Skip to content

Commit 81e2d35

Browse files
committed
docs: clean up rst links
1 parent f0382cb commit 81e2d35

File tree

1 file changed

+26
-47
lines changed

1 file changed

+26
-47
lines changed

docs/outputs.md

Lines changed: 26 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -159,22 +159,26 @@ Unlike fMRIPrep, MSMSulc support is not available at the moment.
159159
And the affine translation (and inverse) between the anatomical reference sampling and
160160
FreeSurfer's conformed space for surface reconstruction (`fsnative`) is stored in::
161161

162-
sub-<subject_label>/[ses-<session_label>/]
163-
anat/
164-
sub-<subject_label>_from-fsnative_to-anat_mode-image_xfm.txt
165-
sub-<subject_label>_from-anat_to-fsnative_mode-image_xfm.txt
162+
```
163+
sub-<subject_label>/[ses-<session_label>/]
164+
anat/
165+
sub-<subject_label>_from-fsnative_to-anat_mode-image_xfm.txt
166+
sub-<subject_label>_from-anat_to-fsnative_mode-image_xfm.txt
167+
```
166168

167169
Finally, cortical thickness, curvature, and sulcal depth maps are converted to GIFTI
168170
and CIFTI-2::
169171

170-
sub-<subject_label>/[ses-<session_label>/]
171-
anat/
172-
sub-<subject_label>_hemi-[LR]_thickness.shape.gii
173-
sub-<subject_label>_hemi-[LR]_curv.shape.gii
174-
sub-<subject_label>_hemi-[LR]_sulc.shape.gii
175-
sub-<subject_label>_space-fsLR_den-32k_thickness.dscalar.nii
176-
sub-<subject_label>_space-fsLR_den-32k_curv.dscalar.nii
177-
sub-<subject_label>_space-fsLR_den-32k_sulc.dscalar.nii
172+
```
173+
sub-<subject_label>/[ses-<session_label>/]
174+
anat/
175+
sub-<subject_label>_hemi-[LR]_thickness.shape.gii
176+
sub-<subject_label>_hemi-[LR]_curv.shape.gii
177+
sub-<subject_label>_hemi-[LR]_sulc.shape.gii
178+
sub-<subject_label>_space-fsLR_den-32k_thickness.dscalar.nii
179+
sub-<subject_label>_space-fsLR_den-32k_curv.dscalar.nii
180+
sub-<subject_label>_space-fsLR_den-32k_sulc.dscalar.nii
181+
```
178182

179183
:::{warning}
180184

@@ -351,10 +355,12 @@ For each {abbr}`BOLD (blood-oxygen level dependent)` run processed with *NiBabie
351355
accompanying *confounds* file will be generated.
352356
Confounds_ are saved as a {abbr}`TSV (tab-separated value)` file::
353357

354-
sub-<subject_label>/[ses-<session_label>/]
355-
func/
356-
sub-<subject_label>_[specifiers]_desc-confounds_timeseries.tsv
357-
sub-<subject_label>_[specifiers]_desc-confounds_timeseries.json
358+
```
359+
sub-<subject_label>/[ses-<session_label>/]
360+
func/
361+
sub-<subject_label>_[specifiers]_desc-confounds_timeseries.tsv
362+
sub-<subject_label>_[specifiers]_desc-confounds_timeseries.json
363+
```
358364

359365
These {abbr}`TSV (tab-separated values)` tables look like the example below,
360366
where each row of the file corresponds to one time point found in the
@@ -420,8 +426,7 @@ In contrast to volume onsets, event onsets need to be shifted *backward* by half
420426
for example, from [5, 10, 15] to [4, 9, 14].
421427

422428
Further information on this issue is found at
423-
`this blog post (with thanks to Russell Poldrack and Jeanette Mumford)
424-
<https://reproducibility.stanford.edu/slice-timing-correction-in-fmriprep-and-linear-modeling/>`__.
429+
[this blog post (with thanks to Russell Poldrack and Jeanette Mumford)](https://reproducibility.stanford.edu/slice-timing-correction-in-fmriprep-and-linear-modeling/).
425430
:::
426431

427432
## Confounds
@@ -556,10 +561,8 @@ If your analysis includes separate high-pass filtering, do not include
556561

557562
:::{seealso}
558563
- A detailed explanation about temporal high-pass filtering is provided with
559-
the `BrainVoyager User Guide
560-
<https://www.brainvoyager.com/bvqx/doc/UsersGuide/Preprocessing/TemporalHighPassFiltering.html>`_.
561-
- `This comment
562-
<https://github.com/nipreps/fmriprep/issues/1899#issuecomment-561687460>`__
564+
the [BrainVoyager User Guide](https://www.brainvoyager.com/bvqx/doc/UsersGuide/Preprocessing/TemporalHighPassFiltering.html).
565+
- [This comment](https://github.com/nipreps/fmriprep/issues/1899#issuecomment-561687460)
563566
on an issue regarding CompCor regressors.
564567
:::
565568

@@ -656,8 +659,7 @@ should also be included in the design matrix.
656659
:::
657660

658661
:::{seealso}
659-
This didactic `discussion on NeuroStars.org
660-
<https://neurostars.org/t/fmrirep-outputs-very-high-number-of-acompcors-up-to-1000/5451>`__
662+
This didactic [discussion on NeuroStars.org](https://neurostars.org/t/fmrirep-outputs-very-high-number-of-acompcors-up-to-1000/5451)
661663
where Patrick Sadil gets into details about PCA and how that base technique applies
662664
to CompCor in general and *fMRIPrep*'s implementation in particular.
663665
:::
@@ -701,33 +703,10 @@ option `--return-all-components`.
701703
*NiBabies* reports include a plot of the cumulative variance explained by each
702704
component, ordered by descending singular value.
703705
704-
.. figure:: _static/sub-01_task-rest_compcor.svg
705-
706-
The figure displays the cumulative variance explained by components for each
707-
of four CompCor decompositions (left to right: anatomical CSF mask, anatomical
708-
white matter mask, anatomical combined mask, temporal).
709-
The number of components is plotted on the abscissa and
710-
the cumulative variance explained on the ordinate.
711-
Dotted lines indicate the minimum number of components necessary
712-
to explain 50%, 70%, and 90% of the variance in the nuisance mask.
713-
By default, only the components that explain the top 50% of the variance
714-
are saved.
715-
716706
Also included is a plot of correlations among confound regressors.
717707
This can be used to guide selection of a confound model or to assess the extent
718708
to which tissue-specific regressors correlate with global signal.
719709
720-
.. figure:: _static/sub-01_task-mixedgamblestask_run-01_confounds_correlation.svg
721-
722-
The left-hand panel shows the matrix of correlations among selected confound
723-
time series as a heat-map.
724-
Note the zero-correlation blocks near the diagonal; these correspond to each
725-
CompCor decomposition.
726-
The right-hand panel displays the correlation of selected confound time series
727-
with the mean global signal computed across the whole brain; the regressors shown
728-
are those with greatest correlation with the global signal.
729-
This information can be used to diagnose partial volume effects.
730-
731710
See implementation on :mod:`~nibabies.workflows.bold.confounds.init_bold_confs_wf`.
732711
733712
.. topic:: References

0 commit comments

Comments
 (0)