|
| 1 | +import nipype.interfaces.utility as niu |
| 2 | +import nipype.pipeline.engine as pe |
| 3 | + |
| 4 | + |
| 5 | +def init_infant_epi_reference_wf( |
| 6 | + omp_nthreads: int, |
| 7 | + is_sbref: bool = False, |
| 8 | + start_frame: int = 17, |
| 9 | + name: str = 'infant_epi_reference_wf', |
| 10 | +) -> pe.Workflow: |
| 11 | + """ |
| 12 | + Workflow to generate a reference map from one or more infant EPI images. |
| 13 | +
|
| 14 | + If any single-band references are provided, the reference map will be calculated from those. |
| 15 | +
|
| 16 | + If no single-band references are provided, the BOLD files are used. |
| 17 | + To account for potential increased motion on the start of image acquisition, this |
| 18 | + workflow discards a bigger chunk of the initial frames. |
| 19 | +
|
| 20 | + Parameters |
| 21 | + ---------- |
| 22 | + omp_nthreads |
| 23 | + Maximum number of threads an individual process may use |
| 24 | + has_sbref |
| 25 | + A single-band reference is provided. |
| 26 | + start_frame |
| 27 | + BOLD frame to start creating the reference map from. Any earlier frames are discarded. |
| 28 | +
|
| 29 | + Inputs |
| 30 | + ------ |
| 31 | + bold_file |
| 32 | + BOLD EPI file |
| 33 | + sbref_file |
| 34 | + single-band reference EPI |
| 35 | +
|
| 36 | + Outputs |
| 37 | + ------- |
| 38 | + boldref_file |
| 39 | + The generated reference map |
| 40 | + boldref_mask |
| 41 | + Binary brain mask of the ``boldref_file`` |
| 42 | + boldref_xfm |
| 43 | + Rigid-body transforms in LTA format |
| 44 | +
|
| 45 | + """ |
| 46 | + from niworkflows.workflows.epi.refmap import init_epi_reference_wf |
| 47 | + from sdcflows.interfaces.brainmask import BrainExtraction |
| 48 | + |
| 49 | + wf = pe.Workflow(name=name) |
| 50 | + |
| 51 | + inputnode = pe.Node( |
| 52 | + niu.IdentityInterface(fields=['epi_file']), |
| 53 | + name='inputnode', |
| 54 | + ) |
| 55 | + outputnode = pe.Node( |
| 56 | + niu.IdentityInterface(fields=['boldref_file', 'boldref_mask']), |
| 57 | + name='outputnode', |
| 58 | + ) |
| 59 | + |
| 60 | + epi_reference_wf = init_epi_reference_wf(omp_nthreads) |
| 61 | + |
| 62 | + boldref_mask = pe.Node(BrainExtraction(), name='boldref_mask') |
| 63 | + |
| 64 | + # fmt:off |
| 65 | + wf.connect([ |
| 66 | + (inputnode, epi_reference_wf, [('epi_file', 'in_files')]), |
| 67 | + (epi_reference_wf, boldref_mask, [('epi_ref_file', 'in_file')]), |
| 68 | + (epi_reference_wf, outputnode, [('epi_ref_file', 'boldref_file')]), |
| 69 | + (boldref_mask, outputnode, [('out_mask', 'boldref_mask')]), |
| 70 | + ]) |
| 71 | + # fmt:on |
| 72 | + if not is_sbref: |
| 73 | + select_frames = pe.Node( |
| 74 | + niu.Function(function=_select_frames, output_names=['t_mask']), |
| 75 | + name='select_frames', |
| 76 | + ) |
| 77 | + select_frames.inputs.start_frame = start_frame |
| 78 | + # fmt:off |
| 79 | + wf.connect([ |
| 80 | + (inputnode, select_frames, [('epi_file', 'in_file')]), |
| 81 | + (select_frames, epi_reference_wf, [('t_mask', 't_mask')]), |
| 82 | + ]) |
| 83 | + # fmt:on |
| 84 | + return wf |
| 85 | + |
| 86 | + |
| 87 | +def _select_frames(in_file: str, start_frame: int) -> list: |
| 88 | + import nibabel as nb |
| 89 | + import numpy as np |
| 90 | + |
| 91 | + img = nb.load(in_file) |
| 92 | + img_len = img.shape[3] |
| 93 | + if start_frame >= img_len: |
| 94 | + start_frame = img_len - 1 |
| 95 | + t_mask = np.array([False] * img_len, dtype=bool) |
| 96 | + t_mask[start_frame:] = True |
| 97 | + return list(t_mask) |
0 commit comments