You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jun 3, 2025. It is now read-only.
| YOLOv5s Baseline | The baseline, small YOLOv5 model used as the starting point for sparsification. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights "" --data coco.yaml --hyp data/hyps/hyp.scratch.yaml ``` | 0.556 | 24.8 MB | 135.8 img/sec |
135
-
| [YOLOv5s Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned.md) | Creates a highly sparse, FP32 YOLOv5s model that recovers close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe recipes/yolov5s.pruned.md ``` | 0.534 | 8.4 MB | 199.1 img/sec |
136
-
| [YOLOv5s Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5s.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5s model that recovers reasonably close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe recipes/yolov5s.pruned_quantized.md ``` | 0.525 | 3.3 MB | 396.7 img/sec |
137
-
| YOLOv5l Baseline | The baseline, large YOLOv5 model used as the starting point for sparsification. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights "" --data coco.yaml --hyp data/hyps/hyp.scratch.yaml ``` | 0.654 | 154 MB | 27.9 img/sec |
138
-
| [YOLOv5l Pruned](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned.md) | Creates a highly sparse, FP32 YOLOv5l model that recovers close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe recipes/yolov5l.pruned.md ``` | 0.643 | 32.8 MB | 63.7 img/sec |
139
-
| [YOLOv5l Pruned Quantized](https://github.com/neuralmagic/sparseml/blob/main/integrations/ultralytics-yolov5/recipes/yolov5l.pruned_quantized.md) | Creates a highly sparse, INT8 YOLOv5l model that recovers reasonably close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe recipes/yolov5l.pruned_quantized.md ``` | 0.623 | 12.7 MB | 139.8 img/sec |
134
+
| [YOLOv5s Baseline](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-s%2Fpytorch%2Fultralytics%2Fcoco%2Fbase-none) | The baseline, small YOLOv5 model used as the starting point for sparsification. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights "" --data coco.yaml --hyp data/hyps/hyp.scratch.yaml ``` | 0.556 | 24.8 MB | 135.8 img/sec |
135
+
| [YOLOv5s Pruned](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-s%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned-aggressive_96) | Creates a highly sparse, FP32 YOLOv5s model that recovers close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96 ``` | 0.534 | 8.4 MB | 199.1 img/sec |
136
+
| [YOLOv5s Pruned Quantized](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-s%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned_quant-aggressive_94) | Creates a highly sparse, INT8 YOLOv5s model that recovers reasonably close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5s.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94 ``` | 0.525 | 3.3 MB | 396.7 img/sec |
137
+
| [YOLOv5l Baseline](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fbase-none) | The baseline, large YOLOv5 model used as the starting point for sparsification. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights "" --data coco.yaml --hyp data/hyps/hyp.scratch.yaml ``` | 0.654 | 154 MB | 27.9 img/sec |
138
+
| [YOLOv5l Pruned](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned-aggressive_98) | Creates a highly sparse, FP32 YOLOv5l model that recovers close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98 ``` | 0.643 | 32.8 MB | 63.7 img/sec |
139
+
| [YOLOv5l Pruned Quantized](https://sparsezoo.neuralmagic.com/models/cv%2Fdetection%2Fyolov5-l%2Fpytorch%2Fultralytics%2Fcoco%2Fpruned_quant-aggressive_95) | Creates a highly sparse, INT8 YOLOv5l model that recovers reasonably close to the baseline model. | ``` sparseml.yolov5.train --cfg models_v5.0/yolov5l.yaml --weights PATH_TO_COCO_PRETRAINED_WEIGHTS --data coco.yaml --hyp data/hyps/hyp.scratch.yaml --recipe zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95 ``` | 0.623 | 12.7 MB | 139.8 img/sec |
140
140
141
141
\*\* DeepSparse Performance measured on an AWS c5.12xlarge instance with 24 cores, batch size 64, and 640x640 input with version 0.12.0 of the DeepSparse Engine i.e. `deepsparse.benchmark --batch_size 64 --scenario sync [model_path]`
0 commit comments