@@ -285,18 +285,11 @@ if (! 'id' %in% colnames(contrasts)){
285285 contrasts$id <- apply(contrasts, 1, paste, collapse='_')
286286}
287287
288- # If 'variable' is empty, then use 'grouping' column
289- contrasts$variable_or_grouping <- ifelse(
290- is.na(contrasts$variable) | contrasts$variable == "",
291- contrasts$grouping,
292- contrasts$variable
293- )
294-
295288# Identify informative variables- those with a number of values greater than 1
296289# but less than N, with N being the number of observations. Make sure contrast
297290# variables are first in the list
298291
299- informative_variables <- unique(c(contrasts$variable_or_grouping , chooseGroupingVariables(observations)))
292+ informative_variables <- unique(c(contrasts$variable , chooseGroupingVariables(observations)))
300293
301294# Remove any informative variables that group observations the same way
302295informative_variables <- informative_variables[ ! duplicated(lapply(structure(informative_variables, names= informative_variables), function(x) as.numeric(factor(observations[[x]], levels=unique(observations[[x]])))))]
@@ -340,7 +333,7 @@ informative_variables <- rownames(pca_vs_meta)[order(pca_vs_meta[,1])]
340333
341334# Pick the variable used for coloring purposes etc
342335if (params$exploratory_main_variable == 'contrasts'){
343- main_grouping_variable <- contrasts$variable_or_grouping [1]
336+ main_grouping_variable <- contrasts$variable [1]
344337}else if (params$exploratory_main_variable == 'auto_pca'){
345338 main_grouping_variable <- informative_variables[1]
346339}else{
@@ -446,7 +439,7 @@ names(differential_results) <- differential_names
446439# Function to make friendly contrast name from contrast components, including optional bits
447440
448441name_contrast <- function(i){
449- contrast_name <- paste(contrasts$target[i], 'versus', contrasts$reference[i], 'in', contrasts$variable_or_grouping [i])
442+ contrast_name <- paste(contrasts$target[i], 'versus', contrasts$reference[i], 'in', contrasts$variable [i])
450443 contrast_vals <- contrasts[i,]
451444 populated <- colnames(contrasts)[! (is.na(contrast_vals) | contrast_vals == '' | is.null(contrast_vals))]
452445 optional <- setdiff(populated, c('id', 'target', 'reference', 'variable'))
@@ -511,7 +504,7 @@ cat(paste0("\n## ", ucfirst(params$observations_type), "s\n"))
511504A summary of ` r params$observations_type ` metadata is below:
512505
513506``` {r, echo=FALSE, results='asis'}
514- display_columns <- union(c(params$observations_id_col, unique(contrasts$variable_or_grouping )), informative_variables)
507+ display_columns <- union(c(params$observations_id_col, unique(contrasts$variable )), informative_variables)
515508minimal_fetchngs_cols <- c('sample', 'sample_title', 'strandedness', 'library_strategy', 'scientific_name')
516509
517510# If the data came via fetchngs then we can infer a couple of things about the most useful columns
@@ -553,7 +546,7 @@ contrasts_to_print$model <- sapply(contrasts_to_print$Id, function(id) {
553546
554547print( htmltools::tagList(datatable(contrasts_to_print, caption = paste0("Table of contrasts"), rownames = FALSE, options = list(dom = ifelse(nrow(contrasts_to_print) > 10, 'tp', 't'))) ))
555548```
556- Note: For formula-based contrasts without a 'variable', the column 'grouping' was automatically filled with ` params$report_grouping_variable ` to support grouping in plots and reports.
549+ Note: For formula-based contrasts without a 'variable', the column was automatically filled with ` params$report_grouping_variable ` to support grouping in plots and reports.
557550
558551# Results
559552
0 commit comments