Stark Map accuracy for n>70 #194
Unanswered
Manaspratap21
asked this question in
Q&A
Replies: 2 comments
-
|
High energy Rydberg states tend to have very complicated Stark maps with large numbers of avoided crossings, so what you are describing sounds about right. If you have a particular calculation you are concerned about, could you share a plot (and ideally code used to generate it)? |
Beta Was this translation helpful? Give feedback.
0 replies
-
|
Greetings,
I would like to share the code and the image:
calc1 = StarkMap(Rubidium85())
# Target state
n02 = 77
l02 = 2
j02 = 1.5
# Define max/min n values in basis
nmin2 = n02 - 5
nmax2 = n02 + 5
# Maximum value of l to include (l~20 gives good convergence for states
with l<5)
lmax = 20
Emin = 0.0 # Min E field (V/m)
Emax = 250 # Max E field (V/m)
N = 10 # Number of Points
e_field = np.linspace(Emin, Emax, N)
mj2 = [0.5,1.5]
# Pre-allocate an empty 2D array with 0 rows and N columns
energy = np.empty((0, N), int)
for mj02 in mj2:
y=np.array([])
for E in e_field:
state = [n02,l02,j02,mj02]
x=np.array([])
x= calc1.getState(state,E, nmin2, nmax2, lmax)
y=np.append(y, x[2])
y=((y*(1.6e-25))/(6.626e-34)) # Conversion from ev to MHz
energy = np.concatenate((energy, y.reshape(1, -1)), axis=0)
energy
e_field = e_field/100
plt.plot(e_field,energy[0], color = 'red',label='$ \u2078\u2075 Rb
77D_{3/2}, m_j =1/2$')
plt.plot(e_field,energy[1], color = 'orange',label='$\u2078\u2075 Rb
77D_{3/2}, m_j =3/2$')
plt.xlabel('E(V/cm)')
plt.ylabel(r'$\Delta f_{\text{Stark}, m_J}$ (MHz)')
plt.title('Stark Map')
plt.legend()
plt.savefig('Stark Map')
[image: image.png]
…On Wed, May 7, 2025 at 11:30 PM David Meyer ***@***.***> wrote:
High energy Rydberg states tend to have very complicated Stark maps with
large numbers of avoided crossings, so what you are describing sounds about
right. If you have a particular calculation you are concerned about, could
you share a plot (and ideally code used to generate it)?
—
Reply to this email directly, view it on GitHub
<#194 (comment)>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/BM2E75INQCGCN2GB5S63YE325JC27AVCNFSM6AAAAAB4TLB5JCVHI2DSMVQWIX3LMV43URDJONRXK43TNFXW4Q3PNVWWK3TUHMYTGMBWGY2DKMI>
.
You are receiving this because you authored the thread.Message ID:
<nikolasibalic/ARC-Alkali-Rydberg-Calculator/repo-discussions/194/comments/13066451
@github.com>
|
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Why does the getState() function produce strange results for higher principal quantum numbers (e.g. n>70)? Specifically, in the Stark map, the energy eigenvalues exhibit a zig-zag pattern—decreasing, then increasing, and decreasing again at multiple points as the electric field strength increases. Is this behavior solely due to state mixing, or could it also be caused by numerical errors in the calculation?
Beta Was this translation helpful? Give feedback.
All reactions