|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import argparse |
| 4 | +from PIL import Image as PIL_Image |
| 5 | +import torch |
| 6 | +from transformers import MllamaForConditionalGeneration, MllamaProcessor |
| 7 | + |
| 8 | + |
| 9 | +# Constants |
| 10 | +DEFAULT_MODEL = "meta-llama/Llama-3.2-11B-Vision-Instruct" |
| 11 | + |
| 12 | + |
| 13 | +def load_model_and_processor(model_name: str, hf_token: str): |
| 14 | + """ |
| 15 | + Load the model and processor based on the 11B or 90B model. |
| 16 | + """ |
| 17 | + model = MllamaForConditionalGeneration.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, token=hf_token) |
| 18 | + processor = MllamaProcessor.from_pretrained(model_name, token=hf_token) |
| 19 | + return model, processor |
| 20 | + |
| 21 | + |
| 22 | +def process_image(image_path: str) -> PIL_Image.Image: |
| 23 | + """ |
| 24 | + Open and convert an image from the specified path. |
| 25 | + """ |
| 26 | + if not os.path.exists(image_path): |
| 27 | + print(f"The image file '{image_path}' does not exist.") |
| 28 | + sys.exit(1) |
| 29 | + with open(image_path, "rb") as f: |
| 30 | + return PIL_Image.open(f).convert("RGB") |
| 31 | + |
| 32 | + |
| 33 | +def generate_text_from_image(model, processor, image, prompt_text: str, temperature: float, top_p: float): |
| 34 | + """ |
| 35 | + Generate text from an image using the model and processor. |
| 36 | + """ |
| 37 | + conversation = [ |
| 38 | + {"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt_text}]} |
| 39 | + ] |
| 40 | + prompt = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) |
| 41 | + inputs = processor(prompt, image, return_tensors="pt").to(model.device) |
| 42 | + output = model.generate(**inputs, temperature=temperature, top_p=top_p, max_new_tokens=512) |
| 43 | + return processor.decode(output[0])[len(prompt):] |
| 44 | + |
| 45 | + |
| 46 | +def main(image_path: str, prompt_text: str, temperature: float, top_p: float, model_name: str, hf_token: str): |
| 47 | + """ |
| 48 | + Call all the functions. |
| 49 | + """ |
| 50 | + model, processor = load_model_and_processor(model_name, hf_token) |
| 51 | + image = process_image(image_path) |
| 52 | + result = generate_text_from_image(model, processor, image, prompt_text, temperature, top_p) |
| 53 | + print("Generated Text: " + result) |
| 54 | + |
| 55 | + |
| 56 | +if __name__ == "__main__": |
| 57 | + parser = argparse.ArgumentParser(description="Generate text from an image and prompt using the 3.2 MM Llama model.") |
| 58 | + parser.add_argument("--image_path", type=str, help="Path to the image file") |
| 59 | + parser.add_argument("--prompt_text", type=str, help="Prompt text to describe the image") |
| 60 | + parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for generation (default: 0.7)") |
| 61 | + parser.add_argument("--top_p", type=float, default=0.9, help="Top p for generation (default: 0.9)") |
| 62 | + parser.add_argument("--model_name", type=str, default=DEFAULT_MODEL, help=f"Model name (default: '{DEFAULT_MODEL}')") |
| 63 | + parser.add_argument("--hf_token", type=str, required=True, help="Hugging Face token for authentication") |
| 64 | + |
| 65 | + args = parser.parse_args() |
| 66 | + main(args.image_path, args.prompt_text, args.temperature, args.top_p, args.model_name, args.hf_token) |
0 commit comments