@@ -321,36 +321,33 @@ def num_outliers(scan, outliers):
321
321
wf .connect (prep , "fsl_eddy.out_outlier_report" ,
322
322
drop_outliers , "outlier_report" )
323
323
324
- def save_outlier_list (drop_scans , outpath ):
324
+ def save_outlier_list (drop_scans ):
325
325
"""Save list of outlier scans to file
326
326
327
327
Parameters
328
328
----------
329
329
drop_scans: numpy.ndarray
330
330
Path to the fsl_eddy outlier report
331
331
332
- outpath: string
333
- Path to output file where list is saved
334
-
335
332
Returns
336
333
-------
337
334
outpath: string
338
335
Path to output file where list is saved
339
336
"""
340
337
import numpy as np
338
+ import os .path as op
339
+ outpath = op .abspath ("dropped_scans.txt" )
341
340
np .savetxt (outpath , drop_scans , fmt = "%d" )
342
341
return outpath
343
342
344
343
save_drop_scans = pe .Node (niu .Function (
345
- input_names = ["drop_scans" , "outpath" ],
344
+ input_names = ["drop_scans" ],
346
345
output_names = ["outpath" ],
347
346
function = save_outlier_list ),
348
347
name = "save_drop_scans"
349
348
)
350
349
351
- wf .connect (drop_outliers , "drop_scans" ,
352
- save_drop_scans , "drop_scans" )
353
- save_drop_scans .inputs .outpath = op .join (working_dir , 'outlier_report.txt' )
350
+ wf .connect (drop_outliers , "drop_scans" , save_drop_scans , "drop_scans" )
354
351
355
352
merge = pe .Node (fsl .Merge (dimension = 't' ), name = "mergeAPPA" )
356
353
merge .inputs .in_files = [dwi_file_AP , dwi_file_PA ]
@@ -471,6 +468,8 @@ def get_orig(subjects_dir, sub):
471
468
wf .connect (prep , "fsl_eddy.out_shell_alignment_parameters" ,
472
469
datasink , "dmriprep.qc.@eddyparamsshellalign" )
473
470
471
+ wf .connect (save_drop_scans , "outpath" , datasink , "dmriprep.qc.@droppedscans" )
472
+
474
473
wf .connect (get_tensor , "out_file" , datasink , "dmriprep.dti.@tensor" )
475
474
wf .connect (get_tensor , "fa_file" , datasink , "dmriprep.dti.@fa" )
476
475
wf .connect (get_tensor , "md_file" , datasink , "dmriprep.dti.@md" )
0 commit comments