Skip to content

Commit e4d07dd

Browse files
committed
Add --roygbiv to README examples
1 parent 2b75073 commit e4d07dd

File tree

2 files changed

+52
-52
lines changed

2 files changed

+52
-52
lines changed

README.rst

Lines changed: 9 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -185,20 +185,25 @@ To learn about Mindboggle's command options, type this in a terminal window::
185185
mindboggle -h
186186

187187
**Example 1:**
188-
This command runs Mindboggle on data run through FreeSurfer but not ANTs::
188+
Run Mindboggle on data processed by FreeSurfer but not ANTs::
189189

190190
mindboggle $FREESURFER_SUBJECT --out $OUT
191191

192192
**Example 2:**
193+
Same as Example 1 with output to visualize surface data with roygbiv::
194+
195+
mindboggle $FREESURFER_SUBJECT --out $OUT --roygbiv
196+
197+
**Example 3:**
193198
Take advantage of ANTs output as well ("\\" splits for readability)::
194199

195-
mindboggle $FREESURFER_SUBJECT --out $OUT \
200+
mindboggle $FREESURFER_SUBJECT --out $OUT --roygbiv \
196201
--ants $ANTS_SUBJECT/antsBrainSegmentation.nii.gz
197202

198-
**Example 3:**
203+
**Example 4:**
199204
Generate only volume (no surface) labels and shapes::
200205

201-
mindboggle $FREESURFER_SUBJECT --out $OUT \
206+
mindboggle $FREESURFER_SUBJECT --out $OUT --roygbiv \
202207
--ants $ANTS_SUBJECT/antsBrainSegmentation.nii.gz \
203208
--no_surfaces
204209

docs/mindboggle_tutorial.ipynb

Lines changed: 43 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -6,13 +6,12 @@
66
"source": [
77
"<img align=\"left\" style=\"padding-right:10px; width:150px;\" src=\"https://mfr.osf.io/export?url=https://osf.io/q7ym9/?action=download%26direct%26mode=render&initialWidth=673&childId=mfrIframe&format=1200x1200.jpeg\">\n",
88
"<font size=\"1\">\n",
9-
"This jupyter notebook provides a tutorial for [Mindboggle](http://mindboggle.info), and assumes that you have [1] entered the bash shell of a docker container from your \\$HOST (e.g., /Users/arno) and [2] that the notebook is running within the container:\n",
9+
"This jupyter notebook provides a tutorial for [Mindboggle](http://mindboggle.info), and assumes that you have ``[1]`` entered the bash shell of a docker container from your $HOST (e.g., /Users/arno) and ``[2]`` that the notebook is running within the container:\n",
1010
"<br>\n",
11-
"[1] docker run --rm -ti -v \\$HOST:/home/jovyan/work -p 8888:8888 --entrypoint /bin/bash nipy/mindboggle\n",
11+
"&nbsp;&nbsp;[1] ``docker run --rm -ti -v $HOST:/home/jovyan/work -p 8888:8888 --entrypoint /bin/bash nipy/mindboggle``<br>\n",
12+
"&nbsp;&nbsp;[2] ``jupyter notebook /opt/mindboggle/docs/mindboggle_tutorial.ipynb``\n",
1213
"<br>\n",
13-
"[2] jupyter notebook /opt/mindboggle/docs/mindboggle_tutorial.ipynb\n",
14-
"<br>\n",
15-
"-- <a href=\"http://binarybottle.com\">Arno Klein</a> and Anisha Keshavan (please refer to the [Mindboggle reference](http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350#sec007))\n",
14+
"&nbsp;&nbsp;-- <a href=\"http://binarybottle.com\">Arno Klein</a> and Anisha Keshavan (please refer to the [Mindboggle reference](http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350#sec007))\n",
1615
"</font>"
1716
]
1817
},
@@ -180,6 +179,7 @@
180179
"cell_type": "code",
181180
"execution_count": null,
182181
"metadata": {
182+
"collapsed": true,
183183
"scrolled": false
184184
},
185185
"outputs": [],
@@ -366,12 +366,26 @@
366366
{
367367
"cell_type": "code",
368368
"execution_count": null,
369-
"metadata": {},
369+
"metadata": {
370+
"collapsed": true
371+
},
370372
"outputs": [],
371373
"source": [
372374
"ls /opt/conda/lib/python3.5/site-packages/nbpapaya/Papaya/release/current/standard/papaya.js"
373375
]
374376
},
377+
{
378+
"cell_type": "code",
379+
"execution_count": null,
380+
"metadata": {
381+
"collapsed": true
382+
},
383+
"outputs": [],
384+
"source": [
385+
"from nbpapaya import Overlay\n",
386+
"Overlay"
387+
]
388+
},
375389
{
376390
"cell_type": "markdown",
377391
"metadata": {},
@@ -383,7 +397,9 @@
383397
{
384398
"cell_type": "code",
385399
"execution_count": null,
386-
"metadata": {},
400+
"metadata": {
401+
"collapsed": true
402+
},
387403
"outputs": [],
388404
"source": [
389405
"from mindboggle.mio.plots import histograms_of_lists\n",
@@ -405,7 +421,9 @@
405421
{
406422
"cell_type": "code",
407423
"execution_count": null,
408-
"metadata": {},
424+
"metadata": {
425+
"collapsed": true
426+
},
409427
"outputs": [],
410428
"source": [
411429
"from mindboggle.features.folds import find_depth_threshold\n",
@@ -425,7 +443,9 @@
425443
{
426444
"cell_type": "code",
427445
"execution_count": null,
428-
"metadata": {},
446+
"metadata": {
447+
"collapsed": true
448+
},
429449
"outputs": [],
430450
"source": [
431451
"from mindboggle.features.folds import extract_folds\n",
@@ -473,11 +493,11 @@
473493
"cell_type": "code",
474494
"execution_count": null,
475495
"metadata": {
496+
"collapsed": true,
476497
"scrolled": false
477498
},
478499
"outputs": [],
479500
"source": [
480-
"import numpy as np\n",
481501
"just_folds = np.ones(len(folds))\n",
482502
"df = pd.DataFrame(just_folds, columns=[\"folds\"])\n",
483503
"df.to_csv('folds.csv', index=False)\n",
@@ -553,6 +573,7 @@
553573
"cell_type": "code",
554574
"execution_count": null,
555575
"metadata": {
576+
"collapsed": true,
556577
"scrolled": true
557578
},
558579
"outputs": [],
@@ -570,37 +591,6 @@
570591
"n_sulci"
571592
]
572593
},
573-
{
574-
"cell_type": "markdown",
575-
"metadata": {},
576-
"source": [
577-
"Remove all vertices but the sulci:"
578-
]
579-
},
580-
{
581-
"cell_type": "code",
582-
"execution_count": null,
583-
"metadata": {},
584-
"outputs": [],
585-
"source": [
586-
"#from mindboggle.mio.vtks import rewrite_scalars\n",
587-
"#rewrite_scalars(input_vtk=depth_file,\n",
588-
"# output_vtk='sulci_depth.vtk',\n",
589-
"# new_scalars=[depths, sulci],\n",
590-
"# new_scalar_names=['depth', 'sulci'],\n",
591-
"# filter_scalars=sulci,\n",
592-
"# background_value=1)"
593-
]
594-
},
595-
{
596-
"cell_type": "code",
597-
"execution_count": null,
598-
"metadata": {},
599-
"outputs": [],
600-
"source": [
601-
"#sulci_depths = [depths[i] for i,x in enumerate(depths) if sulci[i] != -1]"
602-
]
603-
},
604594
{
605595
"cell_type": "markdown",
606596
"metadata": {},
@@ -612,13 +602,14 @@
612602
"cell_type": "code",
613603
"execution_count": null,
614604
"metadata": {
605+
"collapsed": true,
615606
"scrolled": false
616607
},
617608
"outputs": [],
618609
"source": [
619-
"df = pd.DataFrame(depths, columns=[\"sulci\"])\n",
610+
"df = pd.DataFrame(sulci, columns=[\"sulci\"])\n",
620611
"df.to_csv('sulci.csv', index=False)\n",
621-
"MeshOpts = getMeshOpts(sulci_file, \"sulci.csv\" , 1,10,1)\n",
612+
"MeshOpts = getMeshOpts('sulci.vtk', \"sulci.csv\" , 1,10,1)\n",
622613
"Overlay(MeshOpts)"
623614
]
624615
},
@@ -632,7 +623,9 @@
632623
{
633624
"cell_type": "code",
634625
"execution_count": null,
635-
"metadata": {},
626+
"metadata": {
627+
"collapsed": true
628+
},
636629
"outputs": [],
637630
"source": [
638631
"from mindboggle.mio.tables import write_shape_stats\n",
@@ -660,7 +653,9 @@
660653
{
661654
"cell_type": "code",
662655
"execution_count": null,
663-
"metadata": {},
656+
"metadata": {
657+
"collapsed": true
658+
},
664659
"outputs": [],
665660
"source": [
666661
"pd.read_csv(sulcus_table)"
@@ -678,7 +673,7 @@
678673
"language_info": {
679674
"codemirror_mode": {
680675
"name": "ipython",
681-
"version": 3
676+
"version": 3.0
682677
},
683678
"file_extension": ".py",
684679
"mimetype": "text/x-python",
@@ -689,5 +684,5 @@
689684
}
690685
},
691686
"nbformat": 4,
692-
"nbformat_minor": 1
693-
}
687+
"nbformat_minor": 0
688+
}

0 commit comments

Comments
 (0)