1
1
========
2
- dmriprep
2
+ dMRIPrep
3
3
========
4
4
5
5
.. image :: https://badgen.net/badge/chat/on%20mattermost/blue
@@ -17,10 +17,8 @@ dmriprep
17
17
.. image :: https://zenodo.org/badge/DOI/10.5281/zenodo.3392201.svg
18
18
:target: https://doi.org/10.5281/zenodo.3392201
19
19
20
- .. image :: https://readthedocs.org/projects/dmriprep/badge/?version=latest
21
- :target: https://dmriprep.readthedocs.io/en/latest/?badge=latest
22
- :alt: Documentation Status
23
-
20
+ [`Documentation <https://nipreps.github.io/dmriprep/ >`__]
21
+ [`Support at neurostars.org <https://neurostars.org/tags/dmriprep >`__]
24
22
25
23
The preprocessing of diffusion MRI (dMRI) involves numerous steps to clean and standardize
26
24
the data before fitting a particular model.
@@ -36,20 +34,17 @@ dMRIPrep equips neuroscientists with an easy-to-use and transparent preprocessin
36
34
workflow, which can help ensure the validity of inference and the interpretability
37
35
of results.
38
36
39
- The workflow is based on `Nipype <https://nipype.readthedocs.io >`_ and encompases a large
37
+ The workflow is based on `Nipype <https://nipype.readthedocs.io >`__ and encompases a large
40
38
set of tools from well-known neuroimaging packages, including
41
- `FSL <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ >`_ ,
42
- `ANTs <https://stnava.github.io/ANTs/ >`_ ,
43
- `FreeSurfer <https://surfer.nmr.mgh.harvard.edu/ >`_ ,
44
- `AFNI <https://afni.nimh.nih.gov/ >`_ ,
45
- and `Nilearn <https://nilearn.github.io/ >`_ .
39
+ `FSL <https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ >`__ ,
40
+ `ANTs <https://stnava.github.io/ANTs/ >`__ ,
41
+ `FreeSurfer <https://surfer.nmr.mgh.harvard.edu/ >`__ ,
42
+ `AFNI <https://afni.nimh.nih.gov/ >`__ ,
43
+ and `Nilearn <https://nilearn.github.io/ >`__ .
46
44
This pipeline was designed to provide the best software implementation for each state of
47
45
preprocessing, and will be updated as newer and better neuroimaging software becomes
48
46
available.
49
47
50
48
dMRIPrep performs basic preprocessing steps (coregistration, normalization, unwarping,
51
49
segmentation, skullstripping etc.) providing outputs that can be
52
50
easily submitted to a variety of tractography algorithms.
53
-
54
- [Documentation `dmriprep.org <https://dmriprep.readthedocs.io >`_]
55
- [Support `neurostars.org <https://neurostars.org/tags/dmriprep >`_]
0 commit comments