@@ -13,7 +13,7 @@ The defacing pipeline for datasets curated by the [Data Science and Sharing Team
13133 . Visually inspect defaced scans with your preferred QC tool.
14144 . Fix defacings that failed visual inspection.
1515
16- ![ Generate and finalize "primary" scans to "secondary" scans mapping file.] ( images/generate_mappings .png )
16+ ![ Generate and finalize "primary" scans to "secondary" scans mapping file.] ( images/pipeline_screen_quality .png )
1717
1818## Example
1919
@@ -36,63 +36,14 @@ Download data in `anat` directories of the dataset.
3636datalad get sub-01/ses-* /anat
3737```
3838
39- BIDS tree snippet post-download:
40-
41- ``` bash
42- $ tree ../datasets/ds000031/
43- ../datasets/ds000031/
44- ├── CHANGES
45- ├── README
46- ├── dataset_description.json
47- ├── events.json
48- ├── participants.json
49- ├── participants.tsv
50- ├── sub-01
51- │ ├── ses-001
52- │ │ ├── anat
53- │ │ │ ├── sub-01_ses-001_T1w.json
54- │ │ │ └── sub-01_ses-001_T1w.nii.gz
55- │ │ ├── sub-01_ses-001_scans.json
56- │ │ └── sub-01_ses-001_scans.tsv
57- │ ├── ses-003
58- │ │ ├── anat
59- │ │ ├── sub-01_ses-003_scans.json
60- │ │ └── sub-01_ses-003_scans.tsv
61- ...
62- └── task-spatialwm_events.json
63- ```
64-
65-
66-
67-
68-
69- ### ** Step 1:** Generate mapping file.
70-
71- a. Generate a mapping file using the ` generate_mappings.py ` script.
72- b. Look at your mapping file. Make sure it's not empty. Edit it, if there are any special cases you'd like to account for.
73-
74- ```
75- $ python generate_mappings.py -i ../datasets/ds000031 -o ./examples
76- ====================
77- Dataset Summary
78- ====================
79- Total number of sessions with 'anat' directory in the dataset: 24
80- Sessions with 'anat' directory with at least one T1w scan: 22
81- Sessions without a T1w scan: 2
82- List of sessions without a T1w scan:
83- ['sub-01/ses-053', 'sub-01/ses-016']
84-
85- Please find the mapping file in JSON format and other helpful logs at /Users/arshithab/dsst-defacing-pipeline/examples
86- ```
87-
88- ### ** Step 2:** Deface scans
39+ ### ** Step 1:** Deface scans
8940Run ` dsst_defacing_wf.py ` script that calls on ` deface.py ` and ` register.py ` to deface scans in the dataset.
9041
9142#### Option 1: Serially
9243If you have a small dataset with less than 10 subjects, then it might be easiest to run the defacing algorithm serially.
9344
9445``` bash
95- python dsst_defacing_wf.py -i ../datasets/ds000031 -m examples/primary_to_others_mapping.json - o examples
46+ python dsst_defacing_wf.py -i ../datasets/ds000031 -o examples
9647```
9748
9849#### Option 2: Parallelly
@@ -103,7 +54,7 @@ for i in `ls -d ../datasets/toy/*`; do SUBJ=$(echo $i | sed 's|../datasets/toy/|
10354swarm -f ./examples/defacing_parallel.swarm --module afni,fsl --merge-output --logdir ./examples/swarm_log
10455```
10556
106- ### ** Step 3 :** Visually QC defaced scans.
57+ ### ** Step 2 :** Visually QC defaced scans.
10758
10859Visual QC defacing accuracy gallery https://raamana.github.io/visualqc/gallery_defacing.html
10960
0 commit comments