@@ -134,22 +134,28 @@ async def test_simple_kg_pipeline_from_json_config(
134134 runner = PipelineRunner .from_config_file (
135135 "tests/e2e/data/config_files/simple_kg_pipeline_config.json"
136136 )
137+
138+ # check extras and API keys are handled as expected
137139 config = runner .config
140+ assert config is not None
141+ # extras must be resolved:
138142 assert config ._global_data ["extras" ] == {"openai_api_key" : "my-openai-key" }
143+ # API key for LLM is read from "extras" (see config file)
139144 default_llm = config ._global_data ["llm_config" ]["default" ]
140- assert default_llm .client .api_key == "my-openai-key" # read from extras
145+ assert default_llm .client .api_key == "my-openai-key"
146+ # API key for embedder is read from env vars (see config file)
141147 default_embedder = config ._global_data ["embedder_config" ]["default" ]
142148 assert default_embedder .client .api_key == "sk-my-secret-key" # read from env vaf
143149
150+ # then run pipeline and check results
144151 res = await runner .run ({"file_path" : "tests/e2e/data/documents/harry_potter.pdf" })
145152 assert isinstance (res , PipelineResult )
146- # print(await runner.pipeline.store.get_result_for_component(res.run_id, "splitter"))
147153 assert res .result ["resolver" ] == {
148154 "number_of_nodes_to_resolve" : 3 ,
149155 "number_of_created_nodes" : 3 ,
150156 }
151157 nodes = driver .execute_query ("MATCH (n) RETURN n" )
152- # 1 chunk + 1 document + 3 nodes
158+ # 1 chunk + 1 document + 3 __Entity__ nodes
153159 assert len (nodes .records ) == 5
154160
155161
0 commit comments