxzhjaNRD2IIsxQfALB582YMHDiwugCJj49Hnz59cPz4cXOlRAghxAJ8d+QO1Frui9NQPyeMDmkBHa7UJUDYZ/xxAxcC1g7C5yOwyOxIHEw8yBv3cveXRcimYXnbd0CTksIZI3V0hMvMZzljbp5MQ1EOd+coa1s5upp5X4/T2zaC1XH/zPl3DoVfp64iZUQsmejdrgBg06ZNAIAZM2YgJiYGOTk5AIDbt29j1KhRCAoKwrBhw9C+fXs4OjrCysrKqPM/+yz3DzshhBDLlJBdgl2XU3nj3hzTrmXcgT37PVCcwR1j694idjNnWRbfXPqGN26Y7zB0dTffRa62uBjZP/DvZu7y3FxI7e0bfL28VIMLB/hHPXo8FACFtVku1wAAd2/fwp3z4bxxA6fPECEb0hKY5bt51qxZen8UqkY/qt6Pi4tDPM88Si5UfBBCSMv05aEYaHXcDUr6BrpgULDld3xCcRZwhn/zOgx6HVDYCp+PwM7cPYPz987zxr3U/SURsmlYzvr10OblccZIXV3h8vTTnDGX/01GeQn3GgobBwU6D/MxOkdTYVkWJ7f8zBsX2L0XvNvV382UkNrMV0pDv8NVzQKk9mvGaBF3ugghhNRxJTkP+6+n88a99VD7lvG34OQqQM296RwcfIBe3AuaLYFWpzVo1GNMwBh0cOkgQkb102RkIvfXjbxxbi+8AImNTYOvF+epcO0Y97QtAOg1rjXkCvNtuhx3KQJpt6J44wZOf0aEbEhLYdbio+ZoR81/GYZp1B8OatdLCCEtE8uy+ORANG/c8Pbu6NXaRYSMBJYTB1zkv+OM4e8CcqXw+Qhsf8J+3M67zRkjY2RY2MO8Gyhmr1kDVsW9RkPu5wfnJ6ZzxkT8lQCthnsNhaO7EiGDvY3O0VR0Wi1O/f4rb1zHQcPgEdhG+IRIi9FsRj4MeZ5Li7jLRQghpF6HojJwIZF7qgsAvDGmvQjZiODYh4COe0oOWnUCQp8QJx8BlWvLseYK/34ZU9tPhb+D+TbZK4+LQ/4ff/DGuS9aCEbR8H4cOWnFuHWWfwSv32NtIJWarS8QboYdQW4az6J6mYxGPYjRzPddTQghhBhAo9Xh84O3eOPGd/VCZx9HETISWNolIHI3f9zolYDEfFNyTGVr9Fakl3BfjNvIbPBC1xdEyqh+mV99DfB0fLLu1AkOY8dyxpzdEwe+e6ytWjugTQ93Y1M0GU25Cmd3buGN6/bQI3Bs1QK6yhFRNYtpV4QQQkhDtkUkIz67hDNGLmXw9kPmWwtgMiwLHF7BH9d6MBA8Svh8BFZQXoCfbvzEGze782y4KhveJVxopRcvovjYMd64Vm+9CUbS8H3dtNt5SLqRw3ueAZPbmPUa6fKBfSjOy+WMsbKxRd9J3NPLCKmP2YoPWp9BCCGET5FKg9VH7vDGPdu/NfxdG17gazFu7QcST/HHjf4AaAE38NZeW4tCNfcGw25KNzwbYr4ulqxOh4xP+fdasR08GLb9+jX4uk7H4vRO/u/lgC6u8Glnvp3qi/NycX7PTt643hMfh9Le8veWIeIzS/GxYoUBd3UIIYQ88NadiEdOiZozxsFahldGBIuUkYAqyoFD7/LHdZoM+PQQPh+BxeXHYdutbbxx80Pnw0ZuvsKyYPceqCIjuYMYBq3efIMz5FZ4OrJTuLuXMQzQ/zHzLt4+vXUTNKoyzhg7F1f0GPeoSBmRloaKD0IIIc1SekEZ1p/m3/Pp5RHBcLJpeIGvxTj3A5CXyB0jkQMjl4uSjpBYlsWqC6ugZbWcca0dWmNy28kiZVWXrrgYmd/wtwB2nDgR1u0bbnZQXlaBc3vjeM/Tob8XXH3sjMrRlO7F3kbkiSO8cQOnzYBcYdwG0IRUoQXnhBBCmqVPD9yCiqcdqY+TEs/2by1OQkIqugec/JI/rtccwCVI+HwEdjL1JMLv8u+avajHIsgk5luemr/hZ2izszljGIUC7q++whlz8UAiyoo0nDFSuQR9JgQanaOpsCyLYxt/5I1z9fVHyNARImREWioqPgghhDQ7FxJzse/aXd64tx9uD2u55Xd8wtEP+TcUtHYChr0jSjpC0mg1+OLiF7xxvTx6YYS/+S5y5Tk5KNzC3/HJZc5syL0b3o8jP6MU1w3YULD7GH/YOVsblaMp3TpzAum3+bvKDZs5D5IW0GWNmA8VH4QQQpoVrY7F+/t45tgD6OLjiAldzbcJm8mkXQaubuaPG74UsLH8DRR/v/U7kgqTOGMkjASL+yw2a8cn9/37AQ33aIWsVSu4zZvHGXPmj1jotNxNduycrdBjTIDROZqKRqXCyS2/8Ma16dUXrbt2FyEj0pJR8UEIIaRZ2XExBZF3uTsgAcCScR0gkVh4xyeWBf4xYDTDrX3llCsLl1OWg/+79n+8cZPbTkYHF/O1TlbGxsIuMoo3rtUbr0Nia9vg68lROUi8zj1tCwD6T2oDuZX5RhMi9v2B4lzuFsASqQxDZ1j+9yAxPyo+CCGENBsFZRp88W8Mb9zYzp4Y0MZNhIwEdvMPIOU8f9zDnwBSufD5COx/V/6HYg339DJ7uT1e6c69hkJIbEUFWv31F2+cdWhXOEyY0ODrWq0Op3fG8p7HM8gRbXubb6O+wqxMXNzHv3N7j3GPwtnLR4SMSEtHxQchhJBm49sjd5DL01rXSibB0nEdRcpIQOVFwCEDOle1G9siNhS8mX0Tf975kzfuxdAX4WJtvullRTt2wupeBm+c59KlnBsK3jieirx07s0xAWDw9LZmnV4Wtmk9KjTcP3M2jk7oN/kJkTIiLZ1JW0hIpXWHDBmGQUVFBW+cqdT38QghhDR/tzOKsPFsIm/cC0OC4OfSAjYUDPsMKOJZVC+RAw99LE4+AtLqtPjw3Idgwb32obVDazzZ4UmRsqpLk5GJvB9+4I1znPgolKGhDb5enKdCxF8JvOfp0N8TrQLMt1Ff/JULuBPB33Vs0BPPwsqmBfzMkWbBpMWHobuW0+7mhBBCatLpWLy7+wa0Ou6/D96O1pg/rAVsKHjvJnBuLX9cvxcBV/NuOmcKO27vQFQO/xqKt3q/BbkZp5dlfv452BLu0QrGxgbur7/OGXN6Zyw05dx7mMitpOhnxg0FNepyHPuZf/1Nq8A26DRspAgZkQeFyZtn1xw65CoyhBhipKKGEEIs067LqbiQmMcbt2RcRygVFt7mU6cD9r8O8GywB1t3YMhb4uQkoOyybHx3+TveuEE+gzDEd4gIGdWv+MwZFB44wBvn9vzzkHs0vEYjOTIHcZczec/Ta1xr2Dqab6O+iN07UJDJP71s+KznqbUuMSlBdu5hWdag4sKUxYI550sSQghpvNwSNT49EM0b1yfQBeO7eomQkcCubjZskfnIFYC1o/D5COyLC1/wLjKXSWR4q7f5Ci1deTkyPviQN07u5weX2bMafL1CrcWJbbd5z+PorkToCD9jUjSp3LupiNjLv8i8w8Ch8O3QSYSMyIOEFpwTQggxq88ORiOvlHs/BQkDrJgQYvk3mkpygMPv8cf59QW6PS18PgI7l34OBxL4RxNmd5qNIEfz7dyes3491Ence48AgOfyZZBYNTxacenfJBRmlfGeZ8iT7SCVm+cSjGVZHN3wA3Ra7vWxCqUNhj4zV6SsyINEkJEPQ/84WPwfEUIIIU0SkZCLHRdTeeNmDmiNTt6WPwqAIyuAMp7pZYwUeORrgKOTkiVQa9X4+Bz/YnkfOx/M68q9UZ+Q1MnJyFn3I2+c/ZgxsBvS8LSw/IxSXP6Xv4AJ7tkK/iGuRuVoSrfCTyL55nXeuIHTn4Gds+VvakmaH8GmXZkyjhBCSMujrtBh2Z4bvHEeDlZ4fXQ7ETISWMIp4Mpv/HH95gOenYXPR2Drb6xHYmEib9zSvkuhlCmFT6geLMvi3vvvg1Vzt5qV2NjAY+kSzvOE/X4Lugru6xq5tRSDprZtVK6mUFZUiLCNP/HGtQpsg24PjRMhI/IgMmnxMWTIEINGMwyNI4QQ0nL9dCoetzO41wIAwIoJnWBvbeEb7KlLgb9e5Y+z9waGGbDjeTN3O+82frrBf5E70n+kWReZF/z5J0rCz/LGub3yCuSeng2+HnX6LtJi8nnP03dCEGydzLfIPGzTepQW5HMHMQxGPbeAFpkTwZi0+AgLCzNpnKWKi4tDREQEUlNToVar4ezsjA4dOmDAgAGwtrYWPR+NRoOYmBhERkYiIyMDRUVFsLOzg6urK7p27YrOnTtDYuHD+4QQyxKbWYRvj97hjRvW3h1jOzd80Wcxwj4FcuP548Z+BljZC5+PgLQ6LVacWYEKHfeaAqVMiXf6mK/Q0mRkIuOzz3njrNq3h8szMxp8vTivHOF/8O9k7uZnhy7DzLdDeMLVS4g6eYw3LnTUw/AKbi9CRuRBJci0qwfVnj178OGHH+Ly5cv1vm5nZ4dZs2ZhxYoVcHNzEzSXhIQE7Nq1C4cPH8bp06dRVtbwAjhHR0fMmDEDCxcuRNu25hsOJoQ8GLQ6Fm/vug51hY4zzkomwQePdrb8kfK0y8DZNfxxwaOAjo8Kn4/ANkdvxs2cm7xxC0IXwNPWPIUly7K49+EH0BUV8cZ6rlgBRlb/5RLLsjixNQZqFU/bZAYY+lR7SKTmudGnLivF4Z/4vwdtHJ0w6ImZImREHmR0u9sEysvLMWPGDEyaNKnBwgMAiouLsWbNGoSEhODkyZOC5dKvXz8EBQXh7bffxuHDhzkLDwAoKCjA999/j86dO+PLL7+ktTiEEEH9Gp6Iy8n5vHGvjAiGv6uF76pcoQb2vgyw3IUWZEpg3BeAhRdayYXJWHOF/yK3rXNbPB1ivm5eRf/+i+IjR3nj7CZPgk2P7g2+HnsxE4nXs3nP02mwDzwDzdcw4dTWTSjKzuKNG/rMXFjb2YmQEXmQUfHRRDqdDtOnT8eWLVv0npdKpQgMDES3bt3g6Kj/CycrKwtjx47F2bP880yNpdFocP58/f3jra2tERgYiN69eyMkJAQKhULvdbVajbfeegsvv/yyyfMihBAASMopwRf/3uKNa+Nui3lDzNd61WTOrAYyI/njRrwLuFj258uyLN4/+z5UWhVnnISR4MMBH0IuMc86noq8PNz78CP+OAcHOC9a1ODrZcVqnNzOv6eHnbMVBkwy307mqbcicfXfv3njArv1RMdBw4RPiDzwqPhooi+++AJ79+7Ve+7FF19EcnIy4uPjceXKFeTm5uLPP/+Ev79/dUxpaSmmTZuGgoICQfMLDAzE+++/jzNnzqCwsBDx8fGIiIhAZGQk8vPz8dtvvyEgIEDvmB9++AFr1hgwRYAQQoyg07FY/Md1qDTcowAMA3w+pSusZBa+4DXzFnBiFX+cdw+g73zh8xHYrju7cOHeBd64mSEz0cnNfBvXZX72GbQ5ObxxGZMeg9S+4fU3p7bfgaqYe38aoHK6lUJpnlnuFWo1Dv0f/+7ycmslRs17yfKnOBKLQMVHE+Tk5ODjj/V7mH/66adYu3YtvL29q5+TSCSYNGkSwsPD0bp16+rnU1NT8fXXXwuS28CBA/Hvv/8iLi4OK1aswIABAyCX699lUiqVmDFjBq5cuYLevXvrvbZ8+XLk5uYKkhsh5MH0e0QyzsXz/16ZNaA1erW28P0FtBpg9wuAjufiVCIDJq4BpJa9BDO1KBVfXviSN87f3h/zu5mv0Co6ehQFe/fxxhV27YqSkJAGX4+7kok7FzJ4z9O2twdadxF2jSeX09s2IS89jTduyFOz4ODWSoSMCKHio0lWrVqFohqL1YYMGYLFixc3GO/j44P169frPffNN98gx4A7MIZSKBT4+++/cfr0aYwZM8aguxjOzs7Ys2cPbG1tq5/Lz8/HH3/8YbK8CCEPtpTcUnx6IJo3zs9FibceagGddk5+AaRf5Y8b/AbgYb5RAFPQ6rR49/S7KK0o5Y19f8D7ZtvToyInB+nL+XeXlzg6Imtiwwv/SwrKEbY5hvc81nZyDJ5mviYuyTev49KBvbxxPh06IXT0WBEyIqSSSW+1jBgxwpSnaxSGYXD0KP8isqbS6XT45Zdf9J57//33eS/2R44cicGDB+PUqVMAgKKiIuzYsQPz55vmTpBCocAjjzxi9HHe3t6YOXMmfvjhh+rn/v33X8ybZ75dZwkhLYNWx+L1HVdRoubpCATg88ldYaOw7FEApF4ETvKPAsC9Q2XxYeE2Rm3E5cyGm61UmdpuKnp79uaNEwLLskhf/h60Bozou7z1JrTy+tejsCyL45tvQVXCP91q8PS2UNoreOOEUF5agn9++AbgaSAjlcsx5oVXwVC7fSIik+/zYc75gizLivbxw8PDkZX1X+eIoKAgDBs2zKBj586dW118AJUtek1VfDTF4MGD9YqP5ORkM2ZDCGkp1p2Mw4XEPN64p/r6Y0Cw+aaomIS6BPjzeYDlK7QY4NE1gMx8G86ZQkxujEHdrVrZtMJrPV8TIaP6FfzxB4qP8e9xYTtkMGzHjQMOH6739ajTd5F0g3+2Qusurmjby8PoPE3l2C/rUJTD391qwNSn4eJtvr1HyINJkNtL5mjVKnbRs3//fr3Ho0ePNjiH0aNH6z0OCwtDSUmJ3rQnc3B2dtZ7LPRieEJIy3czrQDfHObvCOTlaI0lYzuIkJHADr8H5Mbxx/VbAPiZZxTAVNRaNZacXgIN37oWACv6r4C9wjybJ6pTUpDxyae8cRJbW3i9/z4qGvhbXpBVitO7+DcTVChlGPpUe7PdjL19/oxBmwl6BAWj1/hJImREiD5BxtkYhhH9TWxXr17VezxgwACDj/X29tZbeK5WqxEVFWWizBovLU1/UZqrq6uZMiGEtAQqjRavbb8KjZb/htQnk7vA3to8rVdN5s4R4MJ6/ji39sDI5cLnI7A1V9bgTh7/LvVT2k7BEN8hImRUF6vV4u47S6Ar5V+P4rFsGeQ1msXUpNOxOPJLNCrK+acODnmiHeycrY3O1RSK83Jx+KfveeNkcgXGvvQGJFIL7yhHLJIgxQfLsqK/iS06Wn/hZAhHV4z61I6vfT5zqDkVDADatWtnpkwIIS3Bqn9icCezmDfuyT5+GN7ewjvtlOYCe1/ij5PIgMk/AnLzLLo2lYv3LuLXyF9543ztfPFW77eET6gBub/8grJLl3jj7EePhuNjExt8/cqhJNyL558N0KZHK7TrY57pVizL4tC676AqKuSNHfz0LLj6+omQFSF10QqjRigrK6uzHsLPz7gf4trxMTH8nTOEVFhYiF27duk9N27cODNlQwixdMduZeDnMwm8cQGuNlj2iHE3b5odlq0sPIrv8ccOewfw7iZ4SkLKV+XjnVPvgAX3jT8JI8Engz+Brdw8U4rLrl9H5upveeOkbm7w/GBlg7Mo7sUXIGIf//eyjaMCw8w43erKwX1IuHKRN86/cyi6PzRehIwIqZ8gaz6M/cGrOXJh6LGNOcZUsrOz9T6+XC5Hq1bG3bXz8dFf4JWZmWmS3Brro48+QnHxf3co3dzcMH48/XIihBgvvaAMb+y4xhsnYYCvp3WDrZVld7eSXloPxBzgD/TtDQw036JrU2BZFsvDlyOjlH+Pi9mdZqN7q+4iZFWXtqgIaa+/AVRU8MZ6ffQhZLXWPFYpL63AofWR0On4Z1iMeKYjrO3MM3UwIz4WJzb/whtnZWOLh+Yvou5WxKxM/hu/KVOgqooIvnNUrfOoihN72lXNi3QAsLGxMboAqr24vPY5xRQeHl5ns8Nly5bBxsam0edMTU3lfD09Pb36/bKyMpSVlTX6Y1kylUpV7/vE8j2oX9sKnQ6v/H4VeaX8i5CfH9QaIa2sLfLnv+pr6liaAPm1j3jjWbkS5eO+A6vWAOD/f9Ncbbu9DWEpYbxxbZ3aYk77OWb52rIsi6yl70LD83cIAOymTIasb1+9PKu+tiwLnPz9Nopy+X9+Owz0QKs2Nmb5fNVlpdj3zafQafkLrcHPzIXc1s4if+ZM5UH93dxYQnyvmLT4SEjgH5asKTs7G08//TRu375dXUzY2Nhg8uTJGD16NDp06ABHR0cAlZve3bp1C4cPH8bu3btRWlpafUybNm2wZcsWeHiIM8+ydqFgbW38wjKlUn++r7mKj8zMTDzxxBPQav9bRNe7d2+8/PLLTTqvMdPQTp48CTc3C2+vaQInT540dwpEIA/S1/ZAigQXU/nvqvrZsminjsWhQ/zdg5ormbYMvRK+B2NAt6drntORdOEOAP4F2s1VWkUafiz+kTdOCike1j6M40ePi5BVXY7nzsOjgVa5NaldXXElNBTsoUP1vl6SLEd+FP86D5mNDoU25vleZlkWGeHHUZzJPxJl5x+EhMJSJDbw+T6IHqTfzY2VnZ1t8nOatPgICAgwODYnJwcTJkzAnTv//SIePnw4fvvtN3g30G2iT58+ePbZZ5Gamopnn322el+R+Ph4zJw5EydOnDB6+lNj1K6UFQrjNxGystLv7W6OuxDl5eWYNGkSUlJSqp+zt7fH77//Dil1wCCEGOl2AYNDqfyjwHIJi2faaiG15JkfLIvQlF9gp+afMnvPIRRJrsNFSEo4KlaF7aXboQV/t6cx1mPgITXPomtFejrc//qLN45lGNybNg2sVf37rKgLJciPNmAPFoaFc9cySMw0c7AoPgbFSfytnaVKG7j3HmjWvdgIqWK2ibbTp0/HzZs3qx937NgRBw8eNOhC3tfXF//88w969OiB6OhosCyLmJgYTJkyBSdPnhT8h6v2SIdarTb6HOXl5ZznFJpOp8OMGTMQHh5e/ZxUKsWWLVsQHBzc5PPXLGjqk56ejj59+gAAhgwZAl9f3yZ/TEukUqmq77wMGTJE9O8DIpwH7WubVVyOD9ddAAv+34fvPdIRj/eo/yaTpdBd/AW2V8/xxrF2nnCcuQVjbCx3dJdlWSw7twy5Bfy7gw/wHIAVg1dAwohfWepKSnB3xjOoMGCdh/P8+Qic91y9rxXml2DPF1cBlv9aoue4AISOMs8mfTkpSfhj10beOIZhMP7Vt+HTsZMIWTV/D9rv5qbim0bfGGYpPn799VccO3asetoUwzB45513jBpBUCgUWLx4MWbOnFl9nvDwcPz444944YUXBMwesLOz03vcmDmDtUc6ap9TaAsWLNDrbsUwDH766SdMmDDBJOc3pphQKpV1pqE9iKytren/QwvV0r+2Gq0Ob/xxBdnF/IXHxG7emDEgyLLvwKZeAhu2gj+OkYCZsh5KV8tuabopchMOp/BPY3JXuuPToZ/C1lr87lYsyyJt8TuoSEzkjbXp1w+eLy0AU88IP6tjceTPW6goNWDqYEdn9H2kDRiJ+N/LqpJi/LvmK1QYcPOz35QnENyjlwhZWZ6W/rvZFIT4/2OWQe/vv6+7AU6/fv2MPk/tjf1YlsXatWsbnZehahcKpaWlRi96Lykp4TynkJYsWYJ169bpPffVV19h9uzZouVACGk5Pt4fjQuJebxxrV1t8PGkLpZdeJRkAzueBaM1YMR7yNtA4GDhcxLQhXsX8PWlr3njGDD4bPBncLF2ESGrunI3bECRAWsZpC4u8F71eb2FBwBcPpSE5Bv838tKBwVGze5klsKD1elwcM1XyM9I5431DemMflOeECErQgwnevFx584dXLp0qc4fn8Z0VqpZjVWd78aNG4LvmeHm5qaXv0ajMbpVbu3dxMVYqwIAn332GT777DO959577z289pplt38khJjHnitp+DU8kTdOIZVgzVM9YGfJbXW1FcCu2UChAdMQAgYBQ98WPicBZZRk4M0Tb0LL8q/zeCH0BfTx6iNCVnWVnD2LzK+/MSjW+/PPIW/g721KVC7O743nPwkDjJ4dAhsH49d7msK53dsRf/kCb5zS3gHjXnkTEgmt4STNi+jFx40bN+p9PjbW+C4RDR3T0McwFaVSCX9/f73nam86yKd2fIcOHZqcF5/vv/8eS5Ys0Xtu4cKFWLlypeAfmxDS8kTdLcQ7f143KHbpuA7o7OMocEYCO/YBkGBAdxwbV2DKT4AFX/RptBq8ceIN5Kr413n09OiJF7oKO925IZr09Mr9PHQ63ljXec/BbvCgel8rzCnDoQ2RMGQSQ8+HAuDX0TwjPAlXLyF85+8GxT780muwd7HctUak5RK9+Kh9x7/Kxo38i6Zq++WX+jfUuXv3rtHnMlbtYiEqKsqo46OjoznPZ2qbNm3CK6+8ovfcnDlz8M03ht0tIoSQmgpKNXhx8yWoNPwXfQ918sDMAa2FT0pIUXuBM/y7ZQMMMGkd4GDZC+pXXViFa1n8G0W6WLvg88GfQ2aGdk86tRqpCxdBm2fANKkePeD+6qv1vlah0eLfH29CVcLfMtkr2BF9JgQanaspFGTew4HvvoAhFVKvCZMR1L23CFkRYjzRi4/aXZ6qFotv3LgRmzdvNvg8mzZtwqZNm+qdO9yY7lPG6tatm97jml2j+KSnpyOxxqI4uVyOkJAQE2VW1x9//IE5c+borUuZNm0afvrpJ8uee00IMQuNVocFv19Ccm4pb2yQuy2+nBpq2b9r0q8Du180LHbYEqDtaGHzEdjO2zuxLWYbb5yUkeLLoV/Cw1b8trosy+Le8uVQXecfeZO6u8Fn9Tdg5HV3H2dZFsc23UJmUhHveWwdFXhoXmdIzNAjury0FHtWfQhVCf+eYH6dumLwkzNFyIqQxhH9J8jLy6v6fZZlq7td6XQ6zJw5E0899VSDF/Isy+LMmTN48sknMXv27Orjay/2rvkxhDJ+/Hi9x0eOHDF40fmhWovihg8fLtiC84MHD+Kpp57S20TwkUcewebNmyGRWHKTfUKIObAsi/f2RuJMbA5vrK1Cih+f6Ql767oXfRaj6B6w9QlAw19ood3DwJC3hM9JQOfTz+OTc58YFPtaz9fQ29M8d9dzfvwJBXv38QfKZPBdvbrBdR6XDibizgX+DfokUgYPPd8Fto4G7P1hYjqdFgf+9wWyU5J4Y+1c3TB+4duQ0F5dpBkTfZy0U6e6faarChCWZbF9+3Zs374dSqUSbdu2rd7hvKCgAHfu3KluUVvzGEM+hqkNGDAAbm5u1Ts/xsfHIywsDMOH828ktWHDBr3HEydOFCTHEydOYMqUKXojQcOHD8euXbsgr+cOECGE8NlwOgFbIwxb4/bVtFAEt7IXOCMBacqAbU8BhfVPF9bjHFg53cqCb+okFiTitbDXUMHy75MxJmAMng15VoSs6io8dAhZBk4Z9nj7bdj07Fnva7GXMnF+X4JB5xk0tS282phnzdLJzT8btMBcKpPh0deXwMbRSfikCGkC0X9LduvWDW3atAGAOsPwVcUEy7IoLS3FtWvXcOrUKZw6dQrXrl2rbmlbVXjUPK5KUFBQnSlRQpBIJJg1a5becytXruQd/Th69ChOnTpV/dje3h7Tpk0zeX4XL17EhAkT9PYT6devH/bt20cb6hBCGuVIVAY+PhDNHwhg/rA2eLiz8KPQgmFZYM8CIO0Sf6hMCUzfDCidhM9LIAXlBXj52MsoUvNPPwpyDMIHAz8wy1S6sshI3F38jkGxDuPHw/mZGfW+lplUiKO/GrZWs11fD3Qeap6NBK8f/QeX9u81KHb4rBfgFdxe4IwIaTqz3KJ5+eWX61yk1ywqqt5qPg9A77Xa062qjq29qFpIixcv1psudeLECXz++ecNxqelpeG55/R3VF24cCHc3Li7UdT8vBmGQVhYGGd8ZGQkHn74YRQV/fdHpFu3bjh48KDomxkSQlqGqLuFeHXbFYO6AQ0KdsObYyz8IijsMyDyT4NCNQ9/CXh2Fjgh4Wh0GrwR9gaSCvmn9djKbbF6+GrYysXfSFCTkYnU+QvA1tqktz5W7drB64OV9RZIxXkq7P/hOioMaJbg4m2DYU93MEuhlXzzOo5uMGzvsk7DRqHrqIcFzogQ0zBLw/VXXnkFmzZtwpUrV+pMnapdaNRWu2ipimEYBj169BC1+HBzc8PSpUuxdOnS6ueWLFmC5ORkLFu2DN7eld1OdDod9u3bh4ULF+q12PX29sYbb7xh0pzS09MxZswY5OT8Nx/b1tYWb7/9Ni5evGj0+UaNGmXK9AghFuhegQrPbbyAUjX/fg8Brjb435PdITXD5msmc30HcOIz/jgAsa3GwqfTFIETEg7Lsvjo3Ec4f+88b2zVRoKBjuJ3e9KVlCB1wQJUGLCnltTJCb5r/gdJPfuHqVUV2P/DdZQW8Demkch1GDmnPeQK8ddP5KSm4K+vP4FOy/8z59W2PUbNXWDZTR3IA8UsxYdEIsGff/6JYcOGITk5WW+Uo4ohi7drHhcYGIg///xT9B++xYsXIzw8HH///Xf1c2vXrsWPP/6IgIAAODo6IiEhAfn5+XrHKZVK7NixA05OTibNJyYmpk6r4ZKSEjz11FONOp+xO7cTQlqWglINnv35PO4WqHhjHaxl2DCzN5xtzbP5mknEHgX2zDco9J5DN0R6T4d5JuSYxvdXv8efdwwb4Xmj1xsY5jdM2ITqwarVSH11IVSRkfzBcjl81/wPilp7cQGAtkKHg/93A9kp/B2jwLBw7amCvav405SLcrPxxyfvGdTZyt7NHRPfXAaZwoJ/5sgDx2wr4wICAhAWFoYuXbrUO62qIfVNywoNDcWxY8fg5+cnSu41SSQS7Ny5E0888YTe81qtFvHx8bhy5UqdwsPV1RUHDhzAwIEDRcyUEEKMU6bWYu7GC7idwX8RJJUwWDujJ4JbWfDUzrRLwPZnAB3/gmudewgutZ4PMJa7wHz7re1Yd32dQbGT2042ywJzVqfD3XeXoeTMGYPivVauhE2vXvWch8XRjdFIvcW/JwgAOHdRwcqZf9TB1FTFxfjzkxUoysnijZVbKzHp7fdg6+QsQmaEmI5Zf2sGBATg4sWLWL58OZRKZYPrOxpaB6JUKvHee+/hwoULCAgIMNvnYW1tja1bt2LXrl2ci91tbW2xYMECREVFYdiwYaLlRwghxqrQ6vDK1su4mGTYxdqHEztjYLAF76acEwdsmQpoSvhjbd2hnrIRFVKl8HkJ5HDSYXx8/mODYnt59MKyvsvMMq0n84svUfjXXwbFuj43F06TJ9V5nmVZnNkVa1BLXQDoOsoHtj78BaipadTl2PPFBwa11AXD4JFX34R7gHk2PCSkKcwy7UovAZkMK1euxOuvv44NGzbgzz//xKVLl+psRljFysoKPXv2xJQpUzBnzpzqVrzNwZQpUzBlyhTExsbi/PnzSEtLg1qthpOTEzp27IiBAwc2qtOUMVOfhg0bRlOlCCFNwrIslu6+gSPR/PPrAWDuoEA81bfuNBeLUZQB/DYJKOXfuwRSK+CJrWAd/QAY1vmrublw7wIWn1wMFvx/K/zt/fHNsG8gl4rfnj1nw8/I/eUXg2LtRoyA+2uv1fvalUPJuHYsxaDzBHVzR8+xfjh85JbBeZqCTqvFge++QNotwzpwDXl6Ntr07CtwVoQIw+zFRxVHR0e8/vrreP3116FWqxEVFYWsrCzk5VXedXN2doa7uztCQkKgaOZzG4ODgxEcHGzuNAghpFFW/RuDHRdTDYod0aEVlo7rKHBGAlIVAFumAPkG3G0GgInfA369AQM6LjVHMbkxePXYq9DoNLyx9gp7/G/k/+Bk7SR8YrUU7NuHzC++MCjWqkMH+HyxCkw9G+vdOpuOs7vjDDqPm58dRs0OQYWOfzG6KbEsi6Mb1iL2wjmD4jsPH4Ne4+uO8BBiKZpN8VGTQqEQZa8OQggh+r4/Hou1YYZdrIX6OVl2Z6vyYmDLNODeDcPiR70PdJ0qaEpCii+Ix/OHn0exhn8Nj0KiwHfDv0OQY5AImekrPHwYd5cs5Q8EIPf2ht+6dZDY1m39G3c5E8d+M2wEw97VGuNfDoXcSooKEetKlmVxcssvuH70H4PiA7v1xKjnqLMVsWyWu1KOEEKISf14Mg5f/BtjUGyQuy1+mdUbtlbN8h4WP3UpsPUJIMWwu83oOx8YuEjQlISUUpiCef/OQ64qlzdWwkiwasgq9PKsu3BbaMUnTiDt9TcAA1rMSp2c4Ld+PeQereq8lnA9G4fWR4LV8U8ts7aT49FXu8HW0apROTdF+M4tuPiXYd3GPIPbYcJrSyCVWejPHCH3UfFBCCEEv5xJwCcHDLtL7OlgjU1z+sDFUlvqalTA9qeBxFOGxXeeAjz0CWChd5vvFt/F3ENzkVlm2Bqed/u+i5EBIwXOqq6S8HCkvvIqoOGfEsYolfBb93+wCqq74Do5Kgf//HgDOgMKD5mVFONfDoWTR909QYR2fvcOnPtjm0Gxzl4+mLR4BeSNWDdKSHNDxQchhDzgNp9Lwsq/DFvo6mAtw8Y5feDrLP7FmklUqIGds4C4Y4bFBw0DHlsLSCzzz2VGSQbm/jsX6SXpBsUvCF2Aae2nCZxVXaUXLiBlwUtg1Qast5BK4fvtaihDQ+u8lBaTh4Nrb0BXwV94SCQMxj7fGR6tHRqTcpNc/Hs3Tm/bZFCsrbMLpiz9ADYOzafBDiFNYdKxuzlz5ug9ZhgGGzZsMOWHsMhcCCGkudp0NhHv7TVg8zYAVjIJfp7VG+097QXOSiAV5cDO2cDtg4bFe4UC0zcDMvGn45jCvZJ7eO7Qc0gtNqx5wNR2U/Fi6IsCZ1VXSUQEUl6cD1bFv5ElAHh9/BHshgyp83xqTB72/3AdFRqdQecZMbMj/Du5GpWrKVzavwcnfjPsesTKxhZTlqyEYysPgbMiRDwmLT5+/fVXvb04zHnB35xyIYSQ5ujHk3EGT7WSSRh8/1QP9GrtInBWAtGUAdtnALFHDIt3CQKe3gVYWWahlVqUiucOPYe04jSD4kf5j8K7fd8VfSFz8ZkzSH3pZYMLj1ZvvQmnxx6r83xyZA4O/N8NaA0sPAY+Hoz2fT2NSdUkzu/eYfCIh0yuwMS3ltFeHqTFEWTVUnPaZ6I55UIIIc0By7L47mgsvjly26B4qYTBd092x6gQC737qi6pXFyecNKweCd/YOZfgF3dhcyWIKkwCXP/nYuMUsM21RvsMxirhqyCVFK3Va2QisLCkPbqQsOmWgFwe/lluM6dW+f5hOvZlWs8DJhqBQB9Hw1Et1Hi7kvDsizCd/6Oc39sNSheKpPh0TffhV9IF4EzI0R8ghQfDMM0m4v+5pQLIYSYG8uyWPVvjMHtdBkG+HpaKMZ18RI4M4GoCoHfpwHJZw2Ld/CpLDwcfYXNSyBx+XF47tBzyC7LNii+n1c/fDNc/E0ECw8fruxqZcDicgBwnfcc3F5aUOf5uMuZOLQ+0qDF5QDQ8+EA9Bon7kgCy7I49fuvuLDvD4PiJVIpxi96B4HdegqcGSHmQf3aCCHkAaHVsXhv701sOZ9sUDzDAF88HoqJ3XwEzkwgJdnAlqnA3cuGxdt5AM/uA5xbC5qWUCKzIzH/yHzklecZFN+jVQ98O/xbWEnFXdOSv3sP0pctM6idLgA4P/sM3F9/vc6UsOjwuzi+OcagdroAEDrKD30nirtviU6nxbGf1+Ha4QMGxTOMBONeeQvBvfsJnBkh5kPFByGEPABUGi0WbruCfyMNm4oDAJ9M6oLHe1rmCADyEoHfJgO5ho3wwMa1svBwCxY0LaGEp4VjUdgilBm4Q15Xt674YdQPsJGL17WMZVnkbtiAzC+/MvgYp+nT4bFkiV7hwbIsLv+bhHN74g0+T+ehPhg4JVjUNS0VajUOrPkSd86HG3YAw+DhBYvQvv8gYRMjxMwELz4++OADoT8EIYQQDgVlGszbeBERifwbzAGVIx6fTe6C6b3FnRdvMvduAJunAMUGFlq2rYCZ+4BWHYTNSyD74/dj2ellqGArDIrv5t4NP4z6AbbyuruCC4XV6ZD5+Srkbtxo8DFOTz4Bz+XL9QsPHYvTO+/g+nHDOngBQJdhvhg8ra2ohUd5aQn2fPEhUqNuGhTPMBI8vGARQoaMEDgzQsxP0AXnLMti5cqVQnwIg/MQu3MHIYQ0J/cKVJj5cwRiMooMipdKGHw9zYKnWiWcArY9BZQXGhZv7125xsNCRzw2RW7CFxe/MDi+t2dvrBmxRtwRD7Uad5e+i8K//zb4GJeZM9HqncV6f8O1Gh2ObozCnYuGbZYIAN1G+2PA5DaiXgsU5+Xiz09XICspwaB4iVSKca+8ifb9BwucGSHNg+AjH7TYmxBCzCM6vRBzf72AuwWGtTGVSxl890R3jLXUxeXXdwJ7FwBaw7onwdG/csTDxfJamWp1Wnx16Sv8FvWbwccM8B6A1cNXQylTCpiZPm1BAdJeew0l4QYu+Afg+vzzcH9tkV7BoCrR4J8fbyItxrD1LADQa1xr9JkQKGrhkZ2ciN2rPkRhlmGjbhKpDBNee4fWeJAHiuDFh7lGHqjoIYQ8yA5HZWDhtisoVRu2qFchk+D/ZvTAiA4W2E5XpwPCPgVOrjL8GOfAyhEPJz/h8hJIiaYEb598GydTDWwdDGCo71B8NewrUReXq5OSkPLifKgTDBsBAAC3V16G24IFetcO+Rml+Pv7ayjINGw9C1DZTlfsrlYJVy7i728/h7rMsDylcjkmvvEuArv3EjgzQpoXGvkghJAWhGVZ/HgyHp/9cwuG/vq1s5Lhx2d7YkAbN2GTE4KmDNgzH4jcbfgxrToBM/4AHCxvhOdu8V28fOxl3Mm7Y/AxY1uPxceDPha1nW5JRATSXnkV2oICg49ptXgxXGfP0nsuNSYP/6y7gfJSw9azAMCgqW0ROlK8opJlWVz55y+EbVwPljVsk0OFUomJby6Hf+euAmdHSPMj2D4fhBBCxKWu0OHd3Tew85Lhi3Hd7a3w6+ze6OTtKGBmAim6B2x90vBWugAQMBB44ndA6SRYWkK5mnkVC48vRK7KsMYBADCj4wy81fstSBiJgJnpy//jD6S/v9LgPTwgk8H700/gOGGC3tORp9Jwcuttg/fwkEgZjJzVEe16i7dzubaiAsd/XYdrhw8afIyNoxMmL1kJj8A2AmZGSPNFrXYJIaQFyCxS4eUtVwzuaAUAgW622DSnD/xcxFt8bDJpl4DtzwCFaYYf02E8MGUDILcWLi+B7I3diw/OfgC1zsD1LAAW9ViEOZ3niHZDkNVokPnlV0Z1tGJsbOD77bewG/xfe1mtVofwP2Jx/ZjhRbTcSoqxL3SBX4iLUTk3RWlhAfZ/uwrJN68ZfIyTpxemLP0QTh7iFUiENDcmLT78/f1p1IMQQkQWkZCLl36/jKyicoOPCfV1xM+zesPVTtwN5pqMZYGLPwP/vGP4wnIA6DkbeOQrQCIVLjcBlGvL8VnEZ9h1e5fBx0gZKd4f8D4eC35MuMRq0WRmIu3111F28ZLBx0idneH34zoou3Spfq44rxyH1t9Eepzh07WU9nKMfzkUrQIcjMq5Ke7evoW/Vn+G4hzDdpIHAI+gYEx+533YODoJlxghFsCkxUdiYqIpT0cIIYQDy7LYcDoBnx68Ba2BU1MAYESHVljzVHfYKCxs8FtdCvz9GnB9m3HHDVsKDH27cgMTC5JWnIbXw15HVE6UwccoZUp8OfRLDPEdImBm+kovXEDqa69Dm234hbjczw9+P66DVeB/i8JTY/JwaP1NlBUZOF0LgIO7EhNeDoWThzijdyzL4uqh/QjbuB46reHrUFqH9sCE196BQmmBo4yEmJiF/eUhhBACAEUqDRb/cR0Hbtwz6ri5gwKxdFxHSCWWdSGOnLjKaVaZkYYfI7UCHvsB6PK4cHkJ5HTaabxz6h0UlBs+AuBp64k1I9agvUt7ATP7D8uyyP35F2R+/TWgNayrGgAoe/WE7//+B5mzc/V5rhxKxrk9cQY3SQAA77ZOGPtCF1jbibOQXqNS4fBPaxB9Osyo47o9NB7DZ86DRGpZo26ECIWKD0IIsTCRdwvwytYriM8qMfgYmYTBh491xpN9LHDX8sjdwL5XDd84EKjctfzJrYCvZbUx1eg0WHdtHX68/iNYGH4l3sWtC74b8R3clOJ0LNPm5yN9+XIUHT5i1HGOkybBc+X7kCgUAABVsQbHfotGwjXDR00AoONALwx9sj2kMnEW0menJOHv1Z8jJzXZ4GMYiQTDZz2P7g+NFzAzQiwPFR+EEGIhdDoW60/H44t/Y6DRGn5h6qiUY+2MHpbXSldVCBxcDFz73bjjPDoDT26zuD08kguTseTUElzPvm7UcWNbj8UHAz+AtUychfQlZ8/i7jtLUJFh2EZ6AACGQas3XofL3LnVa0NTonJxdGMUSgqMWLvDAAMmB6PbKD9R1piyLIvLB/fh5JZfoDW0excAhdIGE157B61DewiYHSGWiYoPQgixAOkFZXhjxzWEx+UYdVyQmy02zOqNQDdbgTITSPJ54M95QH6Scce1GwtM+QmwshcmLwGwLIvdsbvxWcRnKKswfCM9AFgQugAvhr4oyoW4Tq1G1jerkfvLL0Ydx9jYwGfV57AfNQoAUKHR4tzueFw7lmLUeWRWUoyZE4LAUHejjmusirJS/P3Vx0gxopsVADh6eGLS2+/B1dcCRxkJEQEVH4QQ0sztv56OpbtvoKDM8DuvAPBwJ098MbUr7K3F21yuybQa4MQq4NSXgIEbtlVigOHvAoPfACTi7WnRVPmqfKw8uxJHko2bvmQvt8fHgz7GcP/hAmWmr/zOHaS9+RbKY2KMOk4RGAjf776FVdu2AICctGIc/jkSOWmGTxkEAGdPGzz8Qhe4eIlTRBenJiLz/CnoylVGHRfUozfGvvQGrO3sBMqMEMtHxQchhDRTBWUafPBXFP64bPh+BwAglTBY/HB7zBscZFntz7PvALtfBNIuGnec0gWYsh4IHilMXgI5nXYaK86sQGZZplHHtXduj2+GfQM/B+GnlbFaLfK2bEHml1+BVRsxPQqA/UMPwevjjyG1s4VOx+L6sRSc2xMPbYUxRSUQ3KsVhs/oAIW18Jcs5aWlCPt1He6dPGrUcQwjwcDpM9Bn4uNgLKj4JcQcqPgghJBm6FDkPSzbcxOZRuzdAQBudlZY81R39AtyFSgzAWg1QPj/gLDPAK1xny98egJTN1rU+o6C8gKsurAK++L2GX3sxDYTsazfMlHWd5THxSF92XKUXbli3IEyGTzeehPOzz4LhmGQe7cEx36LRkaCEQ0DAEgkDAY8Hoyuw31FKaLjr1zAkZ9+QFFOllHHKe0d8MirbyOgazdhEiOkhaHigxBCmpGsonK8/1ck9l9PN/rY3q2d8f1TPdDKwYJ28E6/Bux9Gbhn3CJrAECvucDDnwIyy9ko8VDiIXx8/mPkqgzfiR4A5BI5lvZdiiltpwh+Ic5qNMjZ8DOyv/8erBGLrAFA5u4On9XfwKZnT2i1Olz5NxEXDiRCV2FED10Ato4KPDSvM7yCnYw6rjFKCwsQtmk9ok8dN/pYr+D2GP/aO3BwE2cdCiEtARUfhBDSDOh0LHZdSsUnB6ORX2rcBZ+EARYMC8bCUW0hl1rIlI/yYuDkKiB8DcAavkcEAMDKERj/tUXt35FenI7PIj7DsZRjRh/b2qE1Ph/yOUJcQwTITF/plSu4t/IDlN+6ZfSxtkMGw/uTTyBzc0N6XAFO/B6DnLRio88T0MUVI57pCBsHhdHHGoNlWUSfOo6w3zagrNDw/VQAAAyDXuMnYeD0ZyCTW9CaKkKaASo+CCHEzG6mFWD53pu4kpxv9LE+Tkp8M70b+gS6mD4xIbAsELUX+HcpUJhm/PGtBwOPrbWYaVZqrRqbojZh3bV1UGmNW7wMANPbT8cbvd6AUqYUILv/VOTmIvOrr1Dwx59GH8tYWaHV22/B+amnUFakwYlN0bgVbvzInUwuwcDHg9FpiI/goztZyYk4umEt0m4ZsWnlfXaubhi74DX4dw4VIDNCWj4qPgghxEwKyjT46lAMNp9Lgs64WSkAgEndfbByYic4WEo3q+xY4OBbQJzxd/8hkQMjlgEDXgEklrFT9Nm7Z/HJ+U+QWJho9LEu1i74cOCHGOI7xPSJ1cBqtcjfuROZ36yGrsDIu/8ArDp2hM8XqyAPaoObJ9Jwfl88Ir3jeAAAYjNJREFUyksrjD6Pu789Rs8JgbOnsN2syktLcXbXFlw++BdYnXEL3wGgXf/BGP3cS9TNipAmoOKDEEJEptHqsDUiGauP3EFuiXEdhADA3lqGjyd1waOh3gJkJ4DSXODUV8D5dYDOuCllAAC3dsDknwDvbiZPTQgJBQn45tI3OJ5i/BoCABjiOwQrB6wUfLfykrNnkbHqC5RHRxt/MMPAZc5suC9ciLTYYpz5+EKjpliBAXqM8UefCUGC7lau02pxM+wwzmzfjNKCfKOPVyiVGDH7RYQMGWFZHeQIaYao+CCEEJGwLIvDURn47OAtxGcbt89BlYHBrlj1eCh8nISdhmMSFeXAhfWV+3ao8htxAgboMw8YtRJQ2Jg6O5PLVeVi7dW12Hl7J7TGrmMBYCOzwRu93sDUdlMFvcAtv3MHGV9+iZITJxt1vNzHB14ffwSVX2fsXxeF5EjjFs9XcXCzxohnOsKnvXOjjjcEy7JIvHoJJzb/jJzU5Eadw7djZzw0fxGcPDxNnB0hDyYqPgghRATXUvLxyYFonE9o3IWavbUMyx8JwdRe4rQdbRKdDojaAxxdCeQlNu4crm2BR/8HBPQ3ZWaCUFWo8PuN37H+xnoUaxpx9x/AQJ+BeK/fe/C2E240S5OZiew13yN/167Kr5GxGAbOz8yA7az5iDiWgeiNEWAbMV0QDBA6wg99Hw2C3Eq4KXQZCXE4ueUXJN+42qjjGZkcg5+ahV5jJ9DeHYSYEBUfhBAioNQS4KVt13EsJrvR5xgT4oEPH+sMj+beQpdlgZgDwPFPgYwbjTsHIwUGLgSGLgbkzfvz1bAaXFBfwNcHvja6dW4VRytHLO69GOODxgtWVFbk5CDnp/XI27oVbLmR+6jcp2jTBk5LVyL6rgNufnoNWk0jihcAzl62GPFMB3gGOTbqeENkJycifOfvuBMR3uhz2Hj7wb33IHQeMYYKD0JMjIoPQggRwO2MYmyIkeB6rgRA4woPTwdrvDchBGM7ezbv0Q6WBe4cBo5/DKRfbfx5fHoC478BvJp3FyG1Vo1dsbuwtnAtitiiRp9nXOA4vNX7LcHWdlTk5SH355+Ru3kL2LKyRp2DUShgO/tFJPuOwJFt6ajQGL8oHQCkcgl6PBSAng8FQCoX5mI+JzUFZ3f9jphzp9G4IRnA1skZA554FvEFJc37Z44QC0bFByGEmFDU3UJ8HxZ7f5PAxl1kySQM5g4KxKsj28LWqhn/mtbpgDuHgJNfAGkXG38epQsw6n2g+zNAM77LrKpQYW/sXqy/uR73Su41+jzBTsFY2ncpenv2NmF2/6nIzkbub5uR99tv0JWWNvo80qFjkDlgJk5cLkJFTCPaIt/XuosrBk1rB0d3YdYpZScnImLvLkSfOdHoooORSND94QkYMPUp6BgJEg4dMnGWhJAqzfivGiGEWAaWZXEmNgfrTsbh1J3GT68CgP5BrvhgYie09bA3UXYCqFADN3YC4d8BWcZvRvcfBug5Cxj5HmDTfPcpyVflY1vMNmy9tbXR06uAygXlC7otwFMdn4JcYvr2yOrEROT88isKdu8Gqza+i1r1eQI6I2PEi4hPkUJ7Nr/R57F3tcbg6e0Q2NX0IzssyyI16gYu/PUnEq40ofAF4NMhBCPnzId7QCAAoKyRo0SEEMNQ8UEIIY1UodXhwM17WHciDpF3C5t0Lj8XJRY/3AGPdPFqvtM9VAXApV+Bc2uBIuM3kdPjPwB46GPAp4dJUhNCWnEaNkVuwu7Y3SiraPwFKQMGj7Z5FK90fwUeth4mzLBS2bVryFm/AUVHjjT6zj8AFLbqiPR+zyKtyAFIAIDGreuQWUnRY4w/uo/2h0xh2gXlOp0WsRFncWHfH7gXd6dJ57J3dcegJ59Fx0HDmu/PHCEtkCjFx4kTJ/D999/j999/h0xW90PqdDrMmDEDs2fPxujRo8VIiRBCGi23RI0dF1Ow+VwSUvOadpfUwVqGV0a0xbMDAmAla6ab52XfAS5sAK5uAcqbVmTBpQ0w+gOgwyNAM7zgY1kWFzMuYtutbTiafLRRLXNr6uvVF2/2ehMdXDqYKMNKrFqNwsOHkff7VpRdutTo8+gYGTJbdUdGl8eQU+EENOHLyzBAx0He6DM+ELaOVo0/UT3KiosQGXYE1w4dQH5G0wpfhVKJPo9NQ49xj0KuMG2ehBB+ghYfiYmJmD9/Pg7dnzu5bt06vPTSS3XiNm7ciG3btmH79u0YPnw41q5di7Zt2wqZGiGEGIVlWVxOzsPmc8nYfz0dam3j7gpXkUsZPNOvNV4ZEQxnW4WJsjQhrQa4tR+4uAFIaNx+EHqULsCwJUCv2YC0+e3IXqQuwr64fdgRswPxBfFNPl8bxzZ4vdfrGOwz2KR31TVpacjbvgP5f/wBbU5Oo89TZu2Cu16DkO4/FGrGGjB+U3I9/p1cMWBKG7h6m27nb5ZlcS/uNq4dOoiY8JOo0DR+KhlQua4jdPRY9J/yJGwcnUyTJCHEaIIWHw4ODjh//jzY+8PAH374IWbPng0bm/82iyovL8eKFSvAMAxYlkVERATs7ZvxXGdCyAOlpLwCe66m4bezSbh1r/GdjapIGGBSd1+8OjIYAa62JsjQxArSgMsbgUsbgeLGL6quZuUA9FsA9JsPKJ2afj4Ti86JxvaY7TiQcKBJU6uq+Nj54IWuL2BCmwmQSUzzJ5bV6VBy+jTyft+K4hONX1TNgkGOSwjSfAYjx6WzSUaevNo4os+jQfA14UaBmnIVbp05iWuHDyAjPrbpJ2QYdBgwBP0ffxIu3r5NPx8hpEkELT5cXFywZMkSLF68GAzDICsrC19//TWWLVtWHbNmzRqkpqaCYRgwDIO33noLnp60iyghxHy0OhbhcdnYfTkN/0TeQ6m6aVNvgMrrvImh3nh1ZFsEuZvu7rBJqEuA6L+B69uB+OMA27RRHQCAwg7o+yLQ/6Vmt5g8qzQLBxIO4O/4v3ErtykL5v/jZeuF57s+j4nBE022mLz8zh0U7NuHgr/+RsW9xheCxbbeuOfRGxkevVFuZZoiwSPQAX0nBMG3o7NJRnZYnQ4pUTcQdeo47pw/A7WJFn236z8YAx5/Eq6+/iY5HyGk6QRf87Fw4UKsXbsWSUlJYFkWX375JebPnw9XV1cUFBTg008/rR718PX1xVtvvSV0SoQQUgfLsohOL8LuK6nYe/UuMosatxlbfcZ2aoXXx3RoXh2sdFogPqyy4Ij+G9CUmOa8chugzzxgwELA1tU05zSBUk0pjiYfxd/xf+Nc+jnoTFFgAXBgHPBi9xcxPWQ6FNKmT5/TZGaicP8BFOzbh/Lo6Eafp1zhiIxWvXDPsw+K7Ux3t79VgD36TAiCfycXkxQd2cmJiDp1HNFnTqA4p2md4mpq22cA+j/+ZHUHK0JI8yF48aFQKPDxxx/j6aefBsMwKCoqwieffIKvvvoKn3/+OXJzK9sWMgyDjz76CNbWzXtHW0JIy5KSW4r9N9Kx+3IaYjKaPq2qilzKoKerFsO9dHj2sc5QKoXZ48AoLAvcvQLc/KOyVW5xhunOrXQB+jxfWXjYCrNpnrE0Wg3O3zuP/fH7cTT5qEmmVVUJsA9A94ru6KbohnHB45pUeGiLilB87BgK9v2FkrNnK/dPaQSNTIls1y6459EHec7tAcZ0e6b4dnBG99H+8AtpetFRmJ2F22dPIerUcWQlJZgoQ0AilaLDwKHoNWEy3P1bm+y8hBDTEqXb1ZNPPonVq1fj4sWLYFkWP/zwA6ZOnYpvv/22+pdYjx498Oyzz4qRDiHkAcayLKLSC3EoMgOHojIQnd7E7k212FvJ8HS/ADzZ0xNXz54w6bkbRasBEk8DMQcqF5AXNn6zuHo5BQADXgG6PQ0obPjjBVasLsbptNM4lnwMp9JOoVhTbNLzd2/VHbM7zUYftz44cvhIo8+jychA0dGjKD56DCUREYBG06jzqKyckO3aFVluXZHv1A6sxHQd0xgGaNOzFbqP9kerAIdGn4dlWWSnJCH2wlnEXjiHzIQ4k+UIAHJrJbqOehg9xj4KBzd3k56bEGJ6ou3z8eWXX2Lo0KFgGAbl5eUYPXp09UY+DMPgq6++EisVQsgDpkKrQ0RiLg5FZuBwVAbS8k2/iZingzXmDGqNJ/v4w95abt6NysqLgNijlcXGnX8r9+cwNa9uwMBXgY4TAal5t4zKLM1EWEoYjqUcw/n086jQNbF1Uy0MGAz1G4o5neege6vuAIzfiI5lWahjY1F09BiKjh6F6saNRuXCAiix9bpfcISiyCGgUefhIpNL0HGgN0JH+jV6V3KdTou7t6IRe/EsYi+eR0GGCZoX1GLr5IzuYx9F6OixsLZtZuuoCCENEu0vxuDBg/HYY49hz549YBgGJSWV84sZhsHEiRMxZMgQsVIhhDwA8krUOB2bjeMxmTh2KxP5pY27s8xnULAbZvTzx8iOHpBLTTfNxWi5CUDcUeD2v5VrObRNa0taL6kV0Hky0Gsu4NvLbPt06FgdonOjEZ4WjrCUMFzPvi7Ix3G2csaktpMwtd1U+Nobv25CV16OskuXUHzqNIqOHYUmKblReWglMhQ4BiPHJQTZbl1RphTm7r6zpw06DfFBh36esLIxftF8WXERkm9cQ8KVi4i/HIGyItOOKlbxC+mC0DHjENy7H6Sy5te2mRDCzeTFh1Rq2JBv1XQrlmWxd+/eBo9jGAYVFaa9i0UIaXnUFTpcSc7DqTvZOHknCzfSCpqy2TMnR6Ucj/f0xdN9/c3XuUpVUDmdKu5Y5ShHnunmztfhHAj0mgN0n2G2zlUZJRk4m34W4XfDce7uOeSV5wn2sXq06oFp7adhdMBoo9ZyVI1uFJ85g5Iz4Si9cAGsSmX0x2cBlNh4IdelA3JdQpDvGAydCRaz10ciYRDYzR2dh/rAp52TUes5tBUVuBd7G4nXLyPp2hXci7sD1kQL+WtTKG3QaehIhI4eS52rCLFwJi8+WAP+2rMsW93hytBjCCGkpvIKLa6nFuBcXA7OJeTgUlIeVBphLnyqdPNzwtN9/TEh1BvWcpF3I1cVAElngcRTQNIZIP2aaVriNkQiA9o+BPSeAwSNACTijurcK7mHixkXcfHeRVy4dwHJRY0bNTCUvdwe44LGYVr7aWjn3M6wg1gWisxMFO7YgZwrV1F64UKjNv6rKjbyndoiz6kt8p3aQqMQtjOanYsVOg3yRseB3gbvRq6t0OBeXCxSo24gJeoG7sZEQ1NufHFlDI+gYHQdNRYdBw6FnBrSENIiCDLtqmZh0RC+1w05ByHkwZFXosaVlDxcTsrHpaQ8XE7OQ3mFsMUGAPi5KDGpmw8e6+4j3igHywL5yUDqBSAlAkg5B9y7IWyxUcWnFxD6BNBpkmhdq7Q6LWLzY3Et6xquZV3DlcwrSClKEfzjyhgZBvkOwvig8RjmNwxWUu6LcF15OVSRkSi7chXFly4i6HwEZCUlyDXy42olchTZ+6PAIRCFDoHId2wjeLEBAAqlDME93NG+nye82jiBkXCPcqiKi5F+5xbu3rmFuzHRuHvnFirKTdeCuiH2bu4IGTwcHQcNh6uvn+AfjxAiLpMXH0OGDGlw2DY5ORkJCQl6U64YhkFgYCD8/FrOL5i4uDhEREQgNTUVarUazs7O6NChAwYMGGDWVsIsy+Ly5cu4evUqMjMzAQAeHh4IDQ1Fjx49TNKznRBTKK/Q4va9YtxIK8Dl5DxcTspDfLaJ9qEwgKNSjke6emFydx/0DDDNJmqcVIXAvetA2mUgNaKy4DBlG1w+zq2BrtMr31zbCP7hskqzEJ0bjetZ13Et6xpuZN9Aian2GTFAV/eumBA0AQ+1fgjO1vVvusfqdNAkJ6MsMhJl166h7Oo1qKKj9bpSGfIHlAWDMqXb/WKjNQodglBk5wvWRLuf85FIGQR0dkW7Pp5o3dUVsgZG7LQVGmSnJCMj/g7S78Tgbkw0cu+mipIjAFjZ2KJdv4EIGTwCPh1CwIg80kYIEY/Jf/uFhYXV+zzLsujZs6fe46rRDQcHBxw/ftzUqYhuz549+PDDD3H58uV6X7ezs8OsWbOwYsUKuLmJ1wdfo9Hg22+/xerVq5GWVn+bTV9fXyxatAivvvoq5HJawEfEo9JoEXOvCDfSCnAzrQA37xYg5l4RNFpxRz5tFFIMbeeOid18MLyDO6xkAk2rKsuvnDKVfg1IvwrcvQrkmrb1qEHsPIAO4ysLDr8+giweZ1kWmaWZiMqJQlRuFKJzohGVE4WssiyTfyw+bRzbYHTr0RgfNB4BtTpEsTod1IlJUEVGVr5FRUEVFQVdsXFtelkwKLVphSI7PxTZ+6PI3g9Fdn7QysTd44VhAM82jmjbywNte3nA2k7/d3qFRoOclCRkxMdWviXEIjs5EVqR11fKFFZoHdoDHQcNRVCPPpAphFnXQghpXkTrdrV582ZcvXq1+g5iaGgorl27BgC4du0afv31V8yaNUusdEyqvLwcc+fOxZYtWzjjiouLsWbNGmzfvh27du0SpcNXSkoKJk6ciCtXrnDGpaam4s0338TWrVuxd+9e+Pj4CJ4bebBodSySc0sRc68ItzOKEJNRhNv3ipCQXYIKnXmmWLrZKTCqowfGdPLAgDZupl3HUaGCQ2kSHFSpkIVFALl3gMxooEDYtQuc3NoB7cdVFh0+PU26jqNQXYi4/DjcybuD2PzYyre8WEEXhnNhwKBbq24Y4TcCw/2HI8AhACzLoiIrC8U3zqD8zp37b7Eoj40FW1pq8LlZAGqFI4ptvVBi640SW+/773tBxzN1SyhSuQT+IS4IDHVD6y5uUNoroNNpUZCZgZToJOQkJyE7pfItLz0NOq3WLHla2zugTc8+CO7dHwFdQiG3onUchDxoRCk+VCoV3n333eqRDm9vb4SFhSE0NBQpKSlgWRbLli3D9OnTm8cuwEbQ6XSYPn069u7dq/e8VCqFv78/HB0dkZCQgIKC//rsZ2VlYezYsThy5Aj69+8vWG6ZmZkYPnw44uL076oqlUoEBQVBp9MhISEBqhrdWC5duoThw4cjPDxc1NEZ0nKUlFcgIbsEiTklSMwuQXxWCW5nFuFORrEoazT4tHa1wZhOnhgT4oHu/s6Q8sx758SyQGkOkBNXOXqREwdk3wYyo2GdG4fhVWs0kkyTe6P49gY6PAK0fwRwN3AhdQN0rA4ZJRlIKkpCcmEyEgsTEV8Qj9i8WGSUijhNrAEKiQL9vPthhNdQDJQEwza9AOqLSVD/8SuS7sSi/M4daAsM3/NEx0hRZu2KMptWKFW6o0zpUV1kVMhtBfxMDGNlK0NgFzf4hTjAzqkMRTkZyL93C2FXUpGTmoyc1BRUqIVfo8HHsZUHgnv3R3CvfvBu3xESA7tiEkJaJlGKj6+//hqpqZVzRxmGwfLly+Ho6IiVK1di9uzZYBgG6enpWLVqFVasWCFGSibzxRdf1Ck8XnzxRSxfvhze3t4AKguUvXv3YtGiRUhOrrzrWVpaimnTpuHmzZtwdHQUJLdZs2bpFR7W1tb47LPPMG/ePNjYVO5EXFJSgh9//BFLly6tLkLu3LmDOXPmYN++fYLkRSxfoUqDtLwyJOWUVhYa2SVIuF9sZBaZ/2KnJpmEQY8AZwxt544xIR4IbmVn3BoOlgVKsoD8FCA3HsiJ/a/QyI1rcAM/s62gUtgDgUOAtqMqRznsPY06vEJXgazSLKQVpyG5qLLASC5MRlJhElKKUlCubR5fX3kFC9dCoH2pI3pr/dCx1AnuWRpoU2KhSTuBPK0Whoy5aCUylFu5oMzaFaU2rVCmvF9o2LSCytoFLNM8LpRZthysrhC2jirYOakgVxRBXZqN2HN3cfWgsUvehcVIJPBq2wGtQ7sjuHd/uPkF0JpCQkg1hhW4pVRWVhaCg4NRXFwMlmURHByM6OhoSKVSsCyLLl26IDo6GizLwtbWFrdv34aXl5eQKZlMTk4OAgMDUVRUVP3cp59+infeeafe+LS0NAwaNAiJiYnVz7333ntYuXKlyXM7dOgQHnrooerHcrkcR44caXCq14kTJzB69GhoaiymPHbsGIYPH27y3IDKaV5VTQZSUlLg62v8Bl4tQVlZGQ4dOgQAGDNmTLMY+dPpWGQVlyM1rwx388uQll+GtFrvF5U37713WrvaYEg7dwxu647+bVxhZ8Vxn6VCDRSmAQWpQEFKZZFRkFLj/VSgmVxw148BfHoAbUZUvvn2BqQNr9sq1ZTiXsk93C25i/SSdKQXp1e+X5yO9JJ0ZJZmQsuaZ0pONZaFrQpwKwTcC1i9f1sVMvAsksK2iH/TSBZAhcwGKmsXqKxcKv+1dq5+v9zaBWqFg/CfD1+eLAuwJWB1hWB1Rff/rXwfKALYIugqhG1p21SOHp5o3bU7AkJ7wL9TV1jZmH9kqLGa4+9lYjr09TWOENdrgo98vP/++9UX5wzDYOXKldUbCjIMg48++giTJ08GwzAoLS3Fu+++i59//lnotExi1apVeoXHkCFDsHjx4gbjfXx8sH79eowaNar6uW+++QavvvoqXF1dTZrb8uXL9R6/8847nGtMhg4disWLF+Ojjz6qfm7ZsmU4c+aMSfMi5qOu0CGnpBzZRWpkFauQVVRe/ZZdrEZWUTnuFaqQXlAm+mLvpmrtaoO+ga7o18YFfQNd4e2kBNSlQEkmkHm5snNUcQZQnFnjLQMovAsUpaPyMtVCMBLAsyvQehDQejDg3w+stSOKNcXILstGdtZV5JTlILssGzmqyn+zy7KRU5aD9JJ05Jfnmy91loVdGeBUDDiVsHAqQeVbceX7jiWAc3FlkaFscIN2FixYqOV2UCscoFY4oFzhAI3CHuX3H1e+OUJl5QytzJwdBrUAWwpWVwqWLQGrKwV0JdXvs2wJoCsGqysGYOaCz0iOrTzgG9IFfvffHNxbmTslQoiFEHTkIyYmBl26dIH2/sK2Ll264OrVq3Xi+vXrhwsXLoBlWUgkEly8eBHdunUTKi2T0Ol08PT0RFbWf11bDB0pGDJkCE6dOlX9+IcffsD8+fNNltuNGzfQtWvX6se2trZIT0+HvT13H/mioiJ4eXmhpOS/lpdRUVHo2LGjyXKrQiMflRp7B4ZlWZSotSgo06CgVFP5b5kGhWUa5JVWFhJZxeXILv6vwMgr5b9T3FxJoIM9SuHAlMBFUorOLiy6uLJo76hFsK0K9hW5+kVFcSagLuI/cTOlAVAokaBQKkGhwgZFbm1R6BqIQkcf5Ng6Ied+oVFVZGSXZUOta/BqXTByDQs7FWCrAmzLAduyyhELO9V/xYVjjULDsQSQ1vMXRyuRo0JmA43MBhVyG1TIlJXvy2xqFBMOKFfYQ32/0BB7OlTln0oNwKrA6srBsiqArfpXBfZ+UQFd6f33SwG2TNQchcIwErj5B8C7XQd4t+sI35DOcHBrucUG3Rlv2ejraxyLG/nw9fXFsmXL8PXXX6OoqAgff/xxvXGffvopRo4cCVtbWyxatAht2gjfZ76pwsPD9QqPoKAgDBs2zKBj586dq1d87Nmzx6TFR+01KNOmTeMtPADA3t4eU6dOxa+//qqXmxDFB6ns/lSo0iBHBZRWAOcScqHSSqoLidpvhTXfV1VAa6YOUY0lQwXsUQpHpgSOKIEjUwKHGo8dajxf818nSQlsUQZJzdGJ+7NRmisWgJoBiiSSyiLi/lvB/YKi9vPVhYZEgkKpDGV1psdnAXlZMGgRg1GJsrDS3C8e7hcNtiq2+rGtqkZxUc9jhfa/z1cnUUAjt/mviLhfSGhkSlQobZBtb4N0mQ0q5Mo6MTqJOO29WVYHQANWV6twYMtr/Ft+//W6zwPmb5ggBqWDIzzbtIV3u47wbtcBnm3aQqG0MXdahJAWQtDiw9bWFu+99x5eeuklbN68GY888ki9ccOHD8f//vc/PP744/Dw8BAyJZPZv3+/3uPRo0cbvKBu9OjReo/DwsJQUlICW1vTzJGtnduYMWMMPnb06NF6xcfff/+NJUuWmCQvS8GyLMordChTa1Gmuf+m1kJV4/0yzf3Hai3KNDqUabQor+/1GjGqGq+VabRQV3d+uv9jeOOqWT5fBjpYQw0l1FCiHNZM5b9KqKFkKv+1RjmUNZ63vv+88v7z1lXx94+xruc1OdM8ppVUAFAxDFQSBmUMAxUjqfWYgUpy/7nqx3VfK6vxmur+ecok/x2ja8oCW5aFVAdYaSrfFBrAqqLq/cqCwari/vN671e+pqj47ziFRgq5Tg65TgGZVgGZTg6ZTgEpW/mmlSigkyqglcjv/6uAVqqATqKAViq//68CWlsFShwUKKwRp5PIK2Ob2F62clShAmArAFSAZSsAVnP/fc395zUNPg/2/jHV72vun0+j97ylTW0Sg62TMzyCgtEqMBgegW3gERQMOxdXWiBOCBGMKN2uXF1dsXDhQs6Yl156SYxUTKb29LEBAwYYfKy3tzdat25dvfBcrVYjKioKvXv3bnJeLMvi+vXrjc5t4MCBeo+vXbtWvSGkUH5+6Q04WfDiRKDyB0kGoLl/FkyttQ2N/6pKUA5rlMMa+U3MyZTY2v8yDb9mLMX9t6YuT2YAMGxlIgwAyf2EGPb+W9XrBpyJZSQAI4GOkfz3PqTQySQolUlQYiMB26ifXR0A1f23erCovI7XonKOGN+57hcK7P2CoPL9+wVBVaFABCWTK+Di6wc3vwC4+QXA1c8frQKCYOdi2vWGhBDCR7RNBlua6OhovcchISFGHR8SEqLX9So6OtokxUdSUhJKa2yWZWtrC39/f4OPDwgIgI2NTfU5SkpKkJKSYtQ5jKXRZUOjK+EPJKQlY9C0/rz3CxoAD8rsIFIPhVIJJ09vOHt6w9XPv7rYcPTwhETSPNoGE0IebM2y+EhLS8PRo0eRlpaGzMxMqNVquLu7w93dHb1790bv3r3NOiRcVlZWvV9HlarFOIaqHR8TE9PkvOo7j7F5VR1T8zwxMTGCFh+EEEIMJ1NYwcnTC86e3nDy8oazV2Wx4ezlAxtHJ5oyRQhp1ppV8bFt2zZ8/vnndaYN1ebs7Ixp06Zh2bJl1Rv5iSk7Oxs1m4TJ5XK0amVc5w8fHx+9x5mZmSbJrfZ5GtOVwMfHR6/4MFVuhBBC+FnZ2MLBzR32bu5wcG8FB7dWle+7tYKDmztsnZzBSCTmTpMQQhqlWRQf2dnZePzxx6s7QPF1/83NzcW6deuwceNGvPvuu1i6dKkYaVYrLi7We2xjY2P0nabai8trn7Oxap+nMYvYTZFb1Y72DUlPTzf6nIQQYskkUimUDo6wcXSCjaNT9fu2Ti6wd3OHvasb7FzdeDfoU5U3500vLZ9Kpar3fdIy0NfXOGVlpm8ZbvLiQ6fT1fvFtLGpv01fVlYWRowYgaioqOqiw5ALeZZlUVZWhuXLlyM6Oho///wz5HJx2jXWvhi3tjZ+E6vafaWFKj7MlVtjpnsRQojFkUggVVhBaq2E1FoJmbUSUqXN/fdtIFUqq9+XWFnp/X2rAFAIoFAHpGfmAJk5AEwzBZeYxsmTJ82dAhEQfX35ZWdnm/ycJi8+Xn31Vaxdu1bvuV69euH8+fN1YlmWxeTJkxEZGQmGYap/KfONfNSO/f3332Fra4v/+7//M9Fnwa12caVQKIw+h5WVfmtKU1WWzTk3QghpjhipFBKFFaQKBSQKK0jkNd6v8bxUYQWJ3vtWYKRSWmNBCCFGMGnxUVpait9++02veGAYBjNmzKg3/vvvv8eZM2cMLjqq1BwhYRgGLMvip59+wsiRIzF16tQmfhb8ao8mqNXG7yxcXmvYvDEjFPVpLrmlpKRwvp6eno4+ffoYfV5CyINLprCCzEpR+a/CCnKFAjIrq/uP/3u+KkauqPnaf7FWtrawsrGFla0drGxsIWvETRqVSlV913TIkCEm+x1OzI++ti0bfX2NwzeNvjFMWnycOnUKRUVFdYqJESNG1IktLy/HRx99VG/hwXUXqWZc1f4TVQXIG2+8gcmTJ0MqFbadoJ2dnd7jxswZrD2aUPucjdVccjNmobtM4gKZpLnvkGHpHow7s7V/dzCo/VjvPw3GmYpOV9nzVlJrcTDDMEDVW+UTdd5nwNxvv6v/GlPzfQkDiaTyX4ZB5b/33yQ1HzMMJJKaj/HfsQwj6LcHI5FUFgFWVpDfv/jX+9fqfpFgZV0rTqEXI5Mrmu0Ig7W1dZ3pqqRloK9ty0ZfX35C/P8xafFx4sSJOs9ZW1vXuwfGpk2bkJmZWV04VOEbBan9es0N8NLS0rB169YGR1pMpfbFeGlpqdEb8ZWU6O9rIVTxUfvjGEKo3Boy9/tvGtWVqyUoKyvDoUOHAFTuRE+/BFsO+toSQgghdZm0+Ki98R5QuWldfRfl27Zt03tcs6iwtrZG//790aVLFzg5OUGtViMjIwOXL1/GtWvXquPrK1B++eUXwYsPNzc3vY+v0WiQmZkJDw8Pg8+Rlpam99jYVr0NqX2exgyXCZUbIYQQQgh5sJm0+EhISKh+v2okoL59OPLy8nDy5MnqgqPmhfyrr76K5cuXw9XVtd6PER8fj5UrV+K3337TO67q/fPnz6OiogIymXBdhJVKJfz9/ZGUlFT9XHJyslHFR+1NCjt06GCS3Nq3b6/3mG/tRX1qH2Oq3AghhBBCyIPNpLsUZWRk1BnlqK+IOHfuHLRabfXjqkLl22+/xerVqxssPAAgKCgIGzduxLp166qPqzkCUlZWhkuXLpngs+FW+4I8KirKqONrjxKZ6gI/ICBAb3pHSUmJXpHEJykpCaWlpdWPbW1tqW0uIYQQQggxCZMWH/WtL7C3t6/zXM3ioKqAeOSRR/DKK68Y/LHmzZuHp556qt61FomJiYYn3UjdunXTexweHm7wsenp6Xo5yuXyetfFNAbDMOjatWujcztz5oze465duzbbRZ6EEEIIIcSymLT4qG8/iPr2mbhy5Uqd515//XWjP968efPqfT43N9focxlr/Pjxeo+PHDlicKvgqkWoVYYPH27SRd21czt8+LDBx9aOnTBhgklyIoQQQgghxKTFR33rLGq3mASAa9eu6d1Nl8lk6N+/v9EfLzg4uN7nCwoKjD6XsQYMGAA3N7fqx/Hx8QgLCzPo2A0bNug9njhxoilTw6OPPqr3eOfOnQbtUl5UVISdO3cKmhshhBBCCHlwmbT4sLWtu1dD7VGI1NRUxMfHA/ivXW5wcHCdXbUN0VAbWTE2jJFIJJg1a5becytXruQd/Th69ChOnTpV/dje3h7Tpk0zaW5du3ZF7969qx8XFxdj1apVvMetWrVK7/9pv379TDYdjBBCCCGEEJMWHw4ODnqPWZZFZGSk3nNbt27Ve8wwDDw9PRv18erbVwQAnJ2dG3U+Yy1evFhvutSJEyfw+eefNxiflpaG5557Tu+5hQsX6o2g1KdqI8WqN0NGWD744AO9x5999ln1jp71qS/3jz76iPfjEEIIIYQQYiiTFh9t2rTRa30LADdv3sTBgwcBVLaXXbVqVZ0Wu2FhYThy5IhRH6uoqAiffPJJvYuh3d3dm/JpGMzNzQ1Lly7Ve27JkiVYsGAB7t69W/2cTqfDnj17MGDAAL2F5t7e3njjjTcEye3hhx/GmDFjqh9rNBo89NBD+Pbbb/W6WZWUlGD16tV4+OGHodFoqp8fN24cRo4cKUhuhBBCCCHkwWTS4qNt27Z6j6uKi4kTJ6JHjx7o2rUrcnJyAKDO/hyPPfYYdu3aZdDHSUpKwqhRo6pbyNae6tSrV6+mfioGW7x4cZ0F3mvXroW/vz/atGmDHj16wNXVFZMmTdLb20OpVGLHjh1wcnISLLdNmzYhMDCw+rFKpcKiRYvg5uaGzp07o1OnTnBzc8Nrr70GlUpVHdemTRv8+uuvguVFCCGEEEIeTCYtPgYPHlz9Psuy1W1wKyoqcPXqVRQWFurty1EzprS0FNOnT8fQoUOxfv16REVFVXfP0mg0SEtLw/79+zFv3jyEhITg4sWL1eeoOfrRpk0bUXfklkgk2LlzJ5544gm957VaLeLj43HlyhXk5+frvebq6ooDBw5g4MCBgubm4eGB48ePIzQ0VO/5srIyREZGIioqSq/oACpbCB8/fly00SNCCCGEEPLgMOk24GPGjIFUKoVOp6suMmpuBFizSKh6v3bM6dOncfr0ab242iMbtUdNqp6r2i9EbNbW1ti6dSsef/xxfPTRR7h69Wq9cba2tpg5cyZWrFghWoEUEBCAiIgIrF69Gt9++63edLCavL29sWjRIixcuLDe9siEEEIIIYQ0lUmLD1dXV0yfPh2///57nbUYNYuN2u/XV0xUqa97VH3nAipHIRYuXGi6T8hIU6ZMwZQpUxAbG4vz588jLS0NarUaTk5O6NixIwYOHNioTlyG7h/SEIVCgbfffhtvvvkmLl26hGvXriEzMxMA0KpVK3Tr1g09evSoty0yIYQQQgghpmLS4gMA3n//fezbtw8lJSV6RQLwX9cmAHB0dMR7772H119/vU4BYoiaF+RVRcgTTzyB1q1bm/CzaZzg4OAG9yAxJ4lEgt69e+u14SWEEEIIIUQsJr/VHRwcjE2bNkGhUNRbdLAsC4VCgV9++QWLFi3C+PHj64yG1Hyr77nahQrDMPD398eaNWtM/ekQQgghhBBCTMTkIx8A8Nhjj+Hs2bNYsmQJjhw5Aq1WW/3asGHD8Omnn6Jv374AgC1btmDo0KG4evVqnZGS2u/XVDPW3t4e27dvh6OjoxCfDhFARUVF9fvp6elmzMS8ysrKkJ2dDaByA06lUmnmjIip0Ne2ZaOvb8tFX9uWjb6+xql5jVbz2q0pGLapCwp4FBYWIjExERqNBq1bt4arq2udmOLiYkyZMgWHDx+uM+2KazoWy7Lw8/PD33//jS5dugjzCRBBXLhwAX369DF3GoQQQgghxAAREREmmbov+ApjBwcHdO3aFT179qy38AAAOzs7HDhwAJ9//jns7OzqTK2qWXhUvaZQKLBo0SJcvnyZCg9CCCGEEEIsgOAjH8bKzMzExo0b8ccff+DatWsoLy8HUFmEuLq6ol+/fhgzZgwmT54Mb29vM2dLGkulUuHGjRsAKnekl8kEmQHY7KWnp1ePAEVERMDLy8vMGRFToa9ty0Zf35aLvrYtG319jVNRUYGsrCwAQJcuXRrVtbW2Zld81JabmwutVgtXV1dqBUtanNTUVPj5+QEAUlJS4Ovra+aMiKnQ17Zlo69vy0Vf25aNvr7m1+xvN7u4uJg7BUIIIYQQQogJ0FACIYQQQgghRBRUfBBCCCGEEEJEQcUHIYQQQgghRBRUfBBCCCGEEEJEQcUHIYQQQgghRBRUfBBCCCGEEEJE0ez3+SCEEEIIIYS0DDTyQQghhBBCCBEFFR+EEEIIIYQQUVDxQQghhBBCCBEFFR+EEEIIIYQQUVDxQQipo7y8HD///DMmTJiAgIAAWFtbw8nJCe3bt8fjjz+ONWvWIC8vz9xpkiZKTEyEvb09GIYBwzBo3bq1uVMijRAXF4fvv/8e06dPR8eOHWFvbw+FQoFWrVph2LBh+OSTT5CRkWHuNEkN+fn5+OSTT9C7d2+4urrCxsYGwcHBmDdvHi5dumTu9Egj0c+iYajbFSFEz6lTpzBnzhzExsZyxh0/fhzDhg0TJylicizLYtSoUTh27Fj1cwEBAUhMTDRfUsRos2bNwsaNG3njHBwc8P3332PGjBkiZEW4REREYMqUKUhNTa33dalUihUrVmD58uUiZ0aagn4WDSczdwKEkObjn3/+waRJk6BSqWBtbY3Zs2djzJgx8PX1BcuySEpKwunTp7F7925zp0qa6P/+7/9w7NgxeHh40J04C1Z1AWtra4sJEyZgxIgRaN++Pezt7ZGSkoKdO3diy5YtKCwsxLPPPgu5XI7p06ebOesHV3x8PB555BFkZ2eDYRg8//zzmDp1Kuzs7HD+/Hl89tlnSE9Px3vvvQcnJye88sor5k6ZGIh+Fg1HIx+EEABASkoKOnfujMLCQrRt2xb//PMPgoKCGozXaDSQy+UiZkhMJSkpCZ07d0ZxcTF27NiBadOmAaCRD0v07LPPomfPnpg7dy7s7Ozqjdm2bRuefPJJAICbmxuSkpJgY2MjZprkvsceewx79+4FAKxbtw7PP/+83uspKSno2bMnsrKyYGNjgzt37sDb29scqRIj0c+i4aj4IIQAACZPnozdu3fDysoKV69eRYcOHcydEhHIqFGjcPToUTz22GPYvXs3GIYBQMVHSzZp0iTs2bMHALB37148+uij5k3oARQVFYVOnToBAAYNGoRTp07VG7d+/XrMmzcPAPD222/j888/Fy1HIjz6WaRpV4QIJi4uDhEREUhNTYVarYazszM6dOiAAQMGwNra2tzp6UlISKi+G/fEE09Q4cHDkr62ta1btw5Hjx6Fk5MTfvjhB3On0yxZ8te3ISNHjqy+4Ll9+7Z5k7Egpvxe2LVrV/X7VcVFfZ5++mksXLgQpaWl2LVrFxUfAjLHzzr9LFLxQR4QaWlpiIiIwPnz5xEREYGLFy+iqKio+nVT3vHds2cPPvzwQ1y+fLne1+3s7DBr1iysWLECbm5uJvmYTbV9+3bodDoAlXdlqpSXl+Pu3buQyWTw8PCAQqEwV4oNoq+t4ZKTk/HWW28BAL744gt4eXmZOSN+9PU1DbVaXf2+VCo1YyaNZ+nfCydOnKh+f8SIEQ3GKZVK9OvXD8eOHUN8fDxSUlLg5+dn3CdggSz962uolvCz2GQsIS3U6dOn2UmTJrHe3t4sAM63gICAJn88lUrFPv3007wfq+rN3d2dPXHiRNM/URN49NFHq/NKTExkb9y4wU6cOJGVy+XVz1tbW7Njx45lw8LCzJ0ufW0bacyYMSyA/2/vzsOiqho/gH+HRREBEXBDBQFRzCWXzNRCzTTN/Vc/M62g8memmRrm2vu65J6v+rqblVRmZmYmZe5LbqjhvoQCCiLgBoqCgMyc3x8+TAzMXWZhBsfv53nmeZh771nunHMv99x7zrnixRdfNFhuzd/KGli+1tezZ099/rdt22bv7KjmSHWhRo0aAoDw8vJS3PbDDz/Up7F161ZLd6vccqTyVetxPRatiY0PclgLFixQfYKx9KSm1WpFnz59SsXr7OwsgoKCRPPmzUWVKlVKrXd3dxeHDh2yzg5bIDg4WJ+n77//XlSsWFH295o8ebJd88uyNd2qVav0+UpISDBYV94aHyxf6zp27JhwdnYWAETt2rVFQUGBvbOkmqPUhby8PP32jRs3VszLnDlz9NuvXLnSov0qzxylfNV6nI9Fa+JLBumJJDUThbk+//xz/ZiJIkOHDkVKSgqSkpJw4sQJZGZmYuPGjQgICNBvk5ubi/79++Pu3btWzY+pMjMz9X+/9957KCgoQFRUFC5evIj8/HxcvXoVn3/+uX5WjqlTpyI6OtpOuZXHsi0tNTUVUVFRAIBp06YhJCTEzjkyH8vXNPfv30dkZCS0Wi0AYNasWQ4zS93jVBeKdx9Sk29PT0+jYZ8kj1P5quHIx6KpOOaDHJ6npydatWqF1q1b49lnn0Xr1q1x+fJldOrUySrx3759GzNmzDBYNmvWLIwfP95gmZOTE/r164dnn30Wzz//vL7vampqKubPn4+pU6fKprN7927k5uZanN8WLVqgdu3aBsuK/3PLy8vDwoULMXLkSP2yOnXqYMyYMXj66afx8ssvQwiBCRMmYMCAAXYdgMuyNWSsbIFHg1uzs7PRunVrjBo1yuJ0bIXla0iqfKXodDoMGjQI586dA/BoMom33nrL4nzYw+NeFx48eKD/W83YuYoVKxoN66ge9/JV4kjHolXY+9ELUVlJSEgQ586dE1qtttS6PXv2WO1x7tixYw3iCg8PFzqdTjbMzp07DcJ4enqKW7duyYYJDAxU/Xha7vPdd9+VitvDw0O/PjQ0VDb/xR9b//bbb+p+JCtj2aov26+++koAEK6uruL06dNG07fGb2VNLF/15StFp9OJd999Vx+2TZs24v79+6rDlxeOUhdu3rxpUBZKli1bpt9+3rx5Zu3T48BRyleOoxyL1sRuV+SwQkJC8NRTT8HJqeyquU6nw+rVqw2WTZkyRf/eBCmdO3fGCy+8oP9+7949rF+/vkzyqEbxR/yvvPKKbP579Oih//vo0aNlmi8pLFt1rl27ho8//hgAMG7cODRt2tQu+TAVy9cyQggMGzYMX3/9NYBHT0y2bt2KypUr2zlnpnOUulD8HHv//n3FPBXfpnhYR+Mo5SvFkY5Fa2K3KyILHDp0CDdv3tR/Dw4ORseOHVWFfe+99wxeMrVp0yZ88MEHktvHxsaisLDQ7LwW8fHxKbUsMDAQ6enpAGDQ19WY4utv3LhhcX7KK0co20WLFuHu3btwd3dH/fr1sW7dOtnwOTk5+m0qV66MXr16WZyn8soRylfKiBEjsGLFCgBAs2bNsGPHDnh7e1ucvqOyRV2oWLEiqlevjhs3buDq1auK8aakpOj/VjonkzxbHusl8Vg0jo0PIgv8/vvvBt+7dOmieDel+LbF7d27Fzk5OZJ3RGrWrGleJlVo0qQJYmNjAUA/GE5K8fUuLo57CnGEss3PzwfwaMBkZGSk4va3bt3CG2+8AeBRg9SRGx+OUL7GjBgxAkuXLgUANG3aFLt27YKvr6/N0n8c2aouNG7cGDdu3EB2djZSU1NRp04dyXjPnz9vEI7MZ8tjvTgei9LY7YrIAidPnjT43q5dO9Vh/f39Ua9ePf33goICg384tlR8UN+lS5dkt01ISND/LffP83HnKGVLxjli+X700UdYsmQJgEcXrLt27XrsXoZoD7aqCx06dND/vWfPHsk4Hzx4oL8ZFBQU9ES8YLAs2eNY57Eoj40PIgtcuHDB4PtTTz1lUviS25eMz1Z69+6NSpUqAQA2b96sv2NuTPE+r2ofXT+OHKFsFy5cCPHofU6ynyKBgYH6ZdZ6k3B55QjlW9zIkSOxePFiAI8udnbv3o1q1arZNU+PC1vVhddee03/96pVqyTjW7t2rX52tOJhyDy2PtZ5LCpj44PITA8ePDDolwvA5DtUJbePj4+3OF/m8PDw0E/Bev36df07IUpavnw5Dh48CABo3bo12rRpY6ss2pQjlS2V5mjlO3r0aCxatAjAowul3bt3o3r16nbLz+PElnWhcePG+q6M+/fvxxdffFFqm6tXr2LixIkAgEqVKhlMeU6ms/WxzmNRHcftsE1Uxm7dumVw19jV1dXkk0zJOfvtOYB74sSJiImJwdmzZ7F06VIkJiZiyJAhqFevHm7cuIEffvgB3377LYBHg5Hl7tw97hytbMmQI5XvuHHjsHDhQgBAtWrVsHjxYty4cUM2P1WrVjXpfSGOzNZ1Yf78+Th48CAyMzMxdOhQnDhxAv/7v/8LDw8PHD16FDNnztSHnzlzJsvJQrYsXx6L6rHxQWSmktMluru7qx7EVqTkoDU1UzCWFQ8PD2zbtg39+vXD0aNHsXXrVmzdurXUdjVq1MCGDRvw9NNP2yGXtuFoZUuGHKl8f/zxR/3fN2/eROfOnRXDREREIDo6ugxz9fiwdV2oX78+fv/9d7z66qtIS0vDihUr9LMhFXFycsK//vWvx+qFoOWVLcuXx6J6bHwQmankCcicN30XjbOQitPW/P39cejQIaxZswbr1q3DqVOncOvWLXh6eqJRo0bo1asXPvjgA3h5edk1n2XNEcuW/sHypSL2qAvPPfcczp07h6VLl+KXX35BYmIi8vLyUKtWLXTq1AkffPABnnnmGZPzQaXxWC+f2PggMlNeXp7B9woVKpgcR8WKFQ2+P3jwwKI8WYOzszMiIiIQERFh76zYjaOWrZTi3RKeBI5Uvo4+MUBZs1dd8Pb2xqRJkzBp0iST0yP1bFm+PBbV44BzIjOVvINSUFBgchwlZ5Uy564MWR/L1rGxfKkI64JjY/mWT2x8EJnJw8PD4HvJOyxqlLyDUjJOsg+WrWNj+VIR1gXHxvItn9j4IDJTyRNQbm6uyd1XcnJyZOMk+2DZOjaWLxVhXXBsLN/yiY0PIjP5+fkZzJrx8OFDk6fbvHbtmsF3zgdePrBsHRvLl4qwLjg2lm/5xMYHkZkqVaqEgIAAg2UlX2akpOT2YWFhFueLLMeydWwsXyrCuuDYWL7lExsfRBYoeRI6f/68SeEvXLggGx/ZD8vWsbF8qQjrgmNj+ZY/bHwQWaB58+YG3w8dOqQ6bHp6usHUfK6urnjqqaeslDOyFMvWsbF8qQjrgmNj+ZY/bHwQWaBnz54G33fu3Kl6MNv27dsNvnfq1IkD2coRlq1jY/lSEdYFx8byLX/Y+CCyQLt27eDn56f/npSUhL1796oK+9VXXxl879OnjzWzRhZi2To2li8VYV1wbCzf8oeNDyILODk5ITIy0mDZ1KlTFe+q7Nq1C/v379d/9/T0RP/+/csii2Qmlq1jY/lSEdYFx8byLX/Y+CCy0Lhx4wwew+7btw9z5syR3P7atWsYPHiwwbKRI0ca3Jmh8oFl69hYvlSEdcGxsXzLFxd7Z4CoLB08eLDU20kB4NSpUwbf8/LysHPnTqNx+Pv7yw4w8/Pzw8SJEzFx4kT9sgkTJiAlJQWffvop/P39AQA6nQ6bN2/GyJEjDabu8/f3R1RUlEn7RSxbR8fypSKsC46N5fsEEkQOLDAwUACw6BMREaGYjlarFT179iwV1tnZWQQHB4sWLVoIb2/vUusrVaokDhw4UPY/hANi2To2li8VYV1wbCzfJw+7XRFZgZOTE3766ScMGDDAYLlWq0VSUhJOnDiBO3fuGKzz9fXFli1b0L59exvmlEzFsnVsLF8qwrrg2Fi+5QcbH0RW4ubmhh9++AEbNmwoNa94cZUrV8awYcNw/vx5dOzY0Wb5I/OxbB0by5eKsC44NpZv+aARQuVkx0RkkoSEBBw5cgTXrl1DQUEBvL290ahRI7Rv3x5ubm72zh5ZgGXr2Fi+VIR1wbGxfO2DjQ8iIiIiIrIJdrsiIiIiIiKbYOODiIiIiIhsgo0PIiIiIiKyCTY+iIiIiIjIJtj4ICIiIiIim2Djg4iIiIiIbIKNDyIiIiIisgk2PoiIiIiIyCbY+CAiIiIiIptg44OIiIiIiGyCjQ8iIiIiIrIJNj6IiIiIiMgm2PggIiIiIiKbYOODiIiIiIhsgo0PIiIiIiKyCTY+iIiIiIjIJtj4ICIiIiIim2Djg4iIiIiIbIKNDyIiIiIisgk2PoiIbEij0Zj8mTJlSpnlZ+/evbJpR0ZGyoavV6+eZNh69eqVWb7JsbFemS46Olr2WI6OjrZ3Fp8IHTt2NPkc37FjR3tn26bY+CB6TEyZMsXgZLV3716rp9GtWzeDNJycnJCenm6wTWRkpMknVldXV1StWhV169ZF69at8fbbb2POnDk4c+aM1feBiIiIyi82PogIAJCdnY09e/YYLGvTpg1q1aplcdyFhYW4c+cOUlNT8ddff+G7777D+PHj0axZM4SFheH777+HEMLidIiIiKh8Y+ODiAAAv//+OwoKCgyW9e3bt8zTjY+Px5tvvokuXbrg/v37ZZ4eERER2Q8bH0TlyLFjxyyO4+HDhzh16pTJ4TZt2lRqWb9+/SzOj1q7du1C9+7dodVqbZYmERER2RYbH0TlxP79+/Hss8+ia9euOH36tFlxbNy4EY0bN8ZLL72Ee/fuqQ6Xn5+PP/74w2BZo0aN0KBBA7PyYa4DBw5g5cqVNk2zPFm9ejWEEKU+ZTngnIiIrGfv3r1Gz+MRERH2zlq54WLvDBDRI+PHjwcA7NixAy1atEBERAQ+++wz1K5dWzHs0aNHERUVhQMHDuiXzZs3D1OnTlWV9q5du0o1VsztcuXv72/wxKSwsBC3bt3CX3/9heTkZMXwc+fOxbBhw8xKm2zvypUr9s4COSDWKyLHxcYHUTlw/PhxxMbG6r/rdDqsXr0aP/74Iz7++GOMGzfOaLgrV65gwoQJ+PHHH0sN2F61ahUmTZqEChUqKKZvzS5XoaGhWLJkSanlQgj89NNPiIyMxIMHDyTDJycn49y5c2jcuLFZ6RMREVH5xW5XROVAy5YtcfLkSfTq1ctgeW5uLqZPn4769etjx44dBus+//xzhIWFYd26dQYNjwoVKmDkyJE4deqUqoaHTqdDTEyMwbI6dergmWeesWCPStNoNOjfvz+mT5+uuK05Y1aIiIio/OOTD6JyomnTpti8eTMOHz6MCRMmYN++ffp1169fx/Xr1w2237Jli8F3JycnvPnmm5g2bRoCAwNVpxsbG4uMjAyDZb1794ZGozFjL5S9/fbbiIqKkt3m5s2bFqWh1Wpx6tQpJCYmIjMzE1lZWXB1dYWfnx9q1qyJNm3awNvb26I0yjOdTocjR47g4sWLyMjIgIeHB2rXro2WLVsiICDA3tkzmxACsbGxuHTpEtLS0uDm5oYGDRogPDwcHh4eiuHj4+MRGxuL9PR0uLq6olq1amjZsiWaNGli1XwWdTO8ceMGMjMzkZubi6pVq8LPzw8NGzZE06ZNy+z4Kkmr1SI2NhZJSUlIS0tDxYoVUb16dTz33HMIDg62OP60tDTEx8fj8uXLuHfvHnJycqDRaODu7g4fHx/UrVsXQUFBCAgIsNk+y9FqtTh9+jQSEhKQlZWFzMxMODs7w8fHBz4+PmjatCnq169v0/yUZflYy927d3Hs2DFcv34dmZmZyM7ORpUqVeDn54fg4GC0atUKzs7OVknr/v37iI+Px6VLl3D79m3k5OSgoKAAlSpVgqenJ2rXro2AgACEhobCzc3NorSuXLmCixcvIiUlBffv30dOTg6cnZ3h7u4OPz8/BAQEICgoSFX3ZzKBIKJSJk2aJABIfvr06aMYx/Xr10WNGjUk43BxcREHDhyQDL9161bRsmVL2XwUfXr27CnOnDlj1r5+8sknpeLbsWOH5PYRERGyeenQoYNimr6+vrJxzJgxw+T90Gq1YsOGDaJbt27C09NTNn4nJyfxzDPPiEWLFokHDx6YnJYl5PK1evVqi+J+8OCB+Pe//y1q1aplNH6NRiM6dOggfvnlF32YPXv2yOYpIiJCNs3AwEDJsIGBgbJhlerSnj17hBBCFBYWirlz54p69eoZ3c7d3V2MGDFC3Llzx2g6MTExssdSYGCg+PLLL4VWqzXh1zaUkpIixowZI8LCwhSPVz8/P/Hmm2+KkydPmpTG5cuXVZdVenq6GDVqlOw5qEmTJmLjxo0m72tycrKIiooS9evXV3V+AiA8PT1Fu3btxOjRo8XGjRvFrVu3ZNOwpF6VpNVqxS+//CJeeeUV4eXlpZjXmjVrikGDBonY2FiT0rF3+axevdqq55ebN2+KqVOniqefflo4OTnJxu3l5SX69esn9u3bZ1IaRQoKCsTKlStFx44dhYuLi6o65ezsLMLCwsTAgQPF8uXLxblz51Slde7cOfH++++L2rVrq66/Pj4+omPHjmL8+PFiy5YtIjs72+R9lDvfqfm/6UjY+CAyorCwUISHh8uejL788kvZOHr06CEbfs6cOYr50Ol0IjIyUjaehQsXWrSvoaGhBvF5e3uLhw8fSm5vjcaHv7+/bBxLly41aR9iYmJESEiI6n8kJS80fvjhB5PSs4Q1Lw6KO3HihEm/wYABA0ROTk65b3ykpKSItm3bqtqnxo0biytXrujjz8/PF++++67q36Rfv34iLy/PpN/97t274p133lF9wVT8o9FoxKuvvqp4IV5E7cXtunXrRJUqVVTnY8SIEUKn06nKw+zZs0WFChXMOtZsVa+K27ZtW6lznCmf8PBwcfHiRVVp2bt8rNX4yM/PF2PGjBGVKlUy6zfr2LGjuHz5sqq0hBAiLi5OBAUFWVynAPlL2sLCQjFq1CjFhpSaz+TJk1XvXxE2Pv7BxgeRhGvXrolq1apJniw8PDxEQkKC0bBLliyRPXH16NFD8Z/Jn3/+Kdq3b694EtRoNKJ///6q/0EWd/bs2VLxDRo0SDaMpY0PrVYr3NzcZOPYtWuXqvw/fPhQREVFCY1GY/E/k9GjR4vCwkK1P53ZrHFxUNLx48eFj4+PyfvcoUMHsWXLFtlt7Nn42LBhg2jYsKFJ+1S3bl2RnZ0tHj58KHr27Gnyb/LOO++o/t3j4uJEcHCwxXUvMDBQHD9+XDE9NRe3s2bNMisPU6dOVUx/8uTJFu+rLeqVEI9u3EycONEq5wZPT0+xbt26cl8+1mh8JCYmqn7iLvfx9fWVfYJe5MyZM8LDw8Nq9UqO0vnGlA8bH5Zh44NIxrZt22T/ebVt27bUBev58+dl7xjVrVtX9k7niRMnRPfu3U0+Gbq4uIihQ4eK9PR01fs3ffr0UvFs2LBBNoyljY8jR47Ihq9cubK4d++eqvwPGTLEav9MAIiRI0eq/OXMZ+nFQUlZWVmKT5LkPg0aNJBdb8/Gh5+fn1n7NHz4cBEVFWX2b7J7927F3/38+fPC29vbanXP19dX8mZGEaWLW7mbJUofV1dXER8fL5n2uXPnzHq6Y496JYQQY8aMsVpegUddNTdt2lRuy0cIyxsf6enpsr+7qR83NzfFrmtqn2qq/UjZtm2bVdNh48MynO2KSEbXrl0xYcIEyfWHDx/GrFmz9N8LCgowcOBAyalkXVxc8OOPP8LX17fUuoSEBAwcOBAtW7Ys9cK/6tWro23btgbLunfvbjCbVWFhIVasWIGQkBB8+umnuHv3ruL+lZxi183NDd26dVMMZy6dTofJkyfLbjNw4EBVg4cXLFiAL774wlpZAwD897//RXR0tFXjLGsjR45EWlqa2eEvXrxoxdxY161bt8wKt3z5csyfP9/sdBctWiS7PjMzE6+88gru3Lljdhol3b59G71790Zubq7ZcVgyUcPDhw+xfPlyyfXffPMNCgsLzY7flqKjozFv3jyrxqnT6TBo0CCcPXvW7DjKsnwsVVBQgF69eql6F5NaeXl56Nu3L9LT042uv3DhAg4fPmy19OR89dVXNkmH1GHjg0jBtGnT8MILL8iu/+uvvwAAEydOxMmTJyW3nTVrVqlGBACcOHECjRo1wg8//GAwba6bmxvGjx+PhIQEdO3a1SDM2LFjceHCBbz66qsGy3NzczFjxgw0bdoUBQUFknlJTU3V57vISy+9hMqVK0uGMYdWq8WNGzewefNmdOrUCVu3bpXc1tfXF5999plinNevX8e//vUv2W2Cg4OxYMECxMXF4dq1a0hKSsKvv/6K7t27y4b75JNPcP/+fcU8lAfx8fH47rvvZLdxcXHByJEjcejQIaSmpuL8+fNYunQp6tSpY6NcWq5FixbYuHEjrly5gvj4eEybNg1OTtL/vnQ6nf440mg0GDJkCGJjY3Ht2jUcOnQIXbp0kU3vt99+k30XzcyZM2Vfglc081xMTAwSExORlpaGuLg4zJw50+iNhyLnz5/H4sWLZfOm1quvvort27cjJSUFFy5cwIwZM+Du7i4bZv369ZLrir+HqKTq1atj7ty5iI2NRUpKCjIyMnDx4kUcOXIEa9aswcSJE9GpUydUqlTJ7P1RKycnB2PHjpXdRqPR4O2338bOnTuRnJyMhIQE/Pzzz+jYsaPFcatl7fKx1BdffFHq/0FJvXr1wk8//YSLFy8iPT0dp0+fxqJFi2Rn0MvIyMC0adOMrpOrUxqNBu+88w7++OMPJCQkICMjA1euXMHp06cRExODuXPn4o033oC/v7+q/ZNLKyQkBEuWLEFcXBxSU1ORnp6O+Ph4HDp0CF9//TXGjBmDtm3bwtXVVVVapIK9H70QPQ5SU1NlH5k3bNhQbN68WbaLVq9evSTHeeh0OvHMM8/ot9VoNOKNN94QycnJ+m1K9rcumglICCH2798vWrdubbB+3Lhxsvu0ePHiUnn86quvFH8La/abLf7x8vISBw8eVFUeI0eOlI2rX79+srNYGetuVvxjzmxbasmla2q3qxEjRsjGV6FCBbF9+3ajYW/fvi0aN26sWC727HYFQLRv397oIPD3339fVb1atmxZqbB5eXmKA1yl6mJaWprsmCV3d3fZbltXr16VnLULeDSrjtRMOkrdeoo+CxYsMBpeaXwPAHHt2jWjYeXG3sTFxUnub3H5+flix44dYvDgwSIqKkp2W3PrldKYCicnJ9kJJpTOLQDE4cOHjYa1Z/kIYX63q9zcXFGzZk3Z32zt2rWS6d65c0e0atVKMryrq6vBRBBF5MpqxIgRkumV9Pfff4sZM2aIZs2aSW5TsWJFo+lUqFBBdVflnJwcsWnTJvHGG2+IefPmqc5fEXa7+gcbH0Qqbd26VbZxITeDRkBAgMjMzJSNf8eOHQJ4dLF15MiRUuvlGh9CPGrArFmzRgQEBIiqVasqpte5c2eD+JydncWNGzcUf4eyaHy0bdtWXLhwQTHtov2Uawj6+/uLnJwcxTiefvppyTiaNGmiKi/mMOfiQIrSWI+xY8fKho+Li1MckGvPxoezs7P4+++/jYb9/fffFevVCy+8IJm20nTaX3/9tdFwxhrtxT9SF5bFbdy4UTYOqXFXai5u+/btK5u2UoNTquHUrFkzyTBqZ+syhbn1Su64BiCGDh0qm25hYaFo2rSpbBxSY8PsWT5CmN/4iImJMWt/izt+/LhsHMYu1ufPn2/S9paQmmLZy8vLoim2TcHGxz/Y7YpIpZdffhnjx4+XXK/T6Ywud3V1xfr161G1alXZ+F966SXs2bMHBw4cwLPPPmty/jQaDQYNGoT4+Hhs2bJFNr07d+4YvMQQANq1a4dq1aqZnK4lWrdujc2bN+PQoUMICwtTFeb48eOyfacjIiIUuy9oNBp07txZcv3Zs2cl+ymXF1euXJEd66HRaPDhhx/KxtGyZUu0b9/e2lmzmvDwcDRs2NDoOqnlxQ0ZMkRyXdOmTWXDSo3n2LZtm2QYV1dXDB48WDFfL730kuz6HTt2KMYhRW6MGgA0b95cdr3UfterV08yzODBg606VsBc169fx+nTp2W3UXrBqbOzMz766CPZbXbu3Gly3oqUVflYQq5OA8CwYcMU42jRogV8fHwk1xur03J1at68edi5c6fk/1VTSaWVnZ2NYcOG4caNG1ZJh9ThG86JTPDZZ5/hwIED2L9/v+ows2fPRps2bVRtq9TnWA03Nzc899xzstv89ttvpQaP9uvXz+K0TRUXF4cVK1bgqaeeQkhIiKowcn13gUfjaopPAmCuv/76C7169bI4nrJy4sQJ2fWhoaGoW7euYjxdunTBgQMHrJUtq+rUqZPkOjUNZbnjSe5CCQDu3btndLlc/Xv48CE8PT0V86Xk2LFjZoWrUaOG4o0LPz8/2fVS+929e3ds3rzZ6LpNmzZh06ZNCAgIQIMGDRAcHIzQ0FA0bNgQYWFhqF+/vk3ebn7s2DGDMXMlBQcHq3p7+csvvyy7/ty5c8jJyTF5fFxZlo8llM6pahr6SozV6RdffBEVK1ZEfn5+qXUZGRno0qULPD098dRTTyE4OBghISH6OtWoUSOTfv/u3btLNkxXrlyJL774AiEhIahfv76+/halExgYqH5HSRU2PohM4OzsjB9++AEtWrRQNXNJnz598PHHH9sgZ6b55ZdfSi3r27evzfOh0+mwZcsWHD58GD///LPsxWYRW92hKu93wpTqn9onSWq3swe5ix43NzfZsJUqVZIdVK80eNTYHVetVovbt2/LhrMGc+ue0tMcAIqDvqXuNEdERGDWrFlISUmRDJuSkmJ0fdWqVfH888+je/fuGDBggOJTYHMp/W6NGzdWFU/dunXh4eEhO/HEzZs3TW58lGX5WMIW57qsrCwUFhbCxeWfy84qVargo48+wueffy4Z7t69ezhy5AiOHDlisNzFxQUtW7ZEp06dMGjQIMXfdtSoUVi2bJlk400IgYSEBCQkJJRaV6NGDbzwwgvo3bs3/ud//sfqk7I8idjtishEtWvXxtKlSxW38/DwwOrVq22QI9Pk5eWVeszerFkzBAUFWSV+f39/DB8+HMOHD0dERAQ6dOiAihUryobJyspC3759VU37asl0laawVTrmysrKkl1fpUoVVfGo3c4e5PJWfJppU8Oa6/bt27J31q3F3LonN5NWEXNn7KlUqRI2b96sKo2SsrKyEBMTg2HDhqFWrVqYMGGC7Gxi5lKamtnb21t1XErbmlNGZVk+lrDFuU4IYbR8pk+fjh49epgcX2FhIY4ePYo5c+agWbNm6NSpE86fPy+5fc2aNfHzzz+bNePa9evXsWHDBrz99tvw9/fHvHnzoNVqTY6H/sHGB5EZ1qxZo7jN/fv3FadBNcWUKVMgHk0SASGE2V20duzYgZycHINl1uxyFRoaiiVLlmDJkiWIjo7G3r17kZSUhLfeeks2XHZ2Nt56660yubNnjry8PHtn4Ymn1Ggtq7D2ZqwbihpKT4MAyE5RrOTpp5/G+fPnMXjwYLOnzc3Pz8fs2bPRq1cv2anAHVFZl095Z+ycWqFCBcTExGDFihUW3QDbu3cv2rVrJ9sdtUuXLjh79ixee+01gycwpsjOzsYnn3yCd955x9ysEtj4IDLZf/7zH8m+zyV98skniIuLK+McmabkiwWBsu9y5e/vj2+//RaDBg2S3e7o0aOKL4Oy9aD48kqp64qal0wCZTOA1VH5+vraZOxCeVa9enWsWrUK6enpWLNmDd577z00adLE5Mberl27rPZOkyJK4yVMqetK2zrSecje+6LRaPD+++8jMTERe/fuxaRJkxAeHm7yU7a7d+/inXfekb2BFRwcjJ9++gmpqalYtWoVBg0ahAYNGpjcGPnuu+/w888/mxSG/sExH0QmiI2NVZytpLiCggL0798fx48fLxfdW7RaLWJiYgyW1atXT3GGFWtZtmwZ9uzZIztL05QpU/Dmm29K3lmtXr26bBrLly/H0KFDLcrn40DpguHvv/9WFY/a7ejRmC9fX1/J7j01atRARkaGjXNlH1WqVMGgQYP0NxR0Oh2Sk5ORnJyMpKQknD17Fjt27JB9I/iyZcsUZ58yhdK5Qa5bTnGpqamKLxq19wW7NVWvXl1yLI+TkxOys7NtMs5Bo9GgQ4cO6NChg37Z7du3kZSUhOTkZMTHx+Pw4cPYvn07Hj58aDSOU6dO4eDBg7IvBgYeHauDBw/Wz0738OFDXL58GSkpKUhMTMSZM2fwxx9/ICkpSTKOZcuWlXrJL6nDJx9EKmVlZWHAgAGSJz0pSUlJeO+998ooV6Y5ePBgqf69thxo7uXlhalTp8puk5aWhpUrV0quV5otxpJpSh8nLVq0kF1/6dIl2cHBRZ6U38ta5Orf9evXcebMGRvmpvxwcnJCUFAQOnbsiHfffRfz58/HmTNnZN8InpSUJHsjwlStW7eWfTKVmJiIxMRExXiUpp5t3LixQw06lqvTOp0Ou3fvtmFuDPn6+qJ169Z47bXXMGnSJPz22284cuSI7JM2U2ajLOLq6ooGDRrgpZdewvvvv48lS5bg0qVLGDBggGSYgwcPlptuwo8bNj6IVIqMjJScy16j0ci+L+Hnn39WNUi9rNmjy1VJkZGRilMXfv7555L93lu1aiXbvWLz5s2K09BKKSwsxPr1683652Vr9erVg7+/v+R6IYRinYuLi8OhQ4esnTWH1q1bN9n1U6ZMMTvupKQkzJ071+zwZcnc8RlKY72s+T6dGjVqoFmzZrLbzJ8/X3a9VqtV7A6m9J6Wx41SnZ4+fbrZA6wzMjIkjwmtVmvWxXuLFi3QpEkTyfXG6pQ59dfJyUm2q3B+fr7ixB9kHBsfRCoojfMYM2YMtm7dKjuHfFRUFI4fP14W2VPt119/Nfju5+eH559/3qZ5cHFxkb0bCjx6+rFq1Sqj65ycnPD6669Lhi0sLETv3r1N+q1Pnz6NKVOmICgoCK+//rqqu6PlgdIj/4ULF0q+EC0zMxMRERE2mb3JkfTr10/2ruvGjRsxevRo1Rc79+7dw/r169GnTx+EhoZi2bJl1sqqVc2aNQvh4eGIjo42abrhP//8U3a9teuf3J1qAFixYgU2bNgguX7s2LE4deqUbBxy55/HUefOnWW7kR09ehQDBw5U/Y6RvLw8/Pbbb3jzzTcRGBgo+bT76tWrCAwMxKeffopz586pzm9GRobszIjG6tSwYcPQo0cPbNiwwaR3pdi6/j4pOOaDSIHSOI8WLVpg+vTpqFChAtauXYv27dsb7ZqVn5+vH//h5eVVllk26vTp06X6r/bq1QvOzs42z8u7776L6dOny971nDNnDoYMGWJ0StVJkyZh9erVyM3NNRo2NTUVzz77LPr164e+ffuiWbNm8PX1hRACWVlZuHnzJs6ePYvjx4/jzz//lO3XW54NHz4cS5YskfwHWFBQgFdeeQXDhw/H66+/joCAAGRnZ2PPnj2YOXMmUlNTbZzjx1+dOnXwwQcfYOHChZLbLFy4EL/++isiIyPx/PPPIygoCO7u7rh//z6ysrJw+fJlnDhxAn/99Rf+/PNPs2e3siUhBPbv34/9+/fDyckJzZs3xwsvvIBGjRohLCwM1apVg6enJypWrIh79+7h0qVL2LRpE7788kvZeOXexWKOESNGYP78+ZLTx+p0OvTv3x8RERF46623EBoaisLCQpw6dQqLFy9W7GLUvXt3tG3b1qp5tjd3d3dMmjQJo0aNktxm/fr12LdvHyIjI9GpUyfUr18fHh4eyM3NRVZWFq5evYoTJ04gLi4Oe/bsKTWjopTU1FTMmDEDM2bMgL+/Pzp16oRmzZohLCwMAQEB8PLyQuXKlVFYWIhr167hwIEDWLhwoWwDwlidKiwsxJYtW7Blyxa4uLigTZs2aNeuHcLCwtCwYUP4+PjAy8sLLi4uuHv3Li5cuIB169Zh3bp1kum4ubkpTnJAxrHxQSQjMzMTr7/+uuQ4D3d3d6xdu1Z/gdy6dWtMnz4d48aNM7p9YmIi/u///g8//vhjmeVZSnl5sSDw6KQdFRWFMWPGSG6TmpqKr7/+2ujg8Vq1amHy5MmSvzPw6JH+hg0bZO9yPu4aNmyIt956C99++63kNg8fPsTChQtlL5bJNJ9++ik2bNgg23i7fPkyJk+ebMNc2Y5Op8Px48ctfpLbtGlT1KxZ00q5eqRy5cqYO3eu7FSoQghER0cjOjrarLgd0QcffIDVq1fLPvW5fv065syZgzlz5pRJHtLS0vD999/j+++/tyierl27yq4vLCzEwYMHcfDgQYvS6dKli0Xhn2TsdkUkQQiByMhI2UG7CxYsKPWG6E8++US2T/D69euxfPlyq+VTrZLjPdzd3e168hw6dKjiVIqzZ8+WbPiNHTtWP1PJk+y///2v7NgPJcHBwVbMzZPB19cXf/zxh0kvraPSRo8eXSbxRkZGyt7YMIeTkxO+//572bEGj7MKFSpgy5YtCAgIsHdWLBIeHo6WLVuWeToajUb2SRHJY+ODSMJ//vOfUtPSFte3b18MGTKk1HKNRoPvvvtOtg/t6NGjcfLkSWtkU5Xk5ORS6XXr1s3sF4VZQ+XKlTFy5EjZbZKTk/HNN99Irl+xYgVGjx79RL97wdvbGzExMfDx8TE57HPPPYdFixaVQa4cX5MmTbBz506EhITYOyuPpQEDBpTpi9rmzJmDCRMmWOXc4OHhgbVr16JPnz5WyFn55e/vj927d6NVq1b2zopZatasKfv/wprGjRuHF1980SZpOSI2PoiMiI2NxcSJEyXX+/v7y/ZlrlmzJlavXi25vmj8hykD3yxRHma5MmbEiBGK419mzZqFwsJCo+ucnZ0xf/58bNu2DQ0bNrQ4PwEBARg3btxj9zi9ZcuW2LVrl0kXwr1798b27dsdaspQW2vVqhVOnjyJoUOHGh2bZAoXFxd0794d8+bNs1LurMvd3d0q8VSsWBGffvqpxV1rlDg5OWHmzJmKE4EoCQ8PR1xcnMMNMpcSEhKCw4cPY9KkSfDw8LAoLo1Gg/DwcMmp011cXODq6mpRGkXCw8Nx7Ngx1KtXz+h6a9VfT09PLF68GLNmzbJKfE8qNj6ISlAa56HRaPDNN98odhnq0aMHPvroI8n1ly5dMvrkpCyUHO/h4uKCnj172iRtOd7e3hg+fLjsNklJSVizZo3sNl26dMGFCxewdetWvPrqq6pfAObm5obw8HBMmTIFBw8exJUrVzB79mzUrl1b9T6UF82bN8eZM2fw73//G7Vq1ZLc7rnnnsPatWvx66+/wtPT04Y5dEweHh5Yvnw5UlJSMG3aNLRo0UL1JA6BgYGIiIjAN998g7S0NGzZsgWvvfZaGefYPGPHjkVSUhJWrlyJQYMGISwsDE5O6i8hGjdujPHjxyMhIQGfffaZSWEt0bVrV8THx2Pjxo3o3r27qsk+atSogYEDByI2Nhb79u1DgwYNbJDT8sPV1RXTp09HamoqFixYgLZt26puXNesWROvv/46Vq5cieTkZOzbt0/y/1ydOnWQmZmJmJgYjBo1Cu3atTPpZoiPjw8GDhyI7du3Y9++fbKTFyxbtgznzp3DwoUL8dprryEoKEh1OhqNRj+e88qVK/jwww9VhyXjNILzhBE5tNu3b6NGjRoG87R37txZcgpWR5GQkICzZ88iMzMTd+7cQW5uLjw8PODp6YlatWohLCwM9erVs9lFUBG5biCrV69GZGSkxWnodDrExsbi4sWLyMjIQOXKleHv74+WLVua9E+XzJOTk4O4uDhcu3YNWVlZuHPnDpydneHp6YmqVasiJCQEYWFhdpn1zppycnKQmJiIlJQUpKWl4d69e3jw4AFcXFzg7u6OKlWqoH79+ggLC1O8WWMrWq0Wp0+fxqVLl5CVlYWsrCw4OTnBx8cHvr6+aNKkCUJDQ+2dzXInPz8fJ06cQHJysr5OCyHg5eWFKlWqICgoCI0aNTKr+2dxOp0OV65cQXJyMlJSUvTnbq1WC3d3d3h4eKBOnTpo2LAhgoKCLDp/3717V19/MzIycP/+fTx48AAVKlRA5cqVUbVqVYSGhqJhw4aoUqWKRfsFPBqLJNUtrEOHDti7d6/FaTwu2PggcnDR0dGl+lYvXryYd2/sxJw+6JMnT7bo5XVERGQbHTt2xL59+0wK86Q1PtjtisjBldfxHkRERPTk4Xs+iBxcu3bt0Lx5c/13b29vq7/Yi4iIiEgNNj6IHNzYsWPtnQUiIiIiAOx2RURERERENsIB50REREREZBN88kFERERERDbBxgcREREREdkEGx9ERERERGQTbHwQEREREZFNsPFBREREREQ2wcYHERERERHZBBsfRERERERkE2x8EBERERGRTbDxQURERERENsHGBxERERER2QQbH0REREREZBNsfBARERERkU2w8UFERERERDbBxgcREREREdkEGx9ERERERGQTbHwQEREREZFNsPFBREREREQ2wcYHERERERHZBBsfRERERERkE2x8EBERERGRTbDxQURERERENsHGBxERERER2cT/AzusWelyVqtiAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Redefine Re in same function from before within a for loop.\n", + "\n", + "### BEGIN SOLUTION\n", + "dspan = [0, 1] # range of normalized d*\n", + "Mult_Re = np.array([1, 10, 100, 500, 1000, 5000]) # values from above in array\n", + "n = 300 # number of steps in linspace below\n", + "tspan = np.linspace(0, 1, n)\n", + "xo = [0] # we're starting at the entrance of the tube\n", + "### END SOLUTION\n", + "\n", + "fig = plt.figure(figsize=(4,3),dpi=200) # formats the plotted figure to be larger and clearer\n", + "\n", + "# loop the integration for different values of Re\n", + "# plot each iteration inside loop\n", + "\n", + "for i in range(len(Mult_Re)):\n", + "\n", + "### BEGIN SOLUTION\n", + " re = Mult_Re[i]\n", + " e_Re_lambda = lambda x, d: entrance(x, d, Re = re)\n", + " soln = integrate.solve_ivp(e_Re_lambda, dspan, xo, t_eval= tspan) #this is to solve our ode\n", + " d = soln.t # d = independent variable\n", + " x = soln.y[0] # x = dependent variable solution\n", + " # Use semilogx\n", + " plt.semilogx(x, d, linewidth=3, label = Mult_Re[i]) #we want the normalized x axis to see where d crosses 1.\n", + " Le = np.array(x[n-1])\n", + "### END SOLUTION\n", + "\n", + " #print values for Le\n", + " print(\"Le (x @ δ*=1) for Re =\", Mult_Re[i], \"=\", Le)\n", + "print(\"\\n\")\n", + "\n", + "# labels and publication quality details\n", + "plt.xlabel('x*/Re [dimensionless]', fontsize=16,fontweight='bold')\n", + "plt.ylabel('\\u03B4* [dimensionless]', fontsize=16,fontweight='bold')\n", + "plt.xticks(fontsize=15)\n", + "plt.yticks(fontsize=15)\n", + "plt.grid()\n", + "plt.legend();" + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file