@@ -115,6 +115,10 @@ def init_pet_wf(
115
115
Registration spheres from fsnative to fsLR space, collated left, then right
116
116
anat_ribbon
117
117
Binary cortical ribbon mask in T1w space
118
+ segmentation
119
+ Segmentation file in T1w space
120
+ dseg_tsv
121
+ TSV with segmentation statistics
118
122
anat2std_xfm
119
123
Transform from anatomical space to standard space
120
124
std_t1w
@@ -206,6 +210,8 @@ def init_pet_wf(
206
210
'midthickness_fsLR' ,
207
211
'cortex_mask' ,
208
212
'anat_ribbon' ,
213
+ 'segmentation' ,
214
+ 'dseg_tsv' ,
209
215
# Volumetric templates
210
216
'anat2std_xfm' ,
211
217
'std_t1w' ,
@@ -242,6 +248,8 @@ def init_pet_wf(
242
248
('subjects_dir' , 'inputnode.subjects_dir' ),
243
249
('subject_id' , 'inputnode.subject_id' ),
244
250
('fsnative2t1w_xfm' , 'inputnode.fsnative2t1w_xfm' ),
251
+ ('segmentation' , 'inputnode.segmentation' ),
252
+ ('dseg_tsv' , 'inputnode.dseg_tsv' ),
245
253
]),
246
254
]) # fmt:skip
247
255
@@ -391,9 +399,7 @@ def init_pet_wf(
391
399
('t1w_tpms' , 'inputnode.t1w_tpms' ),
392
400
('subjects_dir' , 'inputnode.subjects_dir' ),
393
401
('subject_id' , 'inputnode.subject_id' ),
394
- ]),
395
- (pet_fit_wf , pet_pvc_wf , [
396
- ('outputnode.segmentation' , 'inputnode.segmentation' ),
402
+ ('segmentation' , 'inputnode.segmentation' ),
397
403
]),
398
404
(petref_t1w , pet_pvc_wf , [('output_image' , 'inputnode.petref' )]),
399
405
(pet_pvc_wf , psf_meta , [
@@ -711,9 +717,9 @@ def init_pet_wf(
711
717
712
718
workflow .connect ([
713
719
(pet_t1w_src , pet_tacs_wf , [(pet_t1w_field , 'inputnode.pet_anat' )]),
714
- (pet_fit_wf , pet_tacs_wf , [
715
- ('outputnode. segmentation' , 'inputnode.segmentation' ),
716
- ('outputnode. dseg_tsv' , 'inputnode.dseg_tsv' ),
720
+ (inputnode , pet_tacs_wf , [
721
+ ('segmentation' , 'inputnode.segmentation' ),
722
+ ('dseg_tsv' , 'inputnode.dseg_tsv' ),
717
723
]),
718
724
(pet_tacs_wf , ds_pet_tacs , [('outputnode.timeseries' , 'in_file' )]),
719
725
]) # fmt:skip
0 commit comments