@@ -53,83 +53,16 @@ The contents of each model are made up of the following:
5353
5454### Image Classification
5555
56- | Model Tag | Validation Baseline Metric |
57- | ------------------------------------------------------------------------------------------ | -------------------------- |
58- | cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/base-none | 77.3% top1 accuracy |
59- | cv/classification/efficientnet-b0/pytorch/sparseml/imagenet/arch-moderate | 76.5% top1 accuracy |
60- | cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/base-none | 83.0% top1 accuracy |
61- | cv/classification/efficientnet-b4/pytorch/sparseml/imagenet/arch-moderate | 82.1% top1 accuracy |
62- | cv/classification/inception_v3/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
63- | cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-conservative | 77.4% top1 accuracy |
64- | cv/classification/inception_v3/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
65- | cv/classification/mnistnet/pytorch/sparseml/mnist/base-none | 99.4% top1 accuracy |
66- | cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/base-none | 70.9% top1 accuracy |
67- | cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-conservative | 70.9% top1 accuracy |
68- | cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned-moderate | 70.1% top1 accuracy |
69- | cv/classification/mobilenet_v1-1.0/pytorch/sparseml/imagenet/pruned_quant-moderate | 70.1% top1 accuracy |
70- | cv/classification/mobilenet_v2-1.0/pytorch/sparseml/imagenet/base-none | 71.9% top1 accuracy |
71- | cv/classification/resnet_v1-101/keras/sparseml/imagenet/base-none | 77.4% top1 accuracy |
72- | cv/classification/resnet_v1-101/keras/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
73- | cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/base-none | 77.4% top1 accuracy |
74- | cv/classification/resnet_v1-101/pytorch/sparseml/imagenet/pruned-moderate | 76.6% top1 accuracy |
75- | cv/classification/resnet_v1-101/pytorch/torchvision/imagenet/base-none | 76.6% top1 accuracy |
76- | cv/classification/resnet_v1-101_2x/pytorch/sparseml/imagenet/base-none | 78.8% top1 accuracy |
77- | cv/classification/resnet_v1-101_2x/pytorch/torchvision/imagenet/base-none | 78.8% top1 accuracy |
78- | cv/classification/resnet_v1-152/keras/sparseml/imagenet/base-none | 78.3% top1 accuracy |
79- | cv/classification/resnet_v1-152/keras/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
80- | cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/base-none | 78.3% top1 accuracy |
81- | cv/classification/resnet_v1-152/pytorch/sparseml/imagenet/pruned-moderate | 77.5% top1 accuracy |
82- | cv/classification/resnet_v1-152/pytorch/torchvision/imagenet/base-none | 77.5% top1 accuracy |
83- | cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/base-none | 69.8% top1 accuracy |
84- | cv/classification/resnet_v1-18/pytorch/sparseml/imagenet/pruned-conservative | 69.8% top1 accuracy |
85- | cv/classification/resnet_v1-18/pytorch/torchvision/imagenet/base-none | 69.8% top1 accuracy |
86- | cv/classification/resnet_v1-20/keras/sparseml/cifar_10/base-none | 91.3% top1 accuracy |
87- | cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/base-none | 73.3% top1 accuracy |
88- | cv/classification/resnet_v1-34/pytorch/sparseml/imagenet/pruned-conservative | 73.3% top1 accuracy |
89- | cv/classification/resnet_v1-34/pytorch/torchvision/imagenet/base-none | 73.3% top1 accuracy |
90- | cv/classification/resnet_v1-50/keras/sparseml/imagenet/base-none | 76.1% top1 accuracy |
91- | cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
92- | cv/classification/resnet_v1-50/keras/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
93- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/base-none | 76.1% top1 accuracy |
94- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-conservative | 76.1% top1 accuracy |
95- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned-moderate | 75.3% top1 accuracy |
96- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenet/pruned_quant-moderate | 75.4% top1 accuracy |
97- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenet-augmented/pruned_quant-aggressive | 76.1% top1 accuracy |
98- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/base-none | 99.9% top1 accuracy |
99- | cv/classification/resnet_v1-50/pytorch/sparseml/imagenette/pruned-conservative | 99.9% top1 accuracy |
100- | cv/classification/resnet_v1-50/pytorch/torchvision/imagenet/base-none | 99.9% top1 accuracy |
101- | cv/classification/resnet_v1-50/pytorch/torchvision/imagenette/pruned-conservative | 99.9% top1 accuracy |
102- | cv/classification/resnet_v1-50_2x/pytorch/sparseml/imagenet/base-none | 78.1% top1 accuracy |
103- | cv/classification/resnet_v1-50_2x/pytorch/torchvision/imagenet/base-none | 78.1% top1 accuracy |
104- | cv/classification/vgg-11/pytorch/sparseml/imagenet/base-none | 69.0% top1 accuracy |
105- | cv/classification/vgg-11/pytorch/sparseml/imagenet/pruned-moderate | 68.3% top1 accuracy |
106- | cv/classification/vgg-11/pytorch/torchvision/imagenet/base-none | 68.3% top1 accuracy |
107- | cv/classification/vgg-11_bn/pytorch/sparseml/imagenet/base-none | 70.4% top1 accuracy |
108- | cv/classification/vgg-11_bn/pytorch/torchvision/imagenet/base-none | 70.4% top1 accuracy |
109- | cv/classification/vgg-13/pytorch/sparseml/imagenet/base-none | 69.9% top1 accuracy |
110- | cv/classification/vgg-13/pytorch/torchvision/imagenet/base-none | 69.9% top1 accuracy |
111- | cv/classification/vgg-13_bn/pytorch/sparseml/imagenet/base-none | 71.5% top1 accuracy |
112- | cv/classification/vgg-13_bn/pytorch/torchvision/imagenet/base-none | 71.5% top1 accuracy |
113- | cv/classification/vgg-16/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
114- | cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-conservative | 71.6% top1 accuracy |
115- | cv/classification/vgg-16/pytorch/sparseml/imagenet/pruned-moderate | 70.8% top1 accuracy |
116- | cv/classification/vgg-16/pytorch/torchvision/imagenet/base-none | 70.8% top1 accuracy |
117- | cv/classification/vgg-16_bn/pytorch/sparseml/imagenet/base-none | 71.6% top1 accuracy |
118- | cv/classification/vgg-16_bn/pytorch/torchvision/imagenet/base-none | 71.6% top1 accuracy |
119- | cv/classification/vgg-19/pytorch/sparseml/imagenet/base-none | 72.4% top1 accuracy |
120- | cv/classification/vgg-19/pytorch/sparseml/imagenet/pruned-moderate | 71.7% top1 accuracy |
121- | cv/classification/vgg-19/pytorch/torchvision/imagenet/base-none | 71.7% top1 accuracy |
122- | cv/classification/vgg-19_bn/pytorch/sparseml/imagenet/base-none | 74.2% top1 accuracy |
123- | cv/classification/vgg-19_bn/pytorch/torchvision/imagenet/base-none | 74.2% top1 accuracy |
56+ <div >
57+ <iframe src="https://sparsezoo.neuralmagic.com/models/cv/classification" title="Image Classification Models" width="100%" height="500px"></iframe>
58+ </div >
59+
60+ Image classification table not loading? View full table [ here] ( https://sparsezoo.neuralmagic.com/models/cv/classification ) .
12461
12562### Object Detection
12663
127- | Model Tag | Validation Baseline Metric |
128- | ------------------------------------------------------------------------------------------ | -------------------------- |
129- | cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/base-none
| 42.7
[email protected] | 130- | cv/detection/ssd-resnet50_300/pytorch/sparseml/coco/pruned-moderate
| 41.8
[email protected] | 131- | cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/base-none
| 52.2
[email protected] | 132- | cv/detection/ssd-resnet50_300/pytorch/sparseml/voc/pruned-moderate
| 51.5
[email protected] | 133- | cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/base-none
| 64.2
[email protected] | 134- | cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned-aggressive_97
| 62.4
[email protected] | 135- | cv/detection/yolo_v3-spp/pytorch/ultralytics/coco/pruned_quant-aggressive_94
| 60.5
[email protected] | 64+ <div >
65+ <iframe src="https://sparsezoo.neuralmagic.com/models/cv/detection" title="Object Detect Models" width="100%" height="500px"></iframe>
66+ </div >
67+
68+ Object detection table not loading? View full table [ here] ( https://sparsezoo.neuralmagic.com/models/cv/detection ) .
0 commit comments