@@ -53,25 +53,25 @@ def test_len(random_dataset: BaseDataset):
5353 assert len (random_dataset ) == 5 # last dimension is 5 volumes
5454
5555
56- def test_getitem_volume_index (random_dataset : BaseDataset [()] ):
56+ def test_getitem_volume_index (random_dataset : BaseDataset ):
5757 """
5858 Test that __getitem__ returns the correct (volume, affine) tuple.
5959
6060 By default, motion_affines is None, so we expect to get None for the affine.
6161 """
62- # Single volume
63- volume0 , aff0 = random_dataset [0 ]
62+ # Single volume # Note that the type ignore can be removed once we can use *Ts
63+ volume0 , aff0 = random_dataset [0 ] # type: ignore[misc] # PY310
6464 assert volume0 .shape == (32 , 32 , 32 )
6565 # No transforms have been applied yet, so there's no motion_affines array
6666 assert aff0 is None
6767
6868 # Slice of volumes
69- volume_slice , aff_slice = random_dataset [2 :4 ]
69+ volume_slice , aff_slice = random_dataset [2 :4 ] # type: ignore[misc] # PY310
7070 assert volume_slice .shape == (32 , 32 , 32 , 2 )
7171 assert aff_slice is None
7272
7373
74- def test_set_transform (random_dataset : BaseDataset [()] ):
74+ def test_set_transform (random_dataset : BaseDataset ):
7575 """
7676 Test that calling set_transform changes the data and motion_affines.
7777 For simplicity, we'll apply an identity transform and check that motion_affines is updated.
@@ -83,7 +83,7 @@ def test_set_transform(random_dataset: BaseDataset[()]):
8383 random_dataset .set_transform (idx , affine , order = 1 )
8484
8585 # Data shouldn't have changed (since transform is identity).
86- volume0 , aff0 = random_dataset [idx ]
86+ volume0 , aff0 = random_dataset [idx ] # type: ignore[misc] # PY310
8787 assert np .allclose (data_before , volume0 )
8888
8989 # motion_affines should be created and match the transform matrix.
0 commit comments