Skip to content
This repository was archived by the owner on Jun 3, 2025. It is now read-only.

Commit a762ef1

Browse files
authored
Add sparsezoo table to models doc (#74)
Replacing hardcoded table in docs with an iframe and link to sparsezoo table.
1 parent f15c0ed commit a762ef1

File tree

1 file changed

+10
-77
lines changed

1 file changed

+10
-77
lines changed

docs/source/models.md

Lines changed: 10 additions & 77 deletions
Original file line numberDiff line numberDiff line change
@@ -53,83 +53,16 @@ The contents of each model are made up of the following:
5353

5454
### Image Classification
5555

56-
| Model Tag | Validation Baseline Metric |
57-
| ------------------------------------------------------------------------------------------ | -------------------------- |
58-
| cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/base-none | 77.3% top1 accuracy |
59-
| cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/arch-moderate | 76.5% top1 accuracy |
60-
| cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/base-none | 83.0% top1 accuracy |
61-
| cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/arch-moderate | 82.1% top1 accuracy |
62-
| cv/classification/inception_v3/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
63-
| cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-conservative | 77.4% top1 accuracy |
64-
| cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
65-
| cv/classification/mnistnet/pytorch/sparseml/mnist/base-none | 99.4% top1 accuracy |
66-
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/base-none | 70.9% top1 accuracy |
67-
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-conservative | 70.9% top1 accuracy |
68-
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate | 70.1% top1 accuracy |
69-
| cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned_quant-moderate | 70.1% top1 accuracy |
70-
| cv/classification/mobilenet_v2-1.0/pytorch/sparseml/imagenet/base-none | 71.9% top1 accuracy |
71-
| cv/classification/resnet_v1-101/keras/sparseml/imagenet/base-none | 77.4% top1 accuracy |
72-
| cv/classification/resnet_v1-101/keras/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
73-
| cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
74-
| cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
75-
| cv/classification/resnet_v1-101/pytorch/torchvision/imagenet/base-none | 76.6% top1 accuracy |
76-
| cv/classification/resnet_v1-101_2x/pytorch/sparseml/imagenet/base-none | 78.8% top1 accuracy |
77-
| cv/classification/resnet_v1-101_2x/pytorch/torchvision/imagenet/base-none | 78.8% top1 accuracy |
78-
| cv/classification/resnet_v1-152/keras/sparseml/imagenet/base-none | 78.3% top1 accuracy |
79-
| cv/classification/resnet_v1-152/keras/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
80-
| cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/base-none | 78.3% top1 accuracy |
81-
| cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
82-
| cv/classification/resnet_v1-152/pytorch/torchvision/imagenet/base-none | 77.5% top1 accuracy |
83-
| cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/base-none | 69.8% top1 accuracy |
84-
| cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/pruned-conservative | 69.8% top1 accuracy |
85-
| cv/classification/resnet_v1-18/pytorch/torchvision/imagenet/base-none | 69.8% top1 accuracy |
86-
| cv/classification/resnet_v1-20/keras/sparseml/cifar_10/base-none | 91.3% top1 accuracy |
87-
| cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/base-none | 73.3% top1 accuracy |
88-
| cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/pruned-conservative | 73.3% top1 accuracy |
89-
| cv/classification/resnet_v1-34/pytorch/torchvision/imagenet/base-none | 73.3% top1 accuracy |
90-
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/base-none | 76.1% top1 accuracy |
91-
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
92-
| cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
93-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none | 76.1% top1 accuracy |
94-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
95-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
96-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate | 75.4% top1 accuracy |
97-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenet-augmented/pruned_quant-aggressive | 76.1% top1 accuracy |
98-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/base-none | 99.9% top1 accuracy |
99-
| cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative | 99.9% top1 accuracy |
100-
| cv/classification/resnet_v1-50/pytorch/torchvision/imagenet/base-none | 99.9% top1 accuracy |
101-
| cv/classification/resnet_v1-50/pytorch/torchvision/imagenette/pruned-conservative | 99.9% top1 accuracy |
102-
| cv/classification/resnet_v1-50_2x/pytorch/sparseml/imagenet/base-none | 78.1% top1 accuracy |
103-
| cv/classification/resnet_v1-50_2x/pytorch/torchvision/imagenet/base-none | 78.1% top1 accuracy |
104-
| cv/classification/vgg-11/pytorch/sparseml/imagenet/base-none | 69.0% top1 accuracy |
105-
| cv/classification/vgg-11/pytorch/sparseml/imagenet/pruned-moderate | 68.3% top1 accuracy |
106-
| cv/classification/vgg-11/pytorch/torchvision/imagenet/base-none | 68.3% top1 accuracy |
107-
| cv/classification/vgg-11_bn/pytorch/sparseml/imagenet/base-none | 70.4% top1 accuracy |
108-
| cv/classification/vgg-11_bn/pytorch/torchvision/imagenet/base-none | 70.4% top1 accuracy |
109-
| cv/classification/vgg-13/pytorch/sparseml/imagenet/base-none | 69.9% top1 accuracy |
110-
| cv/classification/vgg-13/pytorch/torchvision/imagenet/base-none | 69.9% top1 accuracy |
111-
| cv/classification/vgg-13_bn/pytorch/sparseml/imagenet/base-none | 71.5% top1 accuracy |
112-
| cv/classification/vgg-13_bn/pytorch/torchvision/imagenet/base-none | 71.5% top1 accuracy |
113-
| cv/classification/vgg-16/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
114-
| cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-conservative | 71.6% top1 accuracy |
115-
| cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-moderate | 70.8% top1 accuracy |
116-
| cv/classification/vgg-16/pytorch/torchvision/imagenet/base-none | 70.8% top1 accuracy |
117-
| cv/classification/vgg-16_bn/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
118-
| cv/classification/vgg-16_bn/pytorch/torchvision/imagenet/base-none | 71.6% top1 accuracy |
119-
| cv/classification/vgg-19/pytorch/sparseml/imagenet/base-none | 72.4% top1 accuracy |
120-
| cv/classification/vgg-19/pytorch/sparseml/imagenet/pruned-moderate | 71.7% top1 accuracy |
121-
| cv/classification/vgg-19/pytorch/torchvision/imagenet/base-none | 71.7% top1 accuracy |
122-
| cv/classification/vgg-19_bn/pytorch/sparseml/imagenet/base-none | 74.2% top1 accuracy |
123-
| cv/classification/vgg-19_bn/pytorch/torchvision/imagenet/base-none | 74.2% top1 accuracy |
56+
<div>
57+
<iframe src="https://sparsezoo.neuralmagic.com/models/cv/classification" title="Image Classification Models" width="100%" height="500px"></iframe>
58+
</div>
59+
60+
Image classification table not loading? View full table [here](https://sparsezoo.neuralmagic.com/models/cv/classification).
12461

12562
### Object Detection
12663

127-
| Model Tag | Validation Baseline Metric |
128-
| ------------------------------------------------------------------------------------------ | -------------------------- |
129-
| cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/base-none | 42.7 [email protected] |
130-
| cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/pruned-moderate | 41.8 [email protected] |
131-
| cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/base-none | 52.2 [email protected] |
132-
| cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/pruned-moderate | 51.5 [email protected] |
133-
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/base-none | 64.2 [email protected] |
134-
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned-aggressive_97 | 62.4 [email protected] |
135-
| cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned_quant-aggressive_94 | 60.5 [email protected] |
64+
<div>
65+
<iframe src="https://sparsezoo.neuralmagic.com/models/cv/detection" title="Object Detect Models" width="100%" height="500px"></iframe>
66+
</div>
67+
68+
Object detection table not loading? View full table [here](https://sparsezoo.neuralmagic.com/models/cv/detection).

0 commit comments

Comments
 (0)