Skip to content

Commit 2ef0c01

Browse files
committed
Code formatted to meet Black/Flake8 requirements
1 parent ad93ae9 commit 2ef0c01

File tree

3 files changed

+126
-86
lines changed

3 files changed

+126
-86
lines changed

src/numpy_utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -439,7 +439,7 @@ def draw_b_hypergraph(nodes, edges, tab):
439439

440440

441441
# B-Hypergraphs drawing with weights function
442-
def draw_weighted_b_hypergraph(nodes, top_n_hyparcs, tab):
442+
def draw_weight_b_hypergraph(nodes, top_n_hyparcs, tab):
443443
"""Draw B-Hypergraphs using NetworkX.
444444
B-Hypergraphs meaning there can be only one head node, but an unlimited
445445
number of tail nodes.

tab1_undirect.py

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -83,20 +83,20 @@ def tab1_undirected(tab1, final_prog_df, num_dis, edge_list, dis_list):
8383
" as follows:"
8484
)
8585
node_deg_mat = numpy_utils.node_deg_mat(edge_list, dis_list)
86-
st.write(
87-
pd.DataFrame(node_deg_mat, columns=dis_list).set_index(pd.Index(dis_list))
88-
)
86+
node_deg_df = pd.DataFrame(node_deg_mat, columns=dis_list)
87+
st.write(node_deg_df.set_index(pd.Index(dis_list)))
8988

9089
tab1.markdown("* Calculate the adjacency matrix $A$")
9190
with tab1.expander("How to calculate the adjacency matrix?"):
9291
st.write("$A = MM^{T} - D_n$")
9392
col1, col2, col3, col4, col5 = st.columns([1.5, 6, 6, 1, 6])
9493
col1.write("$A$ = ")
95-
col2.write(inc_mat.to_numpy())
96-
col3.write(inc_mat.to_numpy().transpose())
97-
col4.write("\-")
94+
np_inc_mat = inc_mat.to_numpy()
95+
col2.write(np_inc_mat)
96+
col3.write(np_inc_mat.transpose())
97+
col4.write("$-$")
9898
col5.write(node_deg_mat)
99-
inc_matT = np.matmul(inc_mat.to_numpy(), (inc_mat.to_numpy().transpose()))
99+
inc_matT = np.matmul(np_inc_mat, (np_inc_mat.transpose()))
100100
adj_mat = inc_matT - node_deg_mat
101101

102102
tab1.write("$A$:")
@@ -126,23 +126,23 @@ def tab1_undirected(tab1, final_prog_df, num_dis, edge_list, dis_list):
126126
st.markdown(
127127
r"""
128128
$$W(e_i) = \frac{C(e_i)}{C(e_i) + \sum_{e_j \in \mathcal{P}(e_i)}w_j C(e_j) + \sum_{e_k \in \mathcal{S}(e_i)}w_k C(e_k)},$$
129-
"""
129+
""" # noqa: E501
130130
)
131131
st.markdown(
132132
"where\n"
133-
r"""$\mathcal{S}(e_i) = \{e_k \hspace{2pt} : \hspace{2pt} e_i \subset e_k\}.$"""
133+
r"""$\mathcal{S}(e_i) = \{e_k \hspace{2pt} : \hspace{2pt} e_i \subset e_k\}.$""" # noqa: E501
134134
)
135135
st.markdown(
136136
"For this example when we want to calculate the weight"
137137
" of a specific hyperedge $e_i$:\n"
138138
)
139139
st.markdown(
140-
"* $\mathcal{P}(e_i)$ is"
140+
"* $\mathcal{P}(e_i)$ is" # noqa: W605
141141
" the power set of hyperedges for multimorbidity set"
142142
" $e_i$ (all subsets} disease sets)."
143143
)
144144
st.markdown(
145-
"* $\mathcal{S}(e_i)$ is the super set of hyperedges for"
145+
"* $\mathcal{S}(e_i)$ is the super set of hyperedges for" # noqa: W605, E501
146146
" multimorbidity set $e_i$ (all disease sets containing"
147147
" $e_i$)."
148148
)
@@ -152,11 +152,11 @@ def tab1_undirected(tab1, final_prog_df, num_dis, edge_list, dis_list):
152152
" in the population\n"
153153
)
154154
st.markdown(
155-
"* :red[$\sum_{e_j \in \mathcal{P}(e_i)} C(e_j)$] is the"
155+
"* :red[$\sum_{e_j \in \mathcal{P}(e_i)} C(e_j)$] is the" # noqa: W605, E501
156156
" sum of the power set prevalence"
157157
)
158158
st.markdown(
159-
"* :red[$\sum_{e_k \in \mathcal{S}(e_i)} C(e_k)$] is the"
159+
"* :red[$\sum_{e_k \in \mathcal{S}(e_i)} C(e_k)$] is the" # noqa: W605, E501
160160
" sum of the super set prevalence"
161161
)
162162
st.markdown(
@@ -209,8 +209,8 @@ def tab1_undirected(tab1, final_prog_df, num_dis, edge_list, dis_list):
209209
" matrix $A = MW_{e}M^{T} - D_n$:"
210210
)
211211

212-
MWe = np.matmul(inc_mat.to_numpy(), we_df.to_numpy())
213-
MWeMT = np.matmul(MWe, (inc_mat.to_numpy().transpose()))
212+
MWe = np.matmul(np_inc_mat, we_df.to_numpy())
213+
MWeMT = np.matmul(MWe, (np_inc_mat.transpose()))
214214
weighted_adj_mat = MWeMT - node_deg_mat
215215
np.fill_diagonal(weighted_adj_mat, 0.0001)
216216
tab1.write(weighted_adj_mat)
@@ -228,26 +228,26 @@ def tab1_undirected(tab1, final_prog_df, num_dis, edge_list, dis_list):
228228
"To calculate the Eigen values of the adjacency matrix"
229229
" we need to use the equation:"
230230
)
231-
st.latex("det(A - \lambda I) = 0")
231+
st.latex("det(A - \lambda I) = 0") # noqa: W605
232232
st.markdown(
233233
"Where $I$ is the equivalent order identity matrix"
234234
" (same shape as the adjacency matrix). Where the Eigen"
235235
" values are denoted as:"
236236
)
237-
st.latex(f"\lambda_1, ..., \lambda_{len(weighted_adj_mat)}")
237+
st.latex(f"\lambda_1, ..., \lambda_{len(weighted_adj_mat)}") # noqa: W605, E501
238238
st.markdown("From the adjacency matrix above we get Eigen values:")
239239
eigen_vals = linalg.eigvals(a=weighted_adj_mat)
240240
eigen_vals = np.real(np.round(eigen_vals, 3))
241241
for i, value in enumerate(eigen_vals):
242-
st.latex(f"\lambda_{i} = {value}")
242+
st.latex(f"\lambda_{i} = {value}") # noqa: W605
243243

244244
maxvalue = max(eigen_vals)
245245
st.markdown(
246246
f"Then you take the maximum Eigen value {maxvalue}"
247247
" and use this to calculate the left Eigenvector. This is"
248-
" done by substituting $\lambda$ into the equation below:"
248+
" done by substituting $\lambda$ into the equation below:" # noqa: W605, E501
249249
)
250-
st.latex("X^T A = X^T \lambda")
250+
st.latex("X^T A = X^T \lambda") # noqa: W605
251251
st.markdown("Where $X$ is the vector:")
252252
X = [*auc][:num_dis]
253253
st.write(pd.DataFrame(X))

0 commit comments

Comments
 (0)