|
| 1 | +/*********************************************************************************************************************** |
| 2 | +* * |
| 3 | +* libscopeprotocols * |
| 4 | +* * |
| 5 | +* Copyright (c) 2012-2024 Andrew D. Zonenberg and contributors * |
| 6 | +* All rights reserved. * |
| 7 | +* * |
| 8 | +* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the * |
| 9 | +* following conditions are met: * |
| 10 | +* * |
| 11 | +* * Redistributions of source code must retain the above copyright notice, this list of conditions, and the * |
| 12 | +* following disclaimer. * |
| 13 | +* * |
| 14 | +* * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the * |
| 15 | +* following disclaimer in the documentation and/or other materials provided with the distribution. * |
| 16 | +* * |
| 17 | +* * Neither the name of the author nor the names of any contributors may be used to endorse or promote products * |
| 18 | +* derived from this software without specific prior written permission. * |
| 19 | +* * |
| 20 | +* THIS SOFTWARE IS PROVIDED BY THE AUTHORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * |
| 21 | +* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * |
| 22 | +* THE AUTHORS BE HELD LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * |
| 23 | +* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * |
| 24 | +* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * |
| 25 | +* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * |
| 26 | +* POSSIBILITY OF SUCH DAMAGE. * |
| 27 | +* * |
| 28 | +***********************************************************************************************************************/ |
| 29 | + |
| 30 | +/** |
| 31 | + @file |
| 32 | + @author Andrew D. Zonenberg |
| 33 | + @brief Implementation of SetupHoldMeasurement |
| 34 | + */ |
| 35 | + |
| 36 | +#include "../scopehal/scopehal.h" |
| 37 | +#include "SetupHoldMeasurement.h" |
| 38 | + |
| 39 | +using namespace std; |
| 40 | + |
| 41 | +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 42 | +// Construction / destruction |
| 43 | + |
| 44 | +SetupHoldMeasurement::SetupHoldMeasurement(const string& color) |
| 45 | + : Filter(color, CAT_MEASUREMENT) |
| 46 | + , m_vih(m_parameters["Vih"]) |
| 47 | + , m_vil(m_parameters["Vil"]) |
| 48 | + , m_edgemode(m_parameters["Clock Edge"]) |
| 49 | +{ |
| 50 | + AddStream(Unit(Unit::UNIT_FS), "tsetup", Stream::STREAM_TYPE_ANALOG_SCALAR); |
| 51 | + AddStream(Unit(Unit::UNIT_FS), "thold", Stream::STREAM_TYPE_ANALOG_SCALAR); |
| 52 | + |
| 53 | + CreateInput("data"); |
| 54 | + CreateInput("clock"); |
| 55 | + |
| 56 | + m_vih = FilterParameter(FilterParameter::TYPE_FLOAT, Unit(Unit::UNIT_VOLTS)); |
| 57 | + m_vih.SetFloatVal(2.0); |
| 58 | + |
| 59 | + m_vil = FilterParameter(FilterParameter::TYPE_FLOAT, Unit(Unit::UNIT_VOLTS)); |
| 60 | + m_vil.SetFloatVal(1.3); |
| 61 | + |
| 62 | + m_edgemode = FilterParameter(FilterParameter::TYPE_ENUM, Unit(Unit::UNIT_COUNTS)); |
| 63 | + m_edgemode.AddEnumValue("Rising", EDGE_RISING); |
| 64 | + m_edgemode.AddEnumValue("Falling", EDGE_FALLING); |
| 65 | + m_edgemode.AddEnumValue("Both", EDGE_BOTH); |
| 66 | +} |
| 67 | + |
| 68 | +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 69 | +// Factory methods |
| 70 | + |
| 71 | +bool SetupHoldMeasurement::ValidateChannel(size_t i, StreamDescriptor stream) |
| 72 | +{ |
| 73 | + if(stream.m_channel == NULL) |
| 74 | + return false; |
| 75 | + |
| 76 | + if( (i < 2) && (stream.GetType() == Stream::STREAM_TYPE_ANALOG) ) |
| 77 | + return true; |
| 78 | + |
| 79 | + return false; |
| 80 | +} |
| 81 | + |
| 82 | +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 83 | +// Accessors |
| 84 | + |
| 85 | +void SetupHoldMeasurement::SetDefaultName() |
| 86 | +{ |
| 87 | + char hwname[256]; |
| 88 | + snprintf(hwname, sizeof(hwname), "SetupHold(%s, %s)", |
| 89 | + GetInputDisplayName(0).c_str(), |
| 90 | + GetInputDisplayName(1).c_str()); |
| 91 | + m_hwname = hwname; |
| 92 | + m_displayname = m_hwname; |
| 93 | +} |
| 94 | + |
| 95 | +string SetupHoldMeasurement::GetProtocolName() |
| 96 | +{ |
| 97 | + return "Setup / Hold"; |
| 98 | +} |
| 99 | + |
| 100 | +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// |
| 101 | +// Actual decoder logic |
| 102 | + |
| 103 | +void SetupHoldMeasurement::Refresh() |
| 104 | +{ |
| 105 | + //Make sure we've got valid inputs |
| 106 | + if(!VerifyAllInputsOK()) |
| 107 | + { |
| 108 | + m_streams[0].m_value = 0; |
| 109 | + m_streams[1].m_value = 0; |
| 110 | + return; |
| 111 | + } |
| 112 | + |
| 113 | + float vih = m_vih.GetFloatVal(); |
| 114 | + float vil = m_vil.GetFloatVal(); |
| 115 | + auto mode = static_cast<EdgeMode>(m_edgemode.GetIntVal()); |
| 116 | + |
| 117 | + //Get the input data |
| 118 | + auto wdata = GetInputWaveform(0); |
| 119 | + auto wclk = GetInputWaveform(1); |
| 120 | + wdata->PrepareForCpuAccess(); |
| 121 | + wclk->PrepareForCpuAccess(); |
| 122 | + |
| 123 | + //For now, assume inputs are always uniform |
| 124 | + auto udata = dynamic_cast<UniformAnalogWaveform*>(wdata); |
| 125 | + auto uclk = dynamic_cast<UniformAnalogWaveform*>(wclk); |
| 126 | + if(!udata || !uclk) |
| 127 | + { |
| 128 | + m_streams[0].m_value = 0; |
| 129 | + m_streams[1].m_value = 0; |
| 130 | + return; |
| 131 | + } |
| 132 | + |
| 133 | + //Find the timestamps of clock and data edges |
| 134 | + bool clockMatchRising = (mode == EDGE_RISING) || (mode == EDGE_BOTH); |
| 135 | + bool clockMatchFalling = (mode == EDGE_FALLING) || (mode == EDGE_BOTH); |
| 136 | + auto clkedges = GetEdgeTimestamps(uclk, vil, vih, clockMatchRising, clockMatchFalling); |
| 137 | + auto datedges = GetEdgeTimestamps(udata, vil, vih, true, true); |
| 138 | + |
| 139 | + //Loop over the clock edges and look for data edges before/after each |
| 140 | + size_t nclk = clkedges.size(); |
| 141 | + size_t ndat = datedges.size(); |
| 142 | + |
| 143 | + int64_t minsetup = INT64_MAX; |
| 144 | + int64_t minhold = INT64_MAX; |
| 145 | + size_t idat = 0; |
| 146 | + for(size_t iclk = 0; iclk < nclk; iclk ++) |
| 147 | + { |
| 148 | + auto clockStart = clkedges[iclk].first; |
| 149 | + auto clockEnd = clkedges[iclk].second; |
| 150 | + |
| 151 | + //Search forward to find the last data edge BEFORE our clock edge |
| 152 | + //(used for calculating setup time) |
| 153 | + bool dataFound = false; |
| 154 | + int64_t dataEnd = 0; |
| 155 | + for(; idat < ndat; idat ++) |
| 156 | + { |
| 157 | + //If the data edge ends after our current clock edge starts, stop searching |
| 158 | + auto dstart = datedges[idat].first; |
| 159 | + auto dend = datedges[idat].second; |
| 160 | + if(dend > clockStart) |
| 161 | + { |
| 162 | + //If the data and clock edges overlap, we have no margin at all! |
| 163 | + //More formally: if data start and/or end is between clock start and end, no margin |
| 164 | + if( ( (dstart >= clockStart) && (dstart <= clockEnd) ) || |
| 165 | + ( (dend >= clockStart) && (dend <= clockEnd) ) ) |
| 166 | + { |
| 167 | + minsetup = 0; |
| 168 | + } |
| 169 | + break; |
| 170 | + } |
| 171 | + |
| 172 | + //If it ends before our *previous* clock edge starts, it's too early, keep looking |
| 173 | + if( (iclk > 0) && (clkedges[iclk-1].first > dend) ) |
| 174 | + continue; |
| 175 | + |
| 176 | + //It's a hit, keep it |
| 177 | + dataFound = true; |
| 178 | + dataEnd = dend; |
| 179 | + } |
| 180 | + if(dataFound) |
| 181 | + { |
| 182 | + //Calculate setup time: data valid to clock invalid |
| 183 | + int64_t tsu = clockStart - dataEnd; |
| 184 | + /*LogDebug("Data valid at %s, clock invalid at %s, setup time = %s\n", |
| 185 | + Unit(Unit::UNIT_FS).PrettyPrint(dataEnd).c_str(), |
| 186 | + Unit(Unit::UNIT_FS).PrettyPrint(clockStart).c_str(), |
| 187 | + Unit(Unit::UNIT_FS).PrettyPrint(tsu).c_str());*/ |
| 188 | + minsetup = min(tsu, minsetup); |
| 189 | + |
| 190 | + //TODO: waveform output? |
| 191 | + } |
| 192 | + |
| 193 | + //Continue searching forward to find the first data edge AFTER the clock edge |
| 194 | + dataFound = false; |
| 195 | + int64_t dataStart = 0; |
| 196 | + for(; idat < ndat; idat ++) |
| 197 | + { |
| 198 | + //If the data and clock edges overlap, we have no margin at all! |
| 199 | + //More formally: if data start and/or end is between clock start and end, no margin |
| 200 | + auto dstart = datedges[idat].first; |
| 201 | + auto dend = datedges[idat].second; |
| 202 | + if( ( (dstart >= clockStart) && (dstart <= clockEnd) ) || |
| 203 | + ( (dend >= clockStart) && (dend <= clockEnd) ) ) |
| 204 | + { |
| 205 | + minhold = 0; |
| 206 | + break; |
| 207 | + } |
| 208 | + |
| 209 | + //If the data edge starts after our current clock edge ends, stop searching |
| 210 | + if(dstart > clockEnd) |
| 211 | + { |
| 212 | + //If the data edge starts after the *next* clock edge starts, it's outside our UI |
| 213 | + //Ignore it |
| 214 | + if(iclk+1 < nclk) |
| 215 | + { |
| 216 | + if(dstart > clkedges[iclk+1].first) |
| 217 | + break; |
| 218 | + } |
| 219 | + |
| 220 | + dataFound = true; |
| 221 | + dataStart = dstart; |
| 222 | + break; |
| 223 | + } |
| 224 | + } |
| 225 | + |
| 226 | + if(dataFound) |
| 227 | + { |
| 228 | + //Calculate hold time: clock valid to data invalid |
| 229 | + int64_t th = dataStart - clockEnd; |
| 230 | + /*LogDebug("Clock valid at %s, data invalid at %s, hold time = %s\n", |
| 231 | + Unit(Unit::UNIT_FS).PrettyPrint(clockEnd).c_str(), |
| 232 | + Unit(Unit::UNIT_FS).PrettyPrint(dataStart).c_str(), |
| 233 | + Unit(Unit::UNIT_FS).PrettyPrint(th).c_str());*/ |
| 234 | + minhold = min(th, minhold); |
| 235 | + |
| 236 | + //TODO: waveform output? |
| 237 | + } |
| 238 | + |
| 239 | + } |
| 240 | + |
| 241 | + m_streams[0].m_value = minsetup; |
| 242 | + m_streams[1].m_value = minhold; |
| 243 | +} |
| 244 | + |
| 245 | +/** |
| 246 | + @brief Returns a vector of (edge start, edge end) timestamps |
| 247 | +
|
| 248 | + @param wfm Input signal |
| 249 | + @param vil Logic low threshold |
| 250 | + @param vih Logic high threshold |
| 251 | + @param matchRising True to match rising edges |
| 252 | + @param matchFalling True to match falling edges |
| 253 | + */ |
| 254 | +vector< pair<int64_t, int64_t> > SetupHoldMeasurement::GetEdgeTimestamps( |
| 255 | + UniformAnalogWaveform* wfm, |
| 256 | + float vil, |
| 257 | + float vih, |
| 258 | + bool matchRising, |
| 259 | + bool matchFalling) |
| 260 | +{ |
| 261 | + vector< pair<int64_t, int64_t> > ret; |
| 262 | + |
| 263 | + enum bitstate_t |
| 264 | + { |
| 265 | + STATE_UNKNOWN_WAS_LOW, |
| 266 | + STATE_UNKNOWN_WAS_HIGH, |
| 267 | + STATE_LOW, |
| 268 | + STATE_HIGH, |
| 269 | + }; |
| 270 | + |
| 271 | + //Assign the first state |
| 272 | + bitstate_t state; |
| 273 | + if(wfm->m_samples[0] < vil) |
| 274 | + state = STATE_LOW; |
| 275 | + else if(wfm->m_samples[0] > vih) |
| 276 | + state = STATE_HIGH; |
| 277 | + else |
| 278 | + state = STATE_UNKNOWN_WAS_LOW; |
| 279 | + |
| 280 | + //Main loop looking for edges |
| 281 | + int64_t edgestart = 0; |
| 282 | + auto size = wfm->size(); |
| 283 | + for(size_t i = 1; i < size; i ++) |
| 284 | + { |
| 285 | + float vin = wfm->m_samples[i]; |
| 286 | + int64_t tstamp = GetOffsetScaled(wfm, i); |
| 287 | + |
| 288 | + switch(state) |
| 289 | + { |
| 290 | + //Look for rising edges |
| 291 | + case STATE_UNKNOWN_WAS_LOW: |
| 292 | + |
| 293 | + //TODO: interpolate Vih level crossing? |
| 294 | + if(vin > vih) |
| 295 | + { |
| 296 | + if(matchRising) |
| 297 | + ret.push_back( pair<int64_t, int64_t>(edgestart, tstamp)); |
| 298 | + |
| 299 | + state = STATE_HIGH; |
| 300 | + } |
| 301 | + |
| 302 | + break; |
| 303 | + |
| 304 | + case STATE_UNKNOWN_WAS_HIGH: |
| 305 | + |
| 306 | + //TODO: interpolate Vil level crossing? |
| 307 | + if(vin < vil) |
| 308 | + { |
| 309 | + if(matchFalling) |
| 310 | + ret.push_back( pair<int64_t, int64_t>(edgestart, tstamp)); |
| 311 | + |
| 312 | + state = STATE_LOW; |
| 313 | + } |
| 314 | + |
| 315 | + break; |
| 316 | + |
| 317 | + case STATE_LOW: |
| 318 | + |
| 319 | + //Look for Vil level crossing |
| 320 | + if(vin > vil) |
| 321 | + { |
| 322 | + state = STATE_UNKNOWN_WAS_LOW; |
| 323 | + edgestart = tstamp; |
| 324 | + } |
| 325 | + |
| 326 | + break; |
| 327 | + |
| 328 | + case STATE_HIGH: |
| 329 | + |
| 330 | + //Look for Vih level crossing |
| 331 | + if(vin < vih) |
| 332 | + { |
| 333 | + state = STATE_UNKNOWN_WAS_HIGH; |
| 334 | + edgestart = tstamp; |
| 335 | + } |
| 336 | + |
| 337 | + break; |
| 338 | + } |
| 339 | + } |
| 340 | + |
| 341 | + return ret; |
| 342 | +} |
0 commit comments