|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "55c8afde-9b18-4b6a-9ee5-33924bdb4f16", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# REST Inference for single-model server deployment \n", |
| 9 | + "\n", |
| 10 | + "_Note: Use this procedure for testing a model that you deployed on a single-model server. See `3_rest_requests_multi_model.ipynb` for testing a model that you deployed on a multi-model server._" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "id": "2c004acc-13cd-4917-8480-592c7c2d623b", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "## First, replace the placeholder with the *url* or *External* you got at the previous step from the Model Serving configuration\n", |
| 19 | + "\n", |
| 20 | + "The model name is already filled in." |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": null, |
| 26 | + "id": "0de65d02-84a6-4cff-882e-551cdd42b486", |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "model_name = \"fraud\"\n", |
| 31 | + "infer_endpoint = 'change_me' # e.g. 'https://model-server.<your-namespace>.svc.cluster.local' or 'https://model-server-<your-namespace>.apps.shift.nerc.mghpcc.org'\n", |
| 32 | + "infer_url = f\"{infer_endpoint}/v2/models/{model_name}/infer\"" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "markdown", |
| 37 | + "id": "d94f9ece-e9cf-44e2-a8a2-73160186aee8", |
| 38 | + "metadata": {}, |
| 39 | + "source": [ |
| 40 | + "## Request Function\n", |
| 41 | + "\n", |
| 42 | + "Build and submit the REST request. \n", |
| 43 | + "\n", |
| 44 | + "Note: You submit the data in the same format that you used for an ONNX inference." |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": null, |
| 50 | + "id": "54b9386f-683a-4880-b780-c40bec3ab9f8", |
| 51 | + "metadata": { |
| 52 | + "tags": [] |
| 53 | + }, |
| 54 | + "outputs": [], |
| 55 | + "source": [ |
| 56 | + "import requests\n", |
| 57 | + "\n", |
| 58 | + "\n", |
| 59 | + "def rest_request(data):\n", |
| 60 | + " json_data = {\n", |
| 61 | + " \"inputs\": [\n", |
| 62 | + " {\n", |
| 63 | + " \"name\": \"dense_input\",\n", |
| 64 | + " \"shape\": [1, 5],\n", |
| 65 | + " \"datatype\": \"FP32\",\n", |
| 66 | + " \"data\": data\n", |
| 67 | + " }\n", |
| 68 | + " ]\n", |
| 69 | + " }\n", |
| 70 | + "\n", |
| 71 | + " response = requests.post(infer_url, json=json_data, verify=False)\n", |
| 72 | + " response_dict = response.json()\n", |
| 73 | + " return response_dict['outputs'][0]['data']" |
| 74 | + ] |
| 75 | + }, |
| 76 | + { |
| 77 | + "cell_type": "code", |
| 78 | + "execution_count": null, |
| 79 | + "id": "5f871f12", |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "#Load the scaler\n", |
| 84 | + "import pickle\n", |
| 85 | + "with open('artifact/scaler.pkl', 'rb') as handle:\n", |
| 86 | + " scaler = pickle.load(handle)" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": null, |
| 92 | + "id": "45ad16ac-23da-48bd-9796-f8e4cacae981", |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "data = [0.3111400080477545, 1.9459399775518593, 1.0, 0.0, 0.0]\n", |
| 97 | + "prediction = rest_request(scaler.transform([data]).tolist()[0])\n", |
| 98 | + "prediction" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "id": "1d66e0f7-4d4e-4879-bdf1-36b712432fd9", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "threshhold = 0.95\n", |
| 109 | + "\n", |
| 110 | + "if (prediction[0] > threshhold):\n", |
| 111 | + " print('fraud')\n", |
| 112 | + "else:\n", |
| 113 | + " print('not fraud')" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "id": "5f7b17c0", |
| 119 | + "metadata": {}, |
| 120 | + "source": [ |
| 121 | + "## Example 1: user buys a coffee\n", |
| 122 | + "\n", |
| 123 | + "In this example, the user is buying a coffee. The parameters given to the model are:\n", |
| 124 | + "* same location as the last transaction (distance=0)\n", |
| 125 | + "* same median price as the last transaction (ratio_to_median=1)\n", |
| 126 | + "* using a pin number (pin=1)\n", |
| 127 | + "* using the credit card chip (chip=1)\n", |
| 128 | + "* not an online transaction (online=0)" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "id": "f0a68b67-b109-4a2f-b097-092f4a4d25ce", |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "data = [0.0, 1.0, 1.0, 1.0, 0.0]\n", |
| 139 | + "prediction = rest_request(scaler.transform([data]).tolist()[0])\n", |
| 140 | + "prediction\n", |
| 141 | + "threshhold = 0.95\n", |
| 142 | + "\n", |
| 143 | + "if (prediction[0] > threshhold):\n", |
| 144 | + " print('The model predicts that this is fraud')\n", |
| 145 | + "else:\n", |
| 146 | + " print('The model predicts that this is not fraud')" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "id": "db10b280", |
| 152 | + "metadata": {}, |
| 153 | + "source": [ |
| 154 | + "## Example 2: fraudulent transaction\n", |
| 155 | + "\n", |
| 156 | + "In this example, someone stole the user's credit card and is buying something online. The parameters given to the model are:\n", |
| 157 | + "* very far away from the last transaction (distance=100)\n", |
| 158 | + "* median price similar to the last transaction (ratio_to_median=1.2)\n", |
| 159 | + "* not using a pin number (pin=0)\n", |
| 160 | + "* not using the credit card chip (chip=0)\n", |
| 161 | + "* is an online transaction (online=1)" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "id": "219b8927", |
| 168 | + "metadata": { |
| 169 | + "tags": [] |
| 170 | + }, |
| 171 | + "outputs": [], |
| 172 | + "source": [ |
| 173 | + "data = [100, 1.2, 0.0, 0.0, 1.0]\n", |
| 174 | + "prediction = rest_request(scaler.transform([data]).tolist()[0])\n", |
| 175 | + "prediction\n", |
| 176 | + "threshhold = 0.95\n", |
| 177 | + "\n", |
| 178 | + "if (prediction[0] > threshhold):\n", |
| 179 | + " print('The model predicts that this is fraud')\n", |
| 180 | + "else:\n", |
| 181 | + " print('The model predicts that this is not fraud')" |
| 182 | + ] |
| 183 | + } |
| 184 | + ], |
| 185 | + "metadata": { |
| 186 | + "kernelspec": { |
| 187 | + "display_name": "Python 3.9", |
| 188 | + "language": "python", |
| 189 | + "name": "python3" |
| 190 | + }, |
| 191 | + "language_info": { |
| 192 | + "codemirror_mode": { |
| 193 | + "name": "ipython", |
| 194 | + "version": 3 |
| 195 | + }, |
| 196 | + "file_extension": ".py", |
| 197 | + "mimetype": "text/x-python", |
| 198 | + "name": "python", |
| 199 | + "nbconvert_exporter": "python", |
| 200 | + "pygments_lexer": "ipython3", |
| 201 | + "version": "3.9.18" |
| 202 | + } |
| 203 | + }, |
| 204 | + "nbformat": 4, |
| 205 | + "nbformat_minor": 5 |
| 206 | +} |
0 commit comments