@@ -297,13 +297,13 @@ def spike_regressors(
297297 mask = reduce (operator .or_ , mask .values ())
298298
299299 for lag in lags :
300- mask = set ([ m + lag for m in mask ]) | mask
300+ mask = { m + lag for m in mask } | mask
301301
302302 mask = mask .intersection (indices )
303303 if minimum_contiguous is not None :
304304 post_final = data .shape [0 ] + 1
305- epoch_length = np .diff (sorted (mask | set ([ - 1 , post_final ]) )) - 1
306- epoch_end = sorted (mask | set ([ post_final ]) )
305+ epoch_length = np .diff (sorted (mask | { - 1 , post_final } )) - 1
306+ epoch_end = sorted (mask | { post_final } )
307307 for end , length in zip (epoch_end , epoch_length ):
308308 if length < minimum_contiguous :
309309 mask = mask | set (range (end - length , end ))
@@ -356,7 +356,7 @@ def temporal_derivatives(order, variables, data):
356356 if 0 in order :
357357 data_deriv [0 ] = data [variables ]
358358 variables_deriv [0 ] = variables
359- order = set (order ) - set ([ 0 ])
359+ order = set (order ) - { 0 }
360360 for o in order :
361361 variables_deriv [o ] = [f'{ v } _derivative{ o } ' for v in variables ]
362362 data_deriv [o ] = np .tile (np .nan , data [variables ].shape )
@@ -399,7 +399,7 @@ def exponential_terms(order, variables, data):
399399 if 1 in order :
400400 data_exp [1 ] = data [variables ]
401401 variables_exp [1 ] = variables
402- order = set (order ) - set ([ 1 ])
402+ order = set (order ) - { 1 }
403403 for o in order :
404404 variables_exp [o ] = [f'{ v } _power{ o } ' for v in variables ]
405405 data_exp [o ] = data [variables ] ** o
0 commit comments