6
6
"source" : [
7
7
" <img align=\" left\" style=\" padding-right:10px; width:150px;\" src=\" https://mfr.osf.io/export?url=https://osf.io/q7ym9/?action=download%26direct%26mode=render&initialWidth=673&childId=mfrIframe&format=1200x1200.jpeg\" >\n " ,
8
8
" <font size=\" 1\" >\n " ,
9
- " This jupyter notebook provides a tutorial for [Mindboggle](http://mindboggle.info), and assumes that you have [1] entered the bash shell of a docker container from your \\ $HOST (e.g., /Users/arno) and [2] that the notebook is running within the container:\n " ,
9
+ " This jupyter notebook provides a tutorial for [Mindboggle](http://mindboggle.info), and assumes that you have `` [1]`` entered the bash shell of a docker container from your $HOST (e.g., /Users/arno) and `` [2]`` that the notebook is running within the container:\n " ,
10
10
" <br>\n " ,
11
- " [1] docker run --rm -ti -v \\ $HOST:/home/jovyan/work -p 8888:8888 --entrypoint /bin/bash nipy/mindboggle\n " ,
11
+ " [1] ``docker run --rm -ti -v $HOST:/home/jovyan/work -p 8888:8888 --entrypoint /bin/bash nipy/mindboggle``<br>\n " ,
12
+ " [2] ``jupyter notebook /opt/mindboggle/docs/mindboggle_tutorial.ipynb``\n " ,
12
13
" <br>\n " ,
13
- " [2] jupyter notebook /opt/mindboggle/docs/mindboggle_tutorial.ipynb\n " ,
14
- " <br>\n " ,
15
- " -- <a href=\" http://binarybottle.com\" >Arno Klein</a> and Anisha Keshavan (please refer to the [Mindboggle reference](http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350#sec007))\n " ,
14
+ " -- <a href=\" http://binarybottle.com\" >Arno Klein</a> and Anisha Keshavan (please refer to the [Mindboggle reference](http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005350#sec007))\n " ,
16
15
" </font>"
17
16
]
18
17
},
180
179
"cell_type" : " code" ,
181
180
"execution_count" : null ,
182
181
"metadata" : {
182
+ "collapsed" : true ,
183
183
"scrolled" : false
184
184
},
185
185
"outputs" : [],
366
366
{
367
367
"cell_type" : " code" ,
368
368
"execution_count" : null ,
369
- "metadata" : {},
369
+ "metadata" : {
370
+ "collapsed" : true
371
+ },
370
372
"outputs" : [],
371
373
"source" : [
372
374
" ls /opt/conda/lib/python3.5/site-packages/nbpapaya/Papaya/release/current/standard/papaya.js"
373
375
]
374
376
},
377
+ {
378
+ "cell_type" : " code" ,
379
+ "execution_count" : null ,
380
+ "metadata" : {
381
+ "collapsed" : true
382
+ },
383
+ "outputs" : [],
384
+ "source" : [
385
+ " from nbpapaya import Overlay\n " ,
386
+ " Overlay"
387
+ ]
388
+ },
375
389
{
376
390
"cell_type" : " markdown" ,
377
391
"metadata" : {},
383
397
{
384
398
"cell_type" : " code" ,
385
399
"execution_count" : null ,
386
- "metadata" : {},
400
+ "metadata" : {
401
+ "collapsed" : true
402
+ },
387
403
"outputs" : [],
388
404
"source" : [
389
405
" from mindboggle.mio.plots import histograms_of_lists\n " ,
405
421
{
406
422
"cell_type" : " code" ,
407
423
"execution_count" : null ,
408
- "metadata" : {},
424
+ "metadata" : {
425
+ "collapsed" : true
426
+ },
409
427
"outputs" : [],
410
428
"source" : [
411
429
" from mindboggle.features.folds import find_depth_threshold\n " ,
425
443
{
426
444
"cell_type" : " code" ,
427
445
"execution_count" : null ,
428
- "metadata" : {},
446
+ "metadata" : {
447
+ "collapsed" : true
448
+ },
429
449
"outputs" : [],
430
450
"source" : [
431
451
" from mindboggle.features.folds import extract_folds\n " ,
473
493
"cell_type" : " code" ,
474
494
"execution_count" : null ,
475
495
"metadata" : {
496
+ "collapsed" : true ,
476
497
"scrolled" : false
477
498
},
478
499
"outputs" : [],
479
500
"source" : [
480
- " import numpy as np\n " ,
481
501
" just_folds = np.ones(len(folds))\n " ,
482
502
" df = pd.DataFrame(just_folds, columns=[\" folds\" ])\n " ,
483
503
" df.to_csv('folds.csv', index=False)\n " ,
553
573
"cell_type" : " code" ,
554
574
"execution_count" : null ,
555
575
"metadata" : {
576
+ "collapsed" : true ,
556
577
"scrolled" : true
557
578
},
558
579
"outputs" : [],
570
591
" n_sulci"
571
592
]
572
593
},
573
- {
574
- "cell_type" : " markdown" ,
575
- "metadata" : {},
576
- "source" : [
577
- " Remove all vertices but the sulci:"
578
- ]
579
- },
580
- {
581
- "cell_type" : " code" ,
582
- "execution_count" : null ,
583
- "metadata" : {},
584
- "outputs" : [],
585
- "source" : [
586
- " #from mindboggle.mio.vtks import rewrite_scalars\n " ,
587
- " #rewrite_scalars(input_vtk=depth_file,\n " ,
588
- " # output_vtk='sulci_depth.vtk',\n " ,
589
- " # new_scalars=[depths, sulci],\n " ,
590
- " # new_scalar_names=['depth', 'sulci'],\n " ,
591
- " # filter_scalars=sulci,\n " ,
592
- " # background_value=1)"
593
- ]
594
- },
595
- {
596
- "cell_type" : " code" ,
597
- "execution_count" : null ,
598
- "metadata" : {},
599
- "outputs" : [],
600
- "source" : [
601
- " #sulci_depths = [depths[i] for i,x in enumerate(depths) if sulci[i] != -1]"
602
- ]
603
- },
604
594
{
605
595
"cell_type" : " markdown" ,
606
596
"metadata" : {},
612
602
"cell_type" : " code" ,
613
603
"execution_count" : null ,
614
604
"metadata" : {
605
+ "collapsed" : true ,
615
606
"scrolled" : false
616
607
},
617
608
"outputs" : [],
618
609
"source" : [
619
- " df = pd.DataFrame(depths , columns=[\" sulci\" ])\n " ,
610
+ " df = pd.DataFrame(sulci , columns=[\" sulci\" ])\n " ,
620
611
" df.to_csv('sulci.csv', index=False)\n " ,
621
- " MeshOpts = getMeshOpts(sulci_file , \" sulci.csv\" , 1,10,1)\n " ,
612
+ " MeshOpts = getMeshOpts('sulci.vtk' , \" sulci.csv\" , 1,10,1)\n " ,
622
613
" Overlay(MeshOpts)"
623
614
]
624
615
},
632
623
{
633
624
"cell_type" : " code" ,
634
625
"execution_count" : null ,
635
- "metadata" : {},
626
+ "metadata" : {
627
+ "collapsed" : true
628
+ },
636
629
"outputs" : [],
637
630
"source" : [
638
631
" from mindboggle.mio.tables import write_shape_stats\n " ,
660
653
{
661
654
"cell_type" : " code" ,
662
655
"execution_count" : null ,
663
- "metadata" : {},
656
+ "metadata" : {
657
+ "collapsed" : true
658
+ },
664
659
"outputs" : [],
665
660
"source" : [
666
661
" pd.read_csv(sulcus_table)"
678
673
"language_info" : {
679
674
"codemirror_mode" : {
680
675
"name" : " ipython" ,
681
- "version" : 3
676
+ "version" : 3.0
682
677
},
683
678
"file_extension" : " .py" ,
684
679
"mimetype" : " text/x-python" ,
689
684
}
690
685
},
691
686
"nbformat" : 4 ,
692
- "nbformat_minor" : 1
693
- }
687
+ "nbformat_minor" : 0
688
+ }
0 commit comments