|
| 1 | +# Finetuning LLMs to output audio |
| 2 | + |
| 3 | +In this example, we finetune Orpcanopylabs/orpheus-tts-0.1-pretrained (a LLaMA 3.2 3b model) to output audio. |
| 4 | + |
| 5 | +The `finetune.yml` withe current settings will run on any Nvidia GPU with 45GB VRAM or more. If you adjust the batch size it can easily run on any GPU under 24GB. |
| 6 | + |
| 7 | +## Dataset pre-processing for pre-training |
| 8 | +If you are adding another voice in English, please jump ahead to finetuning pre-processing. |
| 9 | + |
| 10 | +For this to work, we need to preprocess our dataset. Since we are expecting to output audio, we will need to add tokens to the tokenizer. |
| 11 | + |
| 12 | +Using this code, it will download the SNAC model and add the correct tokens and upload the final dataset. |
| 13 | + |
| 14 | +```python |
| 15 | +import torch |
| 16 | +from snac import SNAC |
| 17 | +from datasets import load_dataset |
| 18 | +from huggingface_hub import snapshot_download |
| 19 | +from datasets import load_dataset |
| 20 | +import random |
| 21 | +import torchaudio.transforms as T |
| 22 | +from transformers import AutoTokenizer |
| 23 | +import os |
| 24 | + |
| 25 | +my_original_dataset_name = "<huggingface-id-of-dataset-that-we-want-to-preprocess>" |
| 26 | +name_to_push_dataset_to = "<huggingface-id-of-where-to-save-dataset>" |
| 27 | + |
| 28 | +dsn = my_original_dataset_name |
| 29 | + |
| 30 | +snapshot_download( |
| 31 | + repo_id=dsn, |
| 32 | + repo_type="dataset", |
| 33 | + revision="main", |
| 34 | + max_workers=64, |
| 35 | +) |
| 36 | + |
| 37 | + |
| 38 | +ds = load_dataset(dsn, split="train") |
| 39 | +ds_sample_rate = ds[0]["audio"]["sampling_rate"] |
| 40 | + |
| 41 | +model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") |
| 42 | +model = model.to("mps") |
| 43 | + |
| 44 | +def tokenise_audio(waveform): |
| 45 | + waveform = torch.from_numpy(waveform).unsqueeze(0) |
| 46 | + waveform = waveform.to(dtype=torch.float32) |
| 47 | + resample_transform = T.Resample(orig_freq=ds_sample_rate, new_freq=24000) |
| 48 | + waveform = resample_transform(waveform) |
| 49 | + |
| 50 | + waveform = waveform.unsqueeze(0).to("cuda") |
| 51 | + |
| 52 | + #generate the codes from snac |
| 53 | + with torch.inference_mode(): |
| 54 | + codes = model.encode(waveform) |
| 55 | + |
| 56 | + all_codes = [] |
| 57 | + for i in range(codes[0].shape[1]): |
| 58 | + all_codes.append(codes[0][0][i].item()+128266) |
| 59 | + all_codes.append(codes[1][0][2*i].item()+128266+4096) |
| 60 | + all_codes.append(codes[2][0][4*i].item()+128266+(2*4096)) |
| 61 | + all_codes.append(codes[2][0][(4*i)+1].item()+128266+(3*4096)) |
| 62 | + all_codes.append(codes[1][0][(2*i)+1].item()+128266+(4*4096)) |
| 63 | + all_codes.append(codes[2][0][(4*i)+2].item()+128266+(5*4096)) |
| 64 | + all_codes.append(codes[2][0][(4*i)+3].item()+128266+(6*4096)) |
| 65 | + |
| 66 | + |
| 67 | + return all_codes |
| 68 | + |
| 69 | +def add_codes(example): |
| 70 | + # Always initialize codes_list to None |
| 71 | + codes_list = None |
| 72 | + |
| 73 | + try: |
| 74 | + answer_audio = example.get("audio") |
| 75 | + # If there's a valid audio array, tokenise it |
| 76 | + if answer_audio and "array" in answer_audio: |
| 77 | + audio_array = answer_audio["array"] |
| 78 | + codes_list = tokenise_audio(audio_array) |
| 79 | + except Exception as e: |
| 80 | + print(f"Skipping row due to error: {e}") |
| 81 | + # Keep codes_list as None if we fail |
| 82 | + example["codes_list"] = codes_list |
| 83 | + |
| 84 | + return example |
| 85 | + |
| 86 | +ds = ds.map(add_codes, remove_columns=["audio"]) |
| 87 | + |
| 88 | +#@title Load Tokenizer |
| 89 | +tokeniser_length = 128256 |
| 90 | +start_of_text = 128000 |
| 91 | +end_of_text = 128009 |
| 92 | + |
| 93 | +start_of_speech = tokeniser_length + 1 |
| 94 | +end_of_speech = tokeniser_length + 2 |
| 95 | + |
| 96 | +start_of_human = tokeniser_length + 3 |
| 97 | +end_of_human = tokeniser_length + 4 |
| 98 | + |
| 99 | +start_of_ai = tokeniser_length + 5 |
| 100 | +end_of_ai = tokeniser_length + 6 |
| 101 | +pad_token = tokeniser_length + 7 |
| 102 | + |
| 103 | +audio_tokens_start = tokeniser_length + 10 |
| 104 | + |
| 105 | +tokenizer_name = "canopylabs/orpheus-3b-0.1-pretrained" |
| 106 | + |
| 107 | + |
| 108 | +tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) |
| 109 | +num_proc = os.cpu_count() - 2 |
| 110 | + |
| 111 | +ds = ds.filter(lambda x: x["codes_list"] is not None) |
| 112 | +ds = ds.filter(lambda x: len(x["codes_list"]) > 0) |
| 113 | + |
| 114 | +#@title Create Input Ids |
| 115 | +def remove_duplicate_frames(example): |
| 116 | + vals = example["codes_list"] |
| 117 | + if len(vals) % 7 != 0: |
| 118 | + raise ValueError("Input list length must be divisible by 7") |
| 119 | + |
| 120 | + result = vals[:7] |
| 121 | + |
| 122 | + removed_frames = 0 |
| 123 | + |
| 124 | + for i in range(7, len(vals), 7): |
| 125 | + current_first = vals[i] |
| 126 | + previous_first = result[-7] |
| 127 | + |
| 128 | + if current_first != previous_first: |
| 129 | + result.extend(vals[i:i+7]) |
| 130 | + else: |
| 131 | + removed_frames += 1 |
| 132 | + |
| 133 | + example["codes_list"] = result |
| 134 | + |
| 135 | + return example |
| 136 | + |
| 137 | +ds = ds.map(remove_duplicate_frames, num_proc=num_proc) |
| 138 | + |
| 139 | + |
| 140 | +def create_input_ids(example): |
| 141 | + text_ids = tokenizer.encode({example['text']}, add_special_tokens=True) |
| 142 | + text_ids.append(end_of_text) |
| 143 | + example["text_tokens"] = text_ids |
| 144 | + input_ids = ( |
| 145 | + [start_of_human] |
| 146 | + + example["text_tokens"] |
| 147 | + + [end_of_human] |
| 148 | + + [start_of_ai] |
| 149 | + + [start_of_speech] |
| 150 | + + example["codes_list"] |
| 151 | + + [end_of_speech] |
| 152 | + + [end_of_ai] |
| 153 | + ) |
| 154 | + example["input_ids"] = input_ids |
| 155 | + example["labels"] = input_ids |
| 156 | + example["attention_mask"] = [1] * len(input_ids) |
| 157 | + |
| 158 | + return example |
| 159 | + |
| 160 | +ds = ds.map(create_input_ids, num_proc=num_proc, remove_columns=["text", "codes_list"]) |
| 161 | + |
| 162 | +#@title Remove unnecessary columns |
| 163 | +columns_to_keep = ["input_ids", "labels", "attention_mask"] |
| 164 | +columns_to_remove = [col for col in ds.column_names if col not in columns_to_keep] |
| 165 | + |
| 166 | +ds = ds.remove_columns(columns_to_remove) |
| 167 | + |
| 168 | +ds.push_to_hub(name_to_push_dataset_to) |
| 169 | +``` |
| 170 | + |
| 171 | + |
| 172 | +## Finetune pre-processing |
| 173 | +Use this code to add a new voice. |
| 174 | + |
| 175 | +```python |
| 176 | +import torch |
| 177 | +from snac import SNAC |
| 178 | +from datasets import load_dataset |
| 179 | +from huggingface_hub import snapshot_download |
| 180 | +from datasets import load_dataset |
| 181 | +import random |
| 182 | +import torchaudio.transforms as T |
| 183 | +from transformers import AutoTokenizer |
| 184 | +import os |
| 185 | + |
| 186 | +my_original_dataset_name = "<huggingface-id-of-dataset-that-we-want-to-preprocess>" |
| 187 | +name_to_push_dataset_to = "<huggingface-id-of-where-to-save-dataset>" |
| 188 | + |
| 189 | +dsn = my_original_dataset_name |
| 190 | + |
| 191 | +snapshot_download( |
| 192 | + repo_id=dsn, |
| 193 | + repo_type="dataset", |
| 194 | + revision="main", |
| 195 | + max_workers=64, |
| 196 | +) |
| 197 | + |
| 198 | + |
| 199 | +ds = load_dataset(dsn, split="train") |
| 200 | +ds_sample_rate = ds[0]["audio"]["sampling_rate"] |
| 201 | + |
| 202 | +model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") |
| 203 | +model = model.to("mps") |
| 204 | + |
| 205 | +def tokenise_audio(waveform): |
| 206 | + waveform = torch.from_numpy(waveform).unsqueeze(0) |
| 207 | + waveform = waveform.to(dtype=torch.float32) |
| 208 | + resample_transform = T.Resample(orig_freq=ds_sample_rate, new_freq=24000) |
| 209 | + waveform = resample_transform(waveform) |
| 210 | + |
| 211 | + waveform = waveform.unsqueeze(0).to("cuda") |
| 212 | + |
| 213 | + #generate the codes from snac |
| 214 | + with torch.inference_mode(): |
| 215 | + codes = model.encode(waveform) |
| 216 | + |
| 217 | + all_codes = [] |
| 218 | + for i in range(codes[0].shape[1]): |
| 219 | + all_codes.append(codes[0][0][i].item()+128266) |
| 220 | + all_codes.append(codes[1][0][2*i].item()+128266+4096) |
| 221 | + all_codes.append(codes[2][0][4*i].item()+128266+(2*4096)) |
| 222 | + all_codes.append(codes[2][0][(4*i)+1].item()+128266+(3*4096)) |
| 223 | + all_codes.append(codes[1][0][(2*i)+1].item()+128266+(4*4096)) |
| 224 | + all_codes.append(codes[2][0][(4*i)+2].item()+128266+(5*4096)) |
| 225 | + all_codes.append(codes[2][0][(4*i)+3].item()+128266+(6*4096)) |
| 226 | + |
| 227 | + |
| 228 | + return all_codes |
| 229 | + |
| 230 | +def add_codes(example): |
| 231 | + # Always initialize codes_list to None |
| 232 | + codes_list = None |
| 233 | + |
| 234 | + try: |
| 235 | + answer_audio = example.get("audio") |
| 236 | + # If there's a valid audio array, tokenise it |
| 237 | + if answer_audio and "array" in answer_audio: |
| 238 | + audio_array = answer_audio["array"] |
| 239 | + codes_list = tokenise_audio(audio_array) |
| 240 | + except Exception as e: |
| 241 | + print(f"Skipping row due to error: {e}") |
| 242 | + # Keep codes_list as None if we fail |
| 243 | + example["codes_list"] = codes_list |
| 244 | + |
| 245 | + return example |
| 246 | + |
| 247 | +ds = ds.map(add_codes, remove_columns=["audio"]) |
| 248 | + |
| 249 | +#@title Load Tokenizer |
| 250 | +tokeniser_length = 128256 |
| 251 | +start_of_text = 128000 |
| 252 | +end_of_text = 128009 |
| 253 | + |
| 254 | +start_of_speech = tokeniser_length + 1 |
| 255 | +end_of_speech = tokeniser_length + 2 |
| 256 | + |
| 257 | +start_of_human = tokeniser_length + 3 |
| 258 | +end_of_human = tokeniser_length + 4 |
| 259 | + |
| 260 | +start_of_ai = tokeniser_length + 5 |
| 261 | +end_of_ai = tokeniser_length + 6 |
| 262 | +pad_token = tokeniser_length + 7 |
| 263 | + |
| 264 | +audio_tokens_start = tokeniser_length + 10 |
| 265 | + |
| 266 | +tokenizer_name = "canopylabs/orpheus-3b-0.1-pretrained" |
| 267 | + |
| 268 | + |
| 269 | +tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) |
| 270 | +num_proc = os.cpu_count() - 2 |
| 271 | + |
| 272 | +ds = ds.filter(lambda x: x["codes_list"] is not None) |
| 273 | +ds = ds.filter(lambda x: len(x["codes_list"]) > 0) |
| 274 | + |
| 275 | +#@title Create Input Ids |
| 276 | +def remove_duplicate_frames(example): |
| 277 | + vals = example["codes_list"] |
| 278 | + if len(vals) % 7 != 0: |
| 279 | + raise ValueError("Input list length must be divisible by 7") |
| 280 | + |
| 281 | + result = vals[:7] |
| 282 | + |
| 283 | + removed_frames = 0 |
| 284 | + |
| 285 | + for i in range(7, len(vals), 7): |
| 286 | + current_first = vals[i] |
| 287 | + previous_first = result[-7] |
| 288 | + |
| 289 | + if current_first != previous_first: |
| 290 | + result.extend(vals[i:i+7]) |
| 291 | + else: |
| 292 | + removed_frames += 1 |
| 293 | + |
| 294 | + example["codes_list"] = result |
| 295 | + |
| 296 | + return example |
| 297 | + |
| 298 | +ds = ds.map(remove_duplicate_frames, num_proc=num_proc) |
| 299 | + |
| 300 | +tok_info = '''*** HERE you can modify the text prompt |
| 301 | +i.e. if you wanted a multispeaker model like canopylabs/orpheus-3b-0.1-ft, you can pass: |
| 302 | +f"{example["source"]}: {example["text"]}", as is passed. |
| 303 | +''' |
| 304 | +print(tok_info) |
| 305 | + |
| 306 | +def create_input_ids(example): |
| 307 | + text_ids = tokenizer.encode(f"{example['speaker_id']}: {example['text']}", add_special_tokens=True) |
| 308 | + text_ids.append(end_of_text) |
| 309 | + example["text_tokens"] = text_ids |
| 310 | + input_ids = ( |
| 311 | + [start_of_human] |
| 312 | + + example["text_tokens"] |
| 313 | + + [end_of_human] |
| 314 | + + [start_of_ai] |
| 315 | + + [start_of_speech] |
| 316 | + + example["codes_list"] |
| 317 | + + [end_of_speech] |
| 318 | + + [end_of_ai] |
| 319 | + ) |
| 320 | + example["input_ids"] = input_ids |
| 321 | + example["labels"] = input_ids |
| 322 | + example["attention_mask"] = [1] * len(input_ids) |
| 323 | + |
| 324 | + return example |
| 325 | + |
| 326 | +ds = ds.map(create_input_ids, num_proc=num_proc, remove_columns=["text", "codes_list"]) |
| 327 | + |
| 328 | +#@title Remove unnecessary columns |
| 329 | +columns_to_keep = ["input_ids", "labels", "attention_mask"] |
| 330 | +columns_to_remove = [col for col in ds.column_names if col not in columns_to_keep] |
| 331 | + |
| 332 | +ds = ds.remove_columns(columns_to_remove) |
| 333 | + |
| 334 | +ds.push_to_hub(name_to_push_dataset_to) |
| 335 | +``` |
| 336 | + |
| 337 | +## Training |
| 338 | +After preprocessing is done, fill out the blanks in finetune.yml and simply run `axolotl train finetune.yml` |
| 339 | + |
| 340 | +## Inference |
| 341 | +For inference, please refer to the original [orpheus github](https://github.com/canopyai/Orpheus-TTS/tree/main). |
0 commit comments