You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Added sliding window and dvars(mask) approaches to outfind.py for finding outliers, modified dvars() and added a new function dvars_voxel() in metrics.py and modified mad_time_detector() in detectors.py
# Return indices of True values from Boolean array.
64
-
returnnp.nonzero(outliers_time)[0]
62
+
returnnp.nonzero(outliers_time)
63
+
64
+
defdetect_outliers_mad_dvars_mask(fname):
65
+
""" Detect outliers given image file path 'filename'
66
+
67
+
Parameters
68
+
----------
69
+
fname : str or Path
70
+
Filename of 4D image, as string or Path object
71
+
72
+
Returns
73
+
-------
74
+
outliers : array
75
+
Indices of outlier volumes.
76
+
"""
77
+
# A mask is used to first segment the brain regions from the background, dvars is calculated and then median absolute deviation is used to detect outliers
""" Detect outliers given image file path 'filename'
92
+
93
+
Parameters
94
+
----------
95
+
fname : str or Path
96
+
Filename of 4D image, as string or Path object
97
+
98
+
Returns
99
+
-------
100
+
outliers : array
101
+
Indices of outlier volumes.
102
+
"""
103
+
# A mask is used to first segment the brain regions from the background, sliding window approach is used to detect outliers in each window using median absolute deviation
0 commit comments