|
1 | 1 | import numpy as np
|
2 |
| -from abc import ABC, abstractmethod |
3 | 2 | from lantern import FunctionalBase
|
4 |
| -from typing import Callable, Any, Optional |
| 3 | +from lantern.functional import star |
| 4 | +from typing import Callable, Any, Optional, Dict, List, Union |
| 5 | +from pydantic import BaseModel, Extra |
5 | 6 |
|
6 | 7 |
|
7 |
| -class Metric(ABC): |
8 |
| - @abstractmethod |
9 |
| - def update(self): |
10 |
| - ... |
| 8 | +class MapMetric(BaseModel): |
| 9 | + map_fn_: Optional[Callable[..., Any]] |
| 10 | + # map_fn: Optional[Callable] = lambda value: self, value # HACK: why are we getting self? |
| 11 | + state: List[Any] |
11 | 12 |
|
12 |
| - @abstractmethod |
13 |
| - def update_(self): |
14 |
| - ... |
| 13 | + class Config: |
| 14 | + arbitrary_types_allowed = True |
| 15 | + allow_mutation = True |
| 16 | + extra = Extra.forbid |
| 17 | + |
| 18 | + def __init__(self, map_fn_=None, state=list()): |
| 19 | + super().__init__( |
| 20 | + map_fn_=map_fn_, |
| 21 | + state=state, |
| 22 | + ) |
| 23 | + |
| 24 | + def replace(self, **kwargs): |
| 25 | + new_dict = self.dict() |
| 26 | + new_dict.update(**kwargs) |
| 27 | + return type(self)(**new_dict) |
| 28 | + |
| 29 | + def map(self, fn): |
| 30 | + # return self.replace(fn=lambda value: fn(self.map_fn_(value))) |
| 31 | + # HACK: why doesn't the above work? |
| 32 | + if self.map_fn_ is None: |
| 33 | + return MapMetric( |
| 34 | + map_fn_=fn, |
| 35 | + state=self.state, |
| 36 | + ) |
| 37 | + else: |
| 38 | + return MapMetric( |
| 39 | + map_fn_=lambda *args, **kwargs: fn(self.map_fn_(*args, **kwargs)), |
| 40 | + state=self.state, |
| 41 | + ) |
| 42 | + |
| 43 | + def starmap(self, fn): |
| 44 | + return self.map(star(fn)) |
| 45 | + |
| 46 | + def reduce(self, fn): |
| 47 | + if self.map_fn_ is None: |
| 48 | + return ReduceMetric( |
| 49 | + map_fn_=lambda *args: args, |
| 50 | + reduce_fn=lambda state, args: fn(state, *args), |
| 51 | + state=self.state, # TODO: apply function on state... |
| 52 | + ) |
| 53 | + else: |
| 54 | + return ReduceMetric( |
| 55 | + map_fn_=self.map_fn_, |
| 56 | + reduce_fn=fn, |
| 57 | + state=self.state, |
| 58 | + ) |
| 59 | + |
| 60 | + def aggregate(self, fn): |
| 61 | + return AggregateMetric(metric=self, aggregate_fn=fn) |
| 62 | + |
| 63 | + def staraggregate(self, fn): |
| 64 | + return self.aggregate(star(fn)) |
| 65 | + |
| 66 | + def update_(self, *args, **kwargs): |
| 67 | + if self.map_fn_ is None: |
| 68 | + self.state.append(args) |
| 69 | + else: |
| 70 | + self.state.append(self.map_fn_(*args, **kwargs)) |
| 71 | + return self |
| 72 | + |
| 73 | + def update(self, *args, **kwargs): |
| 74 | + if self.map_fn_ is None: |
| 75 | + return self.replace(state=self.state + ([args[0]] if len(args) == 1 else [args])) |
| 76 | + else: |
| 77 | + return self.replace(state=self.state + [self.map_fn_(*args, **kwargs)]) |
15 | 78 |
|
16 |
| - @abstractmethod |
17 | 79 | def compute(self):
|
18 |
| - ... |
| 80 | + return self.state |
19 | 81 |
|
| 82 | + def log(self, tensorboard_logger, tag, step=None): |
| 83 | + for name, value in self.compute().items(): |
| 84 | + tensorboard_logger.add_scalar( |
| 85 | + f"{tag}/{name}", |
| 86 | + value, |
| 87 | + step, |
| 88 | + ) |
| 89 | + return self |
| 90 | + |
| 91 | + |
| 92 | +Metric = MapMetric |
20 | 93 |
|
21 |
| -class ReduceMetric(FunctionalBase, Metric): |
22 |
| - reduce_fn: Callable |
23 |
| - compute_fn: Callable |
24 |
| - state: Optional[Any] |
| 94 | + |
| 95 | +class ReduceMetric(BaseModel): |
| 96 | + map_fn_: Callable[..., Any] |
| 97 | + reduce_fn: Callable[..., Any] |
| 98 | + state: Any |
25 | 99 |
|
26 | 100 | class Config:
|
| 101 | + arbitrary_types_allowed = True |
27 | 102 | allow_mutation = True
|
| 103 | + extra = Extra.forbid |
28 | 104 |
|
29 |
| - def __init__(self, reduce_fn, compute_fn=None, initial_state=None): |
30 |
| - super().__init__( |
31 |
| - reduce_fn=reduce_fn, |
32 |
| - compute_fn=((lambda x: x) if compute_fn is None else compute_fn), |
33 |
| - state=initial_state, |
34 |
| - ) |
| 105 | + def replace(self, **kwargs): |
| 106 | + new_dict = self.dict() |
| 107 | + new_dict.update(**kwargs) |
| 108 | + return type(self)(**new_dict) |
| 109 | + |
| 110 | + def update_(self, *args, **kwargs): |
| 111 | + self.state = self.reduce_fn(self.state, self.map_fn_(*args, **kwargs)) |
| 112 | + return self |
35 | 113 |
|
36 | 114 | def update(self, *args, **kwargs):
|
37 |
| - return self.replace(state=self.reduce_fn(self.state, *args, **kwargs)) |
| 115 | + return self.replace( |
| 116 | + state=self.reduce_fn(self.state, self.map_fn_(*args, **kwargs)) |
| 117 | + ) |
| 118 | + |
| 119 | + def compute(self): |
| 120 | + return self.state |
| 121 | + |
| 122 | + def log(self, tensorboard_logger, tag, step=None): |
| 123 | + for name, value in self.compute().items(): |
| 124 | + tensorboard_logger.add_scalar( |
| 125 | + f"{tag}/{name}", |
| 126 | + value, |
| 127 | + step, |
| 128 | + ) |
| 129 | + return self |
| 130 | + |
| 131 | + |
| 132 | +class AggregateMetric(BaseModel): |
| 133 | + metric: Union[MapMetric, ReduceMetric] |
| 134 | + aggregate_fn: Callable |
| 135 | + |
| 136 | + class Config: |
| 137 | + arbitrary_types_allowed = True |
| 138 | + allow_mutation = True |
| 139 | + extra = Extra.forbid |
| 140 | + |
| 141 | + def replace(self, **kwargs): |
| 142 | + new_dict = self.dict() |
| 143 | + new_dict.update(**kwargs) |
| 144 | + return type(self)(**new_dict) |
| 145 | + |
| 146 | + def map(self, fn): |
| 147 | + return self.replace( |
| 148 | + aggregate_fn=lambda state: fn(self.aggregate_fn(state)) |
| 149 | + ) |
| 150 | + |
| 151 | + def starmap(self, fn): |
| 152 | + return self.map(star(fn)) |
38 | 153 |
|
39 | 154 | def update_(self, *args, **kwargs):
|
40 |
| - self.state = self.reduce_fn(self.state, *args, **kwargs) |
| 155 | + self.metric = self.metric.update(*args, **kwargs) |
41 | 156 | return self
|
42 | 157 |
|
| 158 | + def update(self, *args, **kwargs): |
| 159 | + return self.replace(metric=self.metric.update(*args, **kwargs)) |
| 160 | + |
43 | 161 | def compute(self):
|
44 |
| - return self.compute_fn(self.state) |
| 162 | + return self.aggregate_fn(self.metric.compute()) |
45 | 163 |
|
46 |
| - def log(self, tensorboard_logger, tag, name, step=1): |
47 |
| - tensorboard_logger.add_scalar( |
48 |
| - f"{tag}/{name}", |
49 |
| - self.compute(), |
50 |
| - step, |
51 |
| - ) |
| 164 | + def log(self, tensorboard_logger, tag, step=None): |
| 165 | + for name, value in self.compute().items(): |
| 166 | + tensorboard_logger.add_scalar( |
| 167 | + f"{tag}/{name}", |
| 168 | + value, |
| 169 | + step, |
| 170 | + ) |
52 | 171 | return self
|
53 | 172 |
|
54 | 173 |
|
55 |
| -def MapMetric(map_fn, compute_fn=np.mean): |
56 |
| - """Metric version of `compute_fn(map(map_fn, input))`""" |
57 |
| - return ReduceMetric( |
58 |
| - reduce_fn=lambda state, *args, **kwargs: state + [map_fn(*args, **kwargs)], |
59 |
| - compute_fn=compute_fn, |
60 |
| - initial_state=list(), |
61 |
| - ) |
| 174 | +def test_metric(): |
| 175 | + pass |
0 commit comments