@@ -379,8 +379,8 @@ def threshold_network(network, retain=10):
379379
380380
381381def match_length_degree_distribution (W , D , nbins = 10 , nswap = 1000 ,
382- replacement = False , weighted = True ,
383- seed = None ):
382+ replacement = False , weighted = True ,
383+ seed = None ):
384384 """
385385 Generates degree- and edge length-preserving surrogate connectomes.
386386
@@ -448,7 +448,7 @@ def match_length_degree_distribution(W, D, nbins=10, nswap=1000,
448448 nr = 0
449449 newB = np .copy (B )
450450
451- while ((len (cn_x ) >= 2 ) & (nr < nswap )):
451+ while ((len (cn_x ) >= 2 ) & (nr < nswap )):
452452 # choose randomly the edge to be rewired
453453 r = rs .randint (len (cn_x ))
454454 n_x , n_y = cn_x [r ], cn_y [r ]
@@ -457,7 +457,7 @@ def match_length_degree_distribution(W, D, nbins=10, nswap=1000,
457457 # options to rewire with
458458 # connected nodes that doesn't involve (n_x, n_y)
459459 index = (cn_x != n_x ) & (cn_y != n_y ) & (cn_y != n_x ) & (cn_x != n_y )
460- if ( len (np .where (index )[0 ]) == 0 ) :
460+ if len (np .where (index )[0 ]) == 0 :
461461 cn_x = np .delete (cn_x , r )
462462 cn_y = np .delete (cn_y , r )
463463
@@ -468,7 +468,7 @@ def match_length_degree_distribution(W, D, nbins=10, nswap=1000,
468468 # L(n_x,n_y) = L(n_x, ops1_x) & L(ops1_x,ops1_y) = L(n_y, ops1_y)
469469 index = (L [n_x , n_y ] == L [n_x , ops1_x ]) & (
470470 L [ops1_x , ops1_y ] == L [n_y , ops1_y ])
471- if ( len (np .where (index )[0 ]) == 0 ) :
471+ if len (np .where (index )[0 ]) == 0 :
472472 cn_x = np .delete (cn_x , r )
473473 cn_y = np .delete (cn_y , r )
474474
@@ -479,7 +479,7 @@ def match_length_degree_distribution(W, D, nbins=10, nswap=1000,
479479 & (newB [min (n_y , ops2_y [i ])][max (n_y ,
480480 ops2_y [i ])] == 0 )
481481 for i in range (len (ops2_x ))]
482- if (len (np .where (index )[0 ]) == 0 ):
482+ if (len (np .where (index )[0 ]) == 0 ):
483483 cn_x = np .delete (cn_x , r )
484484 cn_y = np .delete (cn_y , r )
485485
@@ -513,27 +513,27 @@ def match_length_degree_distribution(W, D, nbins=10, nswap=1000,
513513 cn_x = np .delete (cn_x , index )
514514 cn_y = np .delete (cn_y , index )
515515
516- if ( nr < nswap ) :
516+ if nr < nswap :
517517 print (f"I didn't finish, out of rewirable edges: { len (cn_x )} " )
518518
519519 i , j = np .triu_indices (N , k = 1 )
520520 # Make the connectivity matrix symmetric
521521 newB [j , i ] = newB [i , j ]
522522
523523 # check the number of edges is preserved
524- if ( len (np .where (B != 0 )[0 ]) != len (np .where (newB != 0 )[0 ]) ):
524+ if len (np .where (B != 0 )[0 ]) != len (np .where (newB != 0 )[0 ]):
525525 print (
526526 f"ERROR --- number of edges changed, \
527527 B:{ len (np .where (B != 0 )[0 ])} , newB:{ len (np .where (newB != 0 )[0 ])} " )
528528 # check that the degree of the nodes it's the same
529529 for i in range (N ):
530- if ( np .sum (B [i ]) != np .sum (newB [i ]) ):
530+ if np .sum (B [i ]) != np .sum (newB [i ]):
531531 print (
532532 f"ERROR --- node { i } changed k by: \
533533 { np .sum (B [i ]) - np .sum (newB [i ])} " )
534534
535535 newW = np .zeros ((N , N ))
536- if ( weighted ) :
536+ if weighted :
537537 # Reassign the weights
538538 mask = np .triu (B != 0 , k = 1 )
539539 inids = D [mask ]
0 commit comments