|
1 | | -# llmforge |
| 1 | +# LLMForge |
2 | 2 |
|
3 | 3 | A unified, pluggable AI runtime to run prompts across OpenAI, Gemini, Ollama, and custom models — all with a single line of code. |
4 | 4 |
|
| 5 | +**🚀 Lightweight & Fast** - Only 42.8 kB package size, 381.1 kB unpacked |
| 6 | + |
| 7 | +## Features |
| 8 | + |
| 9 | +- **Unified Interface**: Single API for multiple AI providers |
| 10 | +- **Lightweight**: Only 42.8 kB package size for minimal bundle impact |
| 11 | +- **Intelligent Fallback**: Automatic failover between providers |
| 12 | +- **Configurable Retry Logic**: Built-in retry mechanisms with customizable delays |
| 13 | +- **Token Usage Tracking**: Detailed usage statistics for cost monitoring |
| 14 | +- **TypeScript Support**: Full type safety and IntelliSense |
| 15 | +- **Flexible Configuration**: Per-provider settings and generation parameters |
| 16 | + |
5 | 17 | ## Installation |
6 | 18 |
|
7 | 19 | ```bash |
8 | 20 | npm install llmforge |
| 21 | +# or |
| 22 | +npm install @nginh/llmforge@1.0.0 |
9 | 23 | ``` |
10 | 24 |
|
11 | | -<!-- |
12 | | -## Usage |
| 25 | +## Quick Start |
| 26 | + |
| 27 | +```typescript |
| 28 | +import { RunnerClient } from 'llmforge'; |
| 29 | + |
| 30 | +const config = { |
| 31 | + llmConfig: { |
| 32 | + apiKey: process.env.OPENAI_API_KEY, |
| 33 | + provider: 'openai', |
| 34 | + model: 'gpt-3.5-turbo', |
| 35 | + generationConfig: { |
| 36 | + temperature: 0.7, |
| 37 | + maxOutputTokens: 150, |
| 38 | + }, |
| 39 | + }, |
| 40 | + enableFallback: false, |
| 41 | +}; |
13 | 42 |
|
14 | | -```js |
15 | | -import { yourFunction } from 'llmforge'; |
16 | | -// Example usage |
| 43 | +const client = await RunnerClient.create(config); |
| 44 | +const response = await client.run([ |
| 45 | + { |
| 46 | + role: 'user', |
| 47 | + parts: [{ text: 'Hello! Can you tell me a joke?' }], |
| 48 | + }, |
| 49 | +]); |
| 50 | + |
| 51 | +console.log(response.output); |
17 | 52 | ``` |
18 | 53 |
|
19 | | -## Features |
20 | | -- Unified API for multiple LLM providers |
21 | | -- Pluggable architecture |
22 | | -- Easy to use |
| 54 | +## Supported Providers |
| 55 | + |
| 56 | +| Provider | Status | Models | |
| 57 | +| ------------- | -------------- | --------------------------------------------------------------- | |
| 58 | +| OpenAI | ✅ Supported | All text models (e.g., gpt-3.5-turbo, gpt-4, gpt-4-turbo, etc.) | |
| 59 | +| Google Gemini | ✅ Supported | All text models (e.g., gemini-1.5-flash, gemini-1.5-pro, etc.) | |
| 60 | +| Ollama | 🚧 Coming Soon | Local models | |
| 61 | +| Custom Models | 🚧 Coming Soon | User-defined endpoints | |
| 62 | + |
| 63 | +_Current version (v1.0.1) supports OpenAI and Google Gemini_ |
| 64 | + |
| 65 | +## Configuration |
| 66 | + |
| 67 | +### Single Provider |
| 68 | + |
| 69 | +```typescript |
| 70 | +const config = { |
| 71 | + llmConfig: { |
| 72 | + apiKey: 'your-api-key', |
| 73 | + provider: 'openai', // or 'google' |
| 74 | + model: 'gpt-3.5-turbo', |
| 75 | + generationConfig: { |
| 76 | + temperature: 0.7, |
| 77 | + maxOutputTokens: 150, |
| 78 | + }, |
| 79 | + retryConfig: { |
| 80 | + maxRetries: 3, |
| 81 | + retryDelay: 1000, |
| 82 | + }, |
| 83 | + }, |
| 84 | + enableFallback: false, |
| 85 | +}; |
| 86 | +``` |
| 87 | + |
| 88 | +### Multiple Providers with Fallback |
| 89 | + |
| 90 | +```typescript |
| 91 | +const config = { |
| 92 | + llmConfig: [ |
| 93 | + { |
| 94 | + apiKey: process.env.OPENAI_API_KEY, |
| 95 | + provider: 'openai', |
| 96 | + model: 'gpt-3.5-turbo', |
| 97 | + priority: 1, // Primary provider |
| 98 | + generationConfig: { |
| 99 | + temperature: 0.7, |
| 100 | + maxOutputTokens: 150, |
| 101 | + }, |
| 102 | + retryConfig: { |
| 103 | + maxRetries: 3, |
| 104 | + retryDelay: 1000, |
| 105 | + }, |
| 106 | + }, |
| 107 | + { |
| 108 | + apiKey: process.env.GOOGLE_API_KEY, |
| 109 | + provider: 'google', |
| 110 | + model: 'gemini-1.5-flash', |
| 111 | + priority: 2, // Fallback provider |
| 112 | + generationConfig: { |
| 113 | + temperature: 0.7, |
| 114 | + maxOutputTokens: 150, |
| 115 | + }, |
| 116 | + retryConfig: { |
| 117 | + maxRetries: 3, |
| 118 | + retryDelay: 1000, |
| 119 | + }, |
| 120 | + }, |
| 121 | + ], |
| 122 | + enableFallback: true, |
| 123 | +}; |
| 124 | +``` |
| 125 | + |
| 126 | +## Response Format |
| 127 | + |
| 128 | +LLMForge returns a standardized response format across all providers: |
| 129 | + |
| 130 | +```typescript |
| 131 | +{ |
| 132 | + "resp_id": "unique-response-id", |
| 133 | + "output": "Generated text response", |
| 134 | + "status": "success", |
| 135 | + "created_at": 1750283611, |
| 136 | + "model": "gpt-3.5-turbo-0125", |
| 137 | + "usage": { |
| 138 | + "input_tokens": 17, |
| 139 | + "output_tokens": 24, |
| 140 | + "total_tokens": 41 |
| 141 | + }, |
| 142 | + "fallback": { |
| 143 | + "isUsed": false, |
| 144 | + "reason": "" |
| 145 | + } |
| 146 | +} |
| 147 | +``` |
| 148 | + |
| 149 | +## Message Format |
| 150 | + |
| 151 | +LLMForge uses a unified message format compatible with multiple providers: |
| 152 | + |
| 153 | +```typescript |
| 154 | +const messages = [ |
| 155 | + { |
| 156 | + role: 'user', |
| 157 | + parts: [{ text: 'Your prompt here' }], |
| 158 | + }, |
| 159 | + { |
| 160 | + role: 'assistant', |
| 161 | + parts: [{ text: 'Assistant response' }], |
| 162 | + }, |
| 163 | +]; |
| 164 | +``` |
| 165 | + |
| 166 | +## Error Handling |
| 167 | + |
| 168 | +LLMForge provides comprehensive error handling with automatic fallback: |
| 169 | + |
| 170 | +```typescript |
| 171 | +try { |
| 172 | + const response = await client.run(messages); |
| 173 | + console.log(response.output); |
| 174 | +} catch (error) { |
| 175 | + console.error('Error:', error.message); |
| 176 | + |
| 177 | + // Check if fallback was attempted |
| 178 | + if (response?.fallback?.isUsed) { |
| 179 | + console.log('Fallback reason:', response.fallback.reason); |
| 180 | + } |
| 181 | +} |
| 182 | +``` |
| 183 | + |
| 184 | +## Environment Variables |
| 185 | + |
| 186 | +Create a `.env` file in your project root: |
| 187 | + |
| 188 | +```env |
| 189 | +OPENAI_API_KEY=your-openai-api-key |
| 190 | +GOOGLE_API_KEY=your-google-api-key |
| 191 | +``` |
| 192 | + |
| 193 | +## Examples |
| 194 | + |
| 195 | +### Basic OpenAI Usage |
| 196 | + |
| 197 | +```typescript |
| 198 | +import { RunnerClient } from 'llmforge'; |
| 199 | + |
| 200 | +const client = await RunnerClient.create({ |
| 201 | + llmConfig: { |
| 202 | + apiKey: process.env.OPENAI_API_KEY, |
| 203 | + provider: 'openai', |
| 204 | + model: 'gpt-3.5-turbo', |
| 205 | + }, |
| 206 | +}); |
| 207 | + |
| 208 | +const response = await client.run([{ role: 'user', parts: [{ text: 'Explain quantum computing' }] }]); |
| 209 | +``` |
| 210 | + |
| 211 | +### Basic Gemini Usage |
| 212 | + |
| 213 | +```typescript |
| 214 | +import { RunnerClient } from 'llmforge'; |
| 215 | + |
| 216 | +const client = await RunnerClient.create({ |
| 217 | + llmConfig: { |
| 218 | + apiKey: process.env.GOOGLE_API_KEY, |
| 219 | + provider: 'google', |
| 220 | + model: 'gemini-1.5-flash', |
| 221 | + }, |
| 222 | +}); |
| 223 | + |
| 224 | +const response = await client.run([{ role: 'user', parts: [{ text: 'Write a haiku about technology' }] }]); |
| 225 | +``` |
| 226 | + |
| 227 | +### Fallback Configuration |
| 228 | + |
| 229 | +```typescript |
| 230 | +const client = await RunnerClient.create({ |
| 231 | + llmConfig: [ |
| 232 | + { |
| 233 | + apiKey: process.env.OPENAI_API_KEY, |
| 234 | + provider: 'openai', |
| 235 | + model: 'gpt-4', |
| 236 | + priority: 1, |
| 237 | + }, |
| 238 | + { |
| 239 | + apiKey: process.env.GOOGLE_API_KEY, |
| 240 | + provider: 'google', |
| 241 | + model: 'gemini-1.5-pro', |
| 242 | + priority: 2, |
| 243 | + }, |
| 244 | + ], |
| 245 | + enableFallback: true, |
| 246 | +}); |
| 247 | +``` |
| 248 | + |
| 249 | +## API Reference |
| 250 | + |
| 251 | +### RunnerClient |
| 252 | + |
| 253 | +#### `RunnerClient.create(config)` |
| 254 | + |
| 255 | +Creates a new LLMForge client instance. |
| 256 | + |
| 257 | +**Parameters:** |
| 258 | + |
| 259 | +- `config`: Configuration object containing LLM settings and fallback options |
| 260 | + |
| 261 | +**Returns:** Promise<RunnerClient> |
| 262 | + |
| 263 | +#### `client.run(messages)` |
| 264 | + |
| 265 | +Executes a prompt against the configured LLM provider(s). |
| 266 | + |
| 267 | +**Parameters:** |
| 268 | + |
| 269 | +- `messages`: Array of message objects in the unified format |
| 270 | + |
| 271 | +**Returns:** Promise<Response> |
| 272 | + |
| 273 | +### Configuration Options |
| 274 | + |
| 275 | +#### `generationConfig` |
| 276 | + |
| 277 | +- `temperature`: Controls randomness (0.0 - 1.0) |
| 278 | +- `maxOutputTokens`: Maximum tokens in response |
| 279 | +- `topP`: Nucleus sampling parameter |
| 280 | +- `topK`: Top-k sampling parameter |
| 281 | + |
| 282 | +#### `retryConfig` |
| 283 | + |
| 284 | +- `maxRetries`: Maximum retry attempts |
| 285 | +- `retryDelay`: Delay between retries (ms) |
| 286 | + |
| 287 | +## Roadmap |
| 288 | + |
| 289 | +- [✔️] OpenAI support |
| 290 | +- [✔️] Google Gemini support |
| 291 | +- [✔️] Basic error handling |
| 292 | +- [✔️] Fallback mechanism |
| 293 | +- [✔️] TypeScript support |
| 294 | +- [✔️] Unified message format |
| 295 | +- [ ] Unified thinking and reasoning |
| 296 | +- [ ] Ollama support for local models |
| 297 | +- [ ] Custom model endpoint support |
| 298 | +- [ ] Streaming responses |
| 299 | +- [ ] Response caching |
| 300 | +- [ ] Anthropic Claude support |
| 301 | +- [ ] Azure OpenAI support |
| 302 | + |
| 303 | +## Contributing |
| 304 | + |
| 305 | +We welcome contributions! |
| 306 | + |
| 307 | +To contribute: |
| 308 | + |
| 309 | +1. **Create a Provider Interface:** |
| 310 | + Follow the existing patterns in the codebase to add new providers. Ensure your implementation is modular and consistent with current interfaces. |
| 311 | + |
| 312 | +2. **Error Handling:** |
| 313 | + Handle errors gracefully using proper error types. Provide clear error messages and ensure fallback mechanisms work as expected. |
| 314 | + |
| 315 | +3. **Code Formatting:** |
| 316 | + Use [Prettier](https://prettier.io/) for code formatting. Run `npm run format .` before submitting your changes. |
| 317 | + |
| 318 | +4. **Testing:** |
| 319 | + Add or update tests to cover your changes. Ensure all tests pass before submitting a PR. |
| 320 | + |
| 321 | +5. **Pull Request Guidelines:** |
| 322 | + |
| 323 | + - Create a Pull Request on GitHub with a clear title and description. |
| 324 | + - Reference any related issues (e.g., "Closes #123"). |
| 325 | + - Include screenshots or examples if applicable. |
| 326 | + - Provide testing instructions so reviewers can verify your changes. |
| 327 | + - Paste the rewritten markdown content (if documentation is updated). |
| 328 | + |
| 329 | +6. **Review Process:** |
| 330 | + Your PR will be reviewed for code quality, consistency, and adherence to project guidelines. |
| 331 | + |
| 332 | +Thank you for helping improve LLMForge! |
| 333 | + |
| 334 | +MIT License - see [LICENSE](LICENSE) file for details. |
| 335 | + |
| 336 | +## Support |
| 337 | + |
| 338 | +- 📧 Email: <harshanand.cloud@gmail.com> |
| 339 | +- 🐛 Issues: [GitHub Issues](https://github.com/nginH/llmforge/issues) |
23 | 340 |
|
24 | | -## Documentation |
25 | | -See [GitHub](https://github.com/nginH/llmforge) for full documentation and examples. |
| 341 | +--- |
26 | 342 |
|
27 | | -## License |
28 | | -MIT --> |
| 343 | +Built with ❤️ for the AI developer community |
| 344 | +by [nginH](https://github.com/nginH) |
0 commit comments