|
5 | 5 |
|
6 | 6 | from ...utils import (CLSPoolingEmbedModelInfo, CLSPoolingRerankModelInfo,
|
7 | 7 | EmbedModelInfo, LASTPoolingEmbedModelInfo,
|
8 |
| - RerankModelInfo, check_transformers_version) |
| 8 | + RerankModelInfo) |
9 | 9 | from .embed_utils import correctness_test_embed_models
|
10 | 10 | from .mteb_utils import mteb_test_embed_models, mteb_test_rerank_models
|
11 | 11 |
|
12 | 12 | MODELS = [
|
13 | 13 | ########## BertModel
|
14 | 14 | CLSPoolingEmbedModelInfo("thenlper/gte-large",
|
| 15 | + mteb_score=0.76807651, |
15 | 16 | architecture="BertModel",
|
16 | 17 | enable_test=True),
|
17 | 18 | CLSPoolingEmbedModelInfo("thenlper/gte-base",
|
|
30 | 31 | architecture="BertModel",
|
31 | 32 | enable_test=False),
|
32 | 33 | ########### NewModel
|
| 34 | + # These three architectures are almost the same, but not exactly the same. |
| 35 | + # For example, |
| 36 | + # - whether to use token_type_embeddings |
| 37 | + # - whether to use context expansion |
| 38 | + # So only test one (the most widely used) model |
33 | 39 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-multilingual-base",
|
34 | 40 | architecture="GteNewModel",
|
| 41 | + mteb_score=0.775074696, |
35 | 42 | hf_overrides={"architectures": ["GteNewModel"]},
|
36 | 43 | enable_test=True),
|
37 | 44 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-base-en-v1.5",
|
38 | 45 | architecture="GteNewModel",
|
39 | 46 | hf_overrides={"architectures": ["GteNewModel"]},
|
40 |
| - enable_test=True), |
| 47 | + enable_test=False), |
41 | 48 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-large-en-v1.5",
|
42 | 49 | architecture="GteNewModel",
|
43 | 50 | hf_overrides={"architectures": ["GteNewModel"]},
|
44 |
| - enable_test=True), |
| 51 | + enable_test=False), |
45 | 52 | ########### Qwen2ForCausalLM
|
46 | 53 | LASTPoolingEmbedModelInfo("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
| 54 | + mteb_score=0.758473459018872, |
47 | 55 | architecture="Qwen2ForCausalLM",
|
48 | 56 | enable_test=True),
|
49 | 57 | ########## ModernBertModel
|
50 | 58 | CLSPoolingEmbedModelInfo("Alibaba-NLP/gte-modernbert-base",
|
| 59 | + mteb_score=0.748193353, |
51 | 60 | architecture="ModernBertModel",
|
52 | 61 | enable_test=True),
|
53 | 62 | ########## Qwen3ForCausalLM
|
54 | 63 | LASTPoolingEmbedModelInfo("Qwen/Qwen3-Embedding-0.6B",
|
| 64 | + mteb_score=0.771163695, |
55 | 65 | architecture="Qwen3ForCausalLM",
|
56 | 66 | dtype="float32",
|
57 | 67 | enable_test=True),
|
|
65 | 75 | CLSPoolingRerankModelInfo(
|
66 | 76 | # classifier_pooling: mean
|
67 | 77 | "Alibaba-NLP/gte-reranker-modernbert-base",
|
| 78 | + mteb_score=0.33386, |
68 | 79 | architecture="ModernBertForSequenceClassification",
|
69 | 80 | enable_test=True),
|
70 | 81 | CLSPoolingRerankModelInfo(
|
71 | 82 | "Alibaba-NLP/gte-multilingual-reranker-base",
|
| 83 | + mteb_score=0.33062, |
72 | 84 | architecture="GteNewForSequenceClassification",
|
73 | 85 | hf_overrides={"architectures": ["GteNewForSequenceClassification"]},
|
74 | 86 | enable_test=True),
|
|
78 | 90 | @pytest.mark.parametrize("model_info", MODELS)
|
79 | 91 | def test_embed_models_mteb(hf_runner, vllm_runner,
|
80 | 92 | model_info: EmbedModelInfo) -> None:
|
81 |
| - if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct": |
82 |
| - check_transformers_version(model_info.name, |
83 |
| - max_transformers_version="4.53.2") |
84 |
| - |
85 | 93 | mteb_test_embed_models(hf_runner, vllm_runner, model_info)
|
86 | 94 |
|
87 | 95 |
|
88 | 96 | @pytest.mark.parametrize("model_info", MODELS)
|
89 | 97 | def test_embed_models_correctness(hf_runner, vllm_runner,
|
90 | 98 | model_info: EmbedModelInfo,
|
91 | 99 | example_prompts) -> None:
|
92 |
| - if model_info.name == "Alibaba-NLP/gte-Qwen2-1.5B-instruct": |
93 |
| - check_transformers_version(model_info.name, |
94 |
| - max_transformers_version="4.53.2") |
95 |
| - |
96 | 100 | correctness_test_embed_models(hf_runner, vllm_runner, model_info,
|
97 | 101 | example_prompts)
|
98 | 102 |
|
|
0 commit comments