@@ -117,23 +117,23 @@ The recipes are specific to the sparsification type, so the training command wil
1171171) Select the proper command to run based on the model and the sparsification type of the model you chose earlier.
118118 - YOLOv5s Pruned transfer learning:
119119 ```bash
120- python train.py --data voc.yaml --cfg ../models/yolov5s.yaml --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96 --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5s .transfer_learn_pruned.md
120+ python train.py --data voc.yaml --cfg ../models/yolov5s.yaml --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned-aggressive_96?recipe_type=transfer --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5 .transfer_learn_pruned.md
121121 ```
122122 - YOLOv5s Pruned-Quantized transfer learning:
123123 ```bash
124- python train.py --data voc.yaml --cfg ../models/yolov5s.yaml --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94 --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5s .transfer_learn_pruned_quantized.md
124+ python train.py --data voc.yaml --cfg ../models/yolov5s.yaml --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned_quant-aggressive_94?recipe_type=transfer --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5 .transfer_learn_pruned_quantized.md
125125 ```
126126 - YOLOv5s Baseline transfer learning:
127127 ```bash
128128 python train.py --data voc.yaml --cfg ../models/yolov5s.yaml --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/base-none --hyp data/hyp.finetune.yaml --epochs 50
129129 ```
130130 - YOLOv5l Pruned transfer learning:
131131 ```bash
132- python train.py --data voc.yaml --cfg ../models/yolov5l.yaml --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98 --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5l .transfer_learn_pruned.md
132+ python train.py --data voc.yaml --cfg ../models/yolov5l.yaml --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned-aggressive_98?recipe_type=transfer --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5 .transfer_learn_pruned.md
133133 ```
134134 - YOLOv5l Pruned-Quantized transfer learning:
135135 ```bash
136- python train.py --data voc.yaml --cfg ../models/yolov5l.yaml --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95 --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5l .transfer_learn_pruned_quantized.md
136+ python train.py --data voc.yaml --cfg ../models/yolov5l.yaml --weights zoo:cv/detection/yolov5-l/pytorch/ultralytics/coco/pruned_quant-aggressive_95?recipe_type=transfer --hyp data/hyp.finetune.yaml --recipe ../recipes/yolov5 .transfer_learn_pruned_quantized.md
137137 ```
138138 - YOLOv5l Baseline transfer learning:
139139 ```bash
0 commit comments