@@ -159,22 +159,26 @@ Unlike fMRIPrep, MSMSulc support is not available at the moment.
159
159
And the affine translation (and inverse) between the anatomical reference sampling and
160
160
FreeSurfer's conformed space for surface reconstruction (` fsnative ` ) is stored in::
161
161
162
- sub-<subject_label>/[ ses-<session_label>/]
163
- anat/
164
- sub-<subject_label>_ from-fsnative_to-anat_mode-image_xfm.txt
165
- sub-<subject_label>_ from-anat_to-fsnative_mode-image_xfm.txt
162
+ ```
163
+ sub-<subject_label>/[ses-<session_label>/]
164
+ anat/
165
+ sub-<subject_label>_from-fsnative_to-anat_mode-image_xfm.txt
166
+ sub-<subject_label>_from-anat_to-fsnative_mode-image_xfm.txt
167
+ ```
166
168
167
169
Finally, cortical thickness, curvature, and sulcal depth maps are converted to GIFTI
168
170
and CIFTI-2::
169
171
170
- sub-<subject_label>/[ ses-<session_label>/]
171
- anat/
172
- sub-<subject_label>_ hemi-[ LR] _ thickness.shape.gii
173
- sub-<subject_label>_ hemi-[ LR] _ curv.shape.gii
174
- sub-<subject_label>_ hemi-[ LR] _ sulc.shape.gii
175
- sub-<subject_label>_ space-fsLR_den-32k_thickness.dscalar.nii
176
- sub-<subject_label>_ space-fsLR_den-32k_curv.dscalar.nii
177
- sub-<subject_label>_ space-fsLR_den-32k_sulc.dscalar.nii
172
+ ```
173
+ sub-<subject_label>/[ses-<session_label>/]
174
+ anat/
175
+ sub-<subject_label>_hemi-[LR]_thickness.shape.gii
176
+ sub-<subject_label>_hemi-[LR]_curv.shape.gii
177
+ sub-<subject_label>_hemi-[LR]_sulc.shape.gii
178
+ sub-<subject_label>_space-fsLR_den-32k_thickness.dscalar.nii
179
+ sub-<subject_label>_space-fsLR_den-32k_curv.dscalar.nii
180
+ sub-<subject_label>_space-fsLR_den-32k_sulc.dscalar.nii
181
+ ```
178
182
179
183
:::{warning}
180
184
@@ -351,10 +355,12 @@ For each {abbr}`BOLD (blood-oxygen level dependent)` run processed with *NiBabie
351
355
accompanying * confounds* file will be generated.
352
356
Confounds_ are saved as a {abbr}` TSV (tab-separated value) ` file::
353
357
354
- sub-<subject_label>/[ ses-<session_label>/]
355
- func/
356
- sub-<subject_label>_ [ specifiers] _ desc-confounds_timeseries.tsv
357
- sub-<subject_label>_ [ specifiers] _ desc-confounds_timeseries.json
358
+ ```
359
+ sub-<subject_label>/[ses-<session_label>/]
360
+ func/
361
+ sub-<subject_label>_[specifiers]_desc-confounds_timeseries.tsv
362
+ sub-<subject_label>_[specifiers]_desc-confounds_timeseries.json
363
+ ```
358
364
359
365
These {abbr}` TSV (tab-separated values) ` tables look like the example below,
360
366
where each row of the file corresponds to one time point found in the
@@ -420,8 +426,7 @@ In contrast to volume onsets, event onsets need to be shifted *backward* by half
420
426
for example, from [ 5, 10, 15] to [ 4, 9, 14] .
421
427
422
428
Further information on this issue is found at
423
- `this blog post (with thanks to Russell Poldrack and Jeanette Mumford)
424
- < https://reproducibility.stanford.edu/slice-timing-correction-in-fmriprep-and-linear-modeling/ > `__ .
429
+ [ this blog post (with thanks to Russell Poldrack and Jeanette Mumford)] ( https://reproducibility.stanford.edu/slice-timing-correction-in-fmriprep-and-linear-modeling/ ) .
425
430
:::
426
431
427
432
## Confounds
@@ -556,10 +561,8 @@ If your analysis includes separate high-pass filtering, do not include
556
561
557
562
:::{seealso}
558
563
- A detailed explanation about temporal high-pass filtering is provided with
559
- the `BrainVoyager User Guide
560
- < https://www.brainvoyager.com/bvqx/doc/UsersGuide/Preprocessing/TemporalHighPassFiltering.html > `_ .
561
- - `This comment
562
- < https://github.com/nipreps/fmriprep/issues/1899#issuecomment-561687460 > `__
564
+ the [ BrainVoyager User Guide] ( https://www.brainvoyager.com/bvqx/doc/UsersGuide/Preprocessing/TemporalHighPassFiltering.html ) .
565
+ - [ This comment] ( https://github.com/nipreps/fmriprep/issues/1899#issuecomment-561687460 )
563
566
on an issue regarding CompCor regressors.
564
567
:::
565
568
@@ -656,8 +659,7 @@ should also be included in the design matrix.
656
659
:::
657
660
658
661
:::{seealso}
659
- This didactic `discussion on NeuroStars.org
660
- < https://neurostars.org/t/fmrirep-outputs-very-high-number-of-acompcors-up-to-1000/5451 > `__
662
+ This didactic [ discussion on NeuroStars.org] ( https://neurostars.org/t/fmrirep-outputs-very-high-number-of-acompcors-up-to-1000/5451 )
661
663
where Patrick Sadil gets into details about PCA and how that base technique applies
662
664
to CompCor in general and * fMRIPrep* 's implementation in particular.
663
665
:::
@@ -701,33 +703,10 @@ option `--return-all-components`.
701
703
*NiBabies* reports include a plot of the cumulative variance explained by each
702
704
component, ordered by descending singular value.
703
705
704
- .. figure:: _static/sub-01_task-rest_compcor.svg
705
-
706
- The figure displays the cumulative variance explained by components for each
707
- of four CompCor decompositions (left to right: anatomical CSF mask, anatomical
708
- white matter mask, anatomical combined mask, temporal).
709
- The number of components is plotted on the abscissa and
710
- the cumulative variance explained on the ordinate.
711
- Dotted lines indicate the minimum number of components necessary
712
- to explain 50%, 70%, and 90% of the variance in the nuisance mask.
713
- By default, only the components that explain the top 50% of the variance
714
- are saved.
715
-
716
706
Also included is a plot of correlations among confound regressors.
717
707
This can be used to guide selection of a confound model or to assess the extent
718
708
to which tissue-specific regressors correlate with global signal.
719
709
720
- .. figure:: _static/sub-01_task-mixedgamblestask_run-01_confounds_correlation.svg
721
-
722
- The left-hand panel shows the matrix of correlations among selected confound
723
- time series as a heat-map.
724
- Note the zero-correlation blocks near the diagonal; these correspond to each
725
- CompCor decomposition.
726
- The right-hand panel displays the correlation of selected confound time series
727
- with the mean global signal computed across the whole brain; the regressors shown
728
- are those with greatest correlation with the global signal.
729
- This information can be used to diagnose partial volume effects.
730
-
731
710
See implementation on :mod:`~nibabies.workflows.bold.confounds.init_bold_confs_wf`.
732
711
733
712
.. topic:: References
0 commit comments