Skip to content

Commit c0f08c1

Browse files
committed
File name updates to address the Lint changes
1 parent 77156c7 commit c0f08c1

File tree

4 files changed

+8
-5
lines changed

4 files changed

+8
-5
lines changed

.github/scripts/spellcheck_conf/wordlist.txt

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1390,4 +1390,7 @@ chatbot's
13901390
Lamini
13911391
lamini
13921392
nba
1393-
sqlite
1393+
sqlite
1394+
customerservice
1395+
fn
1396+
ExecuTorch

recipes/responsible_ai/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,4 +8,4 @@ Meta Llama Guard and Meta Llama Guard 2 are new models that provide input and ou
88
The [llama_guard](llama_guard) folder contains the inference script to run Meta Llama Guard locally. Add test prompts directly to the [inference script](llama_guard/inference.py) before running it.
99

1010
### Running on the cloud
11-
The notebooks [Purple_Llama_Anyscale](purple_llama_anyscale.ipynb) & [Purple_Llama_OctoAI](purple_llama_octoai.ipynb) contain examples for running Meta Llama Guard on cloud hosted endpoints.
11+
The notebooks [Purple_Llama_Anyscale](Purple_Llama_Anyscale.ipynb) & [Purple_Llama_OctoAI](Purple_Llama_Octoai.ipynb) contain examples for running Meta Llama Guard on cloud hosted endpoints.

recipes/use_cases/README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,11 +13,11 @@ This step-by-step tutorial shows how to use the [WhatsApp Business API](https://
1313
## [Messenger Chatbot](./customerservice_chatbots/messenger_llama/messenger_llama3.md): Building a Llama 3 Enabled Messenger Chatbot
1414
This step-by-step tutorial shows how to use the [Messenger Platform](https://developers.facebook.com/docs/messenger-platform/overview) to build a Llama 3 enabled Messenger chatbot.
1515

16-
### RAG Chatbot Example (running [locally](./customerservice_chatbots/RAG_chatbot/RAG_chatbot_example.ipynb) or on [OctoAI](../3p_integration/octoai/RAG_chatbot_example/RAG_chatbot_example.ipynb))
16+
### RAG Chatbot Example (running [locally](./customerservice_chatbots/RAG_chatbot/RAG_Chatbot_Example.ipynb) or on [OctoAI](../3p_integration/octoai/RAG_chatbot_example/RAG_chatbot_example.ipynb))
1717
A complete example of how to build a Llama 3 chatbot hosted on your browser that can answer questions based on your own data using retrieval augmented generation (RAG). You can run Llama2 locally if you have a good enough GPU or on OctoAI if you follow the note [here](../README.md#octoai_note).
1818

1919
## [Sales Bot](./customerservice_chatbots/sales_bot/SalesBot.ipynb): Sales Bot with Llama3 - A Summarization and RAG Use Case
2020
An summarization + RAG use case built around the Amazon product review Kaggle dataset to build a helpful Music Store Sales Bot. The summarization and RAG are built on top of Llama models hosted on OctoAI, and the vector database is hosted on Weaviate Cloud Services.
2121

22-
## [Media Generation](./mediagen.ipynb): Building a Video Generation Pipeline with Llama3
22+
## [Media Generation](./MediaGen.ipynb): Building a Video Generation Pipeline with Llama3
2323
This step-by-step tutorial shows how to use leverage Llama 3 to drive the generation of animated videos using SDXL and SVD. More specifically it relies on JSON formatting to produce a scene-by-scene story board of a recipe video. The user provides the name of a dish, then Llama 3 describes a step by step guide to reproduce the said dish. This step by step guide is brought to life with models like SDXL and SVD.

recipes/use_cases/multilingual/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ phase2_ds.save_to_disk("data/phase2")
118118
```
119119

120120
### Train
121-
Finally, we can start finetuning Llama2 on these datasets by following the [finetuning recipes](https://github.com/meta-llama/llama-recipes/tree/main/recipes/quickstart/finetuning). Remember to pass the new tokenizer path as an argument to the script: `--tokenizer_name=./extended_tokenizer`.
121+
Finally, we can start finetuning Llama2 on these datasets by following the [finetuning recipes](../../quickstart/finetuning/). Remember to pass the new tokenizer path as an argument to the script: `--tokenizer_name=./extended_tokenizer`.
122122

123123
OpenHathi was trained on 64 A100 80GB GPUs. Here are the hyperparameters used and other training details:
124124
- maximum learning rate: 2e-4

0 commit comments

Comments
 (0)