diff --git a/scripts/dwi_gp_estimation_error_analysis.py b/scripts/dwi_gp_estimation_error_analysis.py index eb393b973..768e7dbc8 100644 --- a/scripts/dwi_gp_estimation_error_analysis.py +++ b/scripts/dwi_gp_estimation_error_analysis.py @@ -189,11 +189,11 @@ def main() -> None: snr_str = args.snr if args.snr is not None else "None" - a = 1.15 - lambda_s = 120 + beta_a = 1.15 + beta_l = 120 alpha = 1 gpr = DiffusionGPR( - kernel=SphericalKriging(beta_a=a, beta_l=lambda_s), + kernel=SphericalKriging(beta_a=beta_a, beta_l=beta_l), alpha=alpha, optimizer=None, # optimizer="Nelder-Mead", diff --git a/scripts/dwi_gp_estimation_simulated_signal.py b/scripts/dwi_gp_estimation_simulated_signal.py index fd22a81a6..c68035959 100644 --- a/scripts/dwi_gp_estimation_simulated_signal.py +++ b/scripts/dwi_gp_estimation_simulated_signal.py @@ -132,11 +132,11 @@ def main() -> None: # Fit the Gaussian Process regressor and predict on an arbitrary number of # directions - a = 1.15 - lambda_s = 120 + beta_a = 1.15 + beta_l = 120 alpha = 100 gpr = DiffusionGPR( - kernel=SphericalKriging(a=a, lambda_s=lambda_s), + kernel=SphericalKriging(beta_a=beta_a, beta_l=beta_l), alpha=alpha, optimizer=None, )