|
| 1 | +""" |
| 2 | +Linear affine registration tools for motion correction. |
| 3 | +""" |
| 4 | +import numpy as np |
| 5 | +import nibabel as nb |
| 6 | +from dipy.align.metrics import CCMetric, EMMetric, SSDMetric |
| 7 | +from dipy.align.imaffine import ( |
| 8 | + transform_centers_of_mass, |
| 9 | + AffineMap, |
| 10 | + MutualInformationMetric, |
| 11 | + AffineRegistration, |
| 12 | +) |
| 13 | +from dipy.align.transforms import ( |
| 14 | + TranslationTransform3D, |
| 15 | + RigidTransform3D, |
| 16 | + AffineTransform3D, |
| 17 | +) |
| 18 | +from nipype.utils.filemanip import fname_presuffix |
| 19 | + |
| 20 | +syn_metric_dict = {"CC": CCMetric, "EM": EMMetric, "SSD": SSDMetric} |
| 21 | + |
| 22 | +__all__ = [ |
| 23 | + "c_of_mass", |
| 24 | + "translation", |
| 25 | + "rigid", |
| 26 | + "affine", |
| 27 | + "affine_registration", |
| 28 | +] |
| 29 | + |
| 30 | + |
| 31 | +def apply_affine(moving, static, transform_affine, invert=False): |
| 32 | + """Apply an affine to transform an image from one space to another. |
| 33 | +
|
| 34 | + Parameters |
| 35 | + ---------- |
| 36 | + moving : array |
| 37 | + The image to be resampled |
| 38 | +
|
| 39 | + static : array |
| 40 | +
|
| 41 | + Returns |
| 42 | + ------- |
| 43 | + warped_img : the moving array warped into the static array's space. |
| 44 | +
|
| 45 | + """ |
| 46 | + affine_map = AffineMap( |
| 47 | + transform_affine, static.shape, static.affine, moving.shape, moving.affine |
| 48 | + ) |
| 49 | + if invert is True: |
| 50 | + warped_arr = affine_map.transform_inverse(np.asarray(moving.dataobj)) |
| 51 | + else: |
| 52 | + warped_arr = affine_map.transform(np.asarray(moving.dataobj)) |
| 53 | + |
| 54 | + return nb.Nifti1Image(warped_arr, static.affine) |
| 55 | + |
| 56 | + |
| 57 | +def average_affines(transforms): |
| 58 | + affine_list = [np.load(aff) for aff in transforms] |
| 59 | + average_affine_file = fname_presuffix( |
| 60 | + transforms[0], use_ext=False, suffix="_average.npy" |
| 61 | + ) |
| 62 | + np.save(average_affine_file, np.mean(affine_list, axis=0)) |
| 63 | + return average_affine_file |
| 64 | + |
| 65 | + |
| 66 | +# Affine registration pipeline: |
| 67 | +affine_metric_dict = {"MI": MutualInformationMetric, "CC": CCMetric} |
| 68 | + |
| 69 | + |
| 70 | +def c_of_mass( |
| 71 | + moving, static, static_affine, moving_affine, reg, starting_affine, params0=None |
| 72 | +): |
| 73 | + transform = transform_centers_of_mass(static, static_affine, moving, moving_affine) |
| 74 | + transformed = transform.transform(moving) |
| 75 | + return transformed, transform.affine |
| 76 | + |
| 77 | + |
| 78 | +def translation( |
| 79 | + moving, static, static_affine, moving_affine, reg, starting_affine, params0=None |
| 80 | +): |
| 81 | + transform = TranslationTransform3D() |
| 82 | + translation = reg.optimize( |
| 83 | + static, |
| 84 | + moving, |
| 85 | + transform, |
| 86 | + params0, |
| 87 | + static_affine, |
| 88 | + moving_affine, |
| 89 | + starting_affine=starting_affine, |
| 90 | + ) |
| 91 | + |
| 92 | + return translation.transform(moving), translation.affine |
| 93 | + |
| 94 | + |
| 95 | +def rigid( |
| 96 | + moving, static, static_affine, moving_affine, reg, starting_affine, params0=None |
| 97 | +): |
| 98 | + transform = RigidTransform3D() |
| 99 | + rigid = reg.optimize( |
| 100 | + static, |
| 101 | + moving, |
| 102 | + transform, |
| 103 | + params0, |
| 104 | + static_affine, |
| 105 | + moving_affine, |
| 106 | + starting_affine=starting_affine, |
| 107 | + ) |
| 108 | + return rigid.transform(moving), rigid.affine |
| 109 | + |
| 110 | + |
| 111 | +def affine( |
| 112 | + moving, static, static_affine, moving_affine, reg, starting_affine, params0=None |
| 113 | +): |
| 114 | + transform = AffineTransform3D() |
| 115 | + affine = reg.optimize( |
| 116 | + static, |
| 117 | + moving, |
| 118 | + transform, |
| 119 | + params0, |
| 120 | + static_affine, |
| 121 | + moving_affine, |
| 122 | + starting_affine=starting_affine, |
| 123 | + ) |
| 124 | + |
| 125 | + return affine.transform(moving), affine.affine |
| 126 | + |
| 127 | + |
| 128 | +def affine_registration( |
| 129 | + moving, |
| 130 | + static, |
| 131 | + nbins, |
| 132 | + sampling_prop, |
| 133 | + metric, |
| 134 | + pipeline, |
| 135 | + level_iters, |
| 136 | + sigmas, |
| 137 | + factors, |
| 138 | + params0, |
| 139 | +): |
| 140 | + |
| 141 | + """ |
| 142 | + Find the affine transformation between two 3D images. |
| 143 | +
|
| 144 | + Parameters |
| 145 | + ---------- |
| 146 | +
|
| 147 | + """ |
| 148 | + # Define the Affine registration object we'll use with the chosen metric: |
| 149 | + use_metric = affine_metric_dict[metric](nbins, sampling_prop) |
| 150 | + affreg = AffineRegistration( |
| 151 | + metric=use_metric, level_iters=level_iters, sigmas=sigmas, factors=factors |
| 152 | + ) |
| 153 | + |
| 154 | + if not params0: |
| 155 | + starting_affine = np.eye(4) |
| 156 | + else: |
| 157 | + starting_affine = params0 |
| 158 | + |
| 159 | + # Go through the selected transformation: |
| 160 | + for func in pipeline: |
| 161 | + transformed, starting_affine = func( |
| 162 | + np.asarray(moving.dataobj), |
| 163 | + np.asarray(static.dataobj), |
| 164 | + static.affine, |
| 165 | + moving.affine, |
| 166 | + affreg, |
| 167 | + starting_affine, |
| 168 | + params0, |
| 169 | + ) |
| 170 | + return nb.Nifti1Image(np.array(transformed), static.affine), starting_affine |
0 commit comments