|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "9856250d-51bb-49d3-962d-483178cfafab", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "<a href=\"https://colab.research.google.com/github/meta-llama/llama-recipes/blob/main/recipes/use_cases/agents/langchain/tool-calling-agent.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": null, |
| 14 | + "id": "158a3f92-139a-4e92-9273-e018b027fc54", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "! pip install -U langchain_groq langchain langchain_community sentence-transformers tavily-python tiktoken langchainhub chromadb" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "745f7d9f-15c4-41c8-94f8-09e1426581cc", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "# Tool calling agent with Llama 3\n", |
| 27 | + "\n", |
| 28 | + "[Tool calling](https://python.langchain.com/docs/modules/agents/agent_types/tool_calling/) allows an LLM to detect when one or more tools should be called.\n", |
| 29 | + "\n", |
| 30 | + "It will then respond with the inputs that should be passed to those tools. \n", |
| 31 | + "\n", |
| 32 | + "LangChain has a general agent that works with tool-calling LLMs.\n", |
| 33 | + "\n", |
| 34 | + "### Tools \n", |
| 35 | + "\n", |
| 36 | + "Let's define a few tools.\n", |
| 37 | + "\n", |
| 38 | + "`Retriever`" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": null, |
| 44 | + "id": "16569e69-890c-4e0c-947b-35ed2e0cf0c7", |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "import os\n", |
| 49 | + "\n", |
| 50 | + "os.environ['TAVILY_API_KEY'] = 'YOUR_TAVILY_API_KEY'\n", |
| 51 | + "os.environ['GROQ_API_KEY'] = 'YOUR_GROQ_API_KEY'" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "id": "6debf81d-84d1-4645-aa25-07d24cdcbc2c", |
| 58 | + "metadata": {}, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "from langchain_community.document_loaders import WebBaseLoader\n", |
| 62 | + "from langchain_community.vectorstores import Chroma\n", |
| 63 | + "from langchain_community.embeddings import HuggingFaceEmbeddings\n", |
| 64 | + "from langchain_text_splitters import RecursiveCharacterTextSplitter\n", |
| 65 | + "\n", |
| 66 | + "loader = WebBaseLoader(\"https://docs.smith.langchain.com/overview\")\n", |
| 67 | + "docs = loader.load()\n", |
| 68 | + "documents = RecursiveCharacterTextSplitter(\n", |
| 69 | + " chunk_size=1000, chunk_overlap=200\n", |
| 70 | + ").split_documents(docs)\n", |
| 71 | + "vector = Chroma.from_documents(documents, HuggingFaceEmbeddings())\n", |
| 72 | + "retriever = vector.as_retriever()\n", |
| 73 | + "\n", |
| 74 | + "from langchain.tools.retriever import create_retriever_tool\n", |
| 75 | + "retriever_tool = create_retriever_tool(\n", |
| 76 | + " retriever,\n", |
| 77 | + " \"langsmith_search\",\n", |
| 78 | + " \"Search for information about LangSmith. For any questions about LangSmith, you must use this tool!\",\n", |
| 79 | + ")" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "id": "8454286f-f6d3-4ac0-a583-16315189d151", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "`Web search`" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "id": "8a4d9feb-80b7-4355-9cba-34e816400aa5", |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [], |
| 96 | + "source": [ |
| 97 | + "from langchain_community.tools.tavily_search import TavilySearchResults\n", |
| 98 | + "search = TavilySearchResults()" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "markdown", |
| 103 | + "id": "42215e7b-3170-4311-8438-5a7b385ebb64", |
| 104 | + "metadata": {}, |
| 105 | + "source": [ |
| 106 | + "`Custom`" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": null, |
| 112 | + "id": "c130481d-dc6f-48e0-b795-7e3a4438fb6a", |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "from langchain.agents import tool\n", |
| 117 | + "\n", |
| 118 | + "@tool\n", |
| 119 | + "def magic_function(input: int) -> int:\n", |
| 120 | + " \"\"\"Applies a magic function to an input.\"\"\"\n", |
| 121 | + " return input + 2" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "id": "bfc0cfbe-d5ce-4c26-859f-5d29be121bef", |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "tools = [magic_function, search, retriever_tool] " |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "markdown", |
| 136 | + "id": "e88c2e1d-1503-4659-be4d-98900a69253f", |
| 137 | + "metadata": {}, |
| 138 | + "source": [ |
| 139 | + "### LLM\n", |
| 140 | + "\n", |
| 141 | + "Here, we need a Llama 3 model that supports tool use.\n", |
| 142 | + "\n", |
| 143 | + "This can be accomplished via prompt engineering (e.g., see [here](https://replicate.com/hamelsmu/llama-3-70b-instruct-awq-with-tools)) or fine-tuning (e.g., see [here](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling) and [here](https://huggingface.co/mzbac/llama-3-8B-Instruct-function-calling)).\n", |
| 144 | + "\n", |
| 145 | + "We can review LLMs that support tool calling [here](https://python.langchain.com/docs/integrations/chat/) and Groq is included.\n", |
| 146 | + "\n", |
| 147 | + "[Here](https://github.com/groq/groq-api-cookbook/blob/main/llama3-stock-market-function-calling/llama3-stock-market-function-calling.ipynb) is a notebook by Groq on function calling with Llama 3 and LangChain." |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "id": "99c919d2-198d-4c3b-85ba-0772bf7db383", |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "from langchain_groq import ChatGroq\n", |
| 158 | + "llm = ChatGroq(temperature=0, model=\"llama3-70b-8192\")" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "markdown", |
| 163 | + "id": "695ffb74-c278-4420-b10b-b18210d824eb", |
| 164 | + "metadata": {}, |
| 165 | + "source": [ |
| 166 | + "### Agent\n", |
| 167 | + "\n", |
| 168 | + "We use LangChain [tool calling agent](https://python.langchain.com/docs/modules/agents/agent_types/tool_calling/). " |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "fae083a8-864c-4394-93e5-36d22aaa5fe3", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "# Prompt \n", |
| 179 | + "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n", |
| 180 | + "prompt = ChatPromptTemplate.from_messages(\n", |
| 181 | + " [\n", |
| 182 | + " (\"system\", \"You are a helpful assistant\"),\n", |
| 183 | + " (\"human\", \"{input}\"),\n", |
| 184 | + " MessagesPlaceholder(\"agent_scratchpad\"),\n", |
| 185 | + " ]\n", |
| 186 | + ")\n", |
| 187 | + "prompt.pretty_print()" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "id": "421f9565-bc1a-4141-aae7-c6bcae2c63fc", |
| 194 | + "metadata": {}, |
| 195 | + "outputs": [], |
| 196 | + "source": [ |
| 197 | + "### Run\n", |
| 198 | + "from langchain.agents import AgentExecutor, create_tool_calling_agent, tool\n", |
| 199 | + "agent = create_tool_calling_agent(llm, tools, prompt)\n", |
| 200 | + "agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "id": "229372f4-abb3-4418-9444-cadc548a8155", |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "agent_executor.invoke({\"input\": \"what is the value of magic_function(3)?\"})" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "id": "016b447f-d374-4fc7-a1fe-0ce56856a763", |
| 216 | + "metadata": {}, |
| 217 | + "source": [ |
| 218 | + "Trace: \n", |
| 219 | + "\n", |
| 220 | + "https://smith.langchain.com/public/adf06494-94d6-4e93-98f3-60e65d2f2c19/r" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": null, |
| 226 | + "id": "6914b16c-be7a-4838-b080-b6af6b6e1417", |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [], |
| 229 | + "source": [ |
| 230 | + "agent_executor.invoke({\"input\": \"whats the weather in sf?\"})" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "markdown", |
| 235 | + "id": "9e363535-29b8-45d8-85b6-10d2e21f93bc", |
| 236 | + "metadata": {}, |
| 237 | + "source": [ |
| 238 | + "Trace: https://smith.langchain.com/public/64a62781-7e3c-4acf-ae72-ce49ccb82960/r" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": null, |
| 244 | + "id": "8ce1b38c-a22a-4035-a9a1-2ea0da419ade", |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [], |
| 247 | + "source": [ |
| 248 | + "agent_executor.invoke({\"input\": \"how can langsmith help with testing?\"})" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "markdown", |
| 253 | + "id": "e28cc79b-f6de-45fb-b7e5-84c119ba57da", |
| 254 | + "metadata": {}, |
| 255 | + "source": [ |
| 256 | + "This last question failed to run. \n", |
| 257 | + "\n", |
| 258 | + "Trace: https://smith.langchain.com/public/960a40e9-24f1-42a0-859d-2e0a30018d1c/r\n", |
| 259 | + "\n", |
| 260 | + "We can see that the agent correctly decides to query the vectorstore for a question about LangSmith. But it then inexplicably attempts web search. And it appears to get stuck in a loop of calling various tools before crashing.\n", |
| 261 | + "\n", |
| 262 | + "Of course, this is using a non-fine-tuned (only prompting) version of llama3 for tool-use. But, it illustates the reliability challenge with using Agent Executor. It is sensitive to the LLM's capacity for tool-use! \n", |
| 263 | + "\n", |
| 264 | + "In the next notebook, we will show an alternative way to implement this agent using LangGraph." |
| 265 | + ] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "code", |
| 269 | + "execution_count": null, |
| 270 | + "id": "55e7518c-e7d8-4ce7-9a4a-7909fb3a8b88", |
| 271 | + "metadata": {}, |
| 272 | + "outputs": [], |
| 273 | + "source": [] |
| 274 | + } |
| 275 | + ], |
| 276 | + "metadata": { |
| 277 | + "kernelspec": { |
| 278 | + "display_name": "Python 3 (ipykernel)", |
| 279 | + "language": "python", |
| 280 | + "name": "python3" |
| 281 | + }, |
| 282 | + "language_info": { |
| 283 | + "codemirror_mode": { |
| 284 | + "name": "ipython", |
| 285 | + "version": 3 |
| 286 | + }, |
| 287 | + "file_extension": ".py", |
| 288 | + "mimetype": "text/x-python", |
| 289 | + "name": "python", |
| 290 | + "nbconvert_exporter": "python", |
| 291 | + "pygments_lexer": "ipython3", |
| 292 | + "version": "3.11.9" |
| 293 | + } |
| 294 | + }, |
| 295 | + "nbformat": 4, |
| 296 | + "nbformat_minor": 5 |
| 297 | +} |
0 commit comments