255
255
256
256
% ___________________________________________________________________________
257
257
258
- \subsection* {Nipype%
259
- \phantomsection %
260
- \addcontentsline {toc}{subsection}{Nipype}%
261
- \label {nipype }%
262
- }
263
-
264
- \url {http://nipy.org/nipype}
265
- %
266
-
267
- Nipype provides an environment that encourages interactive exploration of
268
-
269
- algorithms from different packages (e.g., SPM, FSL, FreeSurfer, Camino, AFNI,
270
- Slicer), eases the design of workflows within and between packages, and
271
- reduces the learning curve necessary to use different packages. Nipype is
272
- creating a collaborative platform for neuroimaging software development in a
273
- high-level language and addressing limitations of existing pipeline systems.
274
-
275
- Nipype allows you to:
276
- %
277
- \begin {quote }
278
- %
279
- \begin {itemize }
280
-
258
+ \ndproject {Nipype}{http://nipy.org/nipype}{blank.png}
259
+
260
+ Nipype provides an environment that encourages interactive exploration
261
+ of algorithms from different packages (e.g., SPM, FSL, FreeSurfer,
262
+ Camino, AFNI, Slicer), eases the design of workflows within and
263
+ between packages, and reduces the learning curve necessary to use
264
+ different packages. Nipype is creating a collaborative platform for
265
+ neuroimaging software development in a high-level language and
266
+ addressing limitations of existing pipeline systems. Nipype allows you to
267
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
281
268
\item easily interact with tools from different software packages
282
-
283
269
\item combine processing steps from different software packages
284
-
285
270
\item develop new workflows faster by reusing common steps from old ones
286
-
287
271
\item process data faster by running it in parallel on many cores/machines
288
-
289
272
\item make your research easily reproducible
290
-
291
273
\item share your processing workflows with the community
292
-
293
274
\end {itemize }
294
-
295
- \end {quote }
296
-
275
+ \includegraphics [width=\columnwidth ]{nipype_arch.pdf}
297
276
Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS
298
277
(2011) Nipype: a flexible, lightweight and extensible neuroimaging data
299
278
processing framework in Python. Front. Neuroinform. 5:13.
300
279
doi: 10.3389/fninf.2011.00013
301
- \begin {figure }
302
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/nipype_arch.pdf}}
303
- \end {figure }
304
280
305
281
306
282
% ___________________________________________________________________________
307
283
308
- \subsection* {DiPy%
309
- \phantomsection %
310
- \addcontentsline {toc}{subsection}{DiPy}%
311
- \label {dipy }%
312
- }
313
-
314
- \url {http://nipy.org/dipy}
315
- \begin {figure }
316
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/dipy-banner.png}}
317
- \end {figure }
318
-
319
- Dipy is an international, free and open soure software project for
320
- diffusion magnetic resonance imaging analysis.
321
-
322
- Dipy is multiplatform and will run under any standard operating system such as
323
- \emph {Windows }, \emph {Linux }, \emph {Mac OS X }.
324
-
325
- Just some of our \textbf {state-of-the-art } applications are:
326
- %
327
- \begin {itemize }
284
+ \ndproject {DiPy}{http://nipy.org/dipy}{dipy-banner.png}
328
285
286
+ Dipy is an international FOSS project for diffusion magnetic resonance
287
+ imaging analysis. Dipy is multiplatform and will run under any
288
+ standard operating system such as \emph {Windows }, \emph {Linux },
289
+ \emph {Mac OS X }. Some of our \textbf {state-of-the-art } applications
290
+ are:
291
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
329
292
\item Reconstruction algorithms e.g. GQI, DTI
330
-
331
293
\item Tractography generation algorithms e.g. EuDX
332
-
333
294
\item Intelligent downsampling of tracks
334
-
335
295
\item Ultra fast tractography clustering
336
-
337
296
\item Resampling datasets with anisotropic voxels to isotropic
338
-
339
297
\item Visualizing multiple brains simultaneously
340
-
341
298
\item Finding track correspondence between different brains
342
-
343
- \item Warping tractographies into another space e.g. MNI space
344
-
345
- \item Reading many different file formats e.g. Trackvis or Nifti
346
-
347
- \item Dealing with huge tractographies without memory restrictions
348
-
349
- \item Playing with datasets interactively without storing
350
-
351
- \item And much more and even more to come in next releases
352
-
299
+ \item Warping tractographies into another (e.g. MNI) space
300
+ \item Support of various file formats e.g. Trackvis or NIfTI
301
+ % \item Dealing with huge tractographies without memory restrictions
302
+ % \item Playing with datasets interactively without storing
353
303
\end {itemize }
354
304
355
305
356
306
% ___________________________________________________________________________
357
307
358
- \subsection* {NiTime%
359
- \phantomsection %
360
- \addcontentsline {toc}{subsection}{NiTime}%
361
- \label {nitime }%
362
- }
363
-
364
- \url {http://nipy.org/nitime}
365
- \begin {figure }
366
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/nitime_logo.pdf}}
367
- \end {figure }
308
+ \ndproject {NiTime}{http://nipy.org/nitime}{nitime_logo.pdf}
368
309
369
310
Nitime is a library for time-series analysis of data from neuroscience
370
- experiments.
371
-
372
- It contains a core of numerical algorithms for time-series analysis both in
373
- the time and spectral domains, a set of container objects to represent
374
- time-series, and auxiliary objects that expose a high level interface to the
375
- numerical machinery and make common analysis tasks easy to express with
376
- compact and semantically clear code.
377
- %
378
- \begin {description }
379
- \item [{Features:}] \leavevmode %
380
- \begin {itemize }
381
-
311
+ experiments. It contains a core of numerical algorithms for
312
+ time-series analysis both in the time and spectral domains, a set of
313
+ container objects to represent time-series, and auxiliary objects that
314
+ expose a high level interface to the numerical machinery and make
315
+ common analysis tasks easy to express with compact and semantically
316
+ clear code.
317
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
382
318
\item Spectral transforms (including multi-tapered spectral analysis) and
383
319
filtering.
384
-
385
320
\item Connectivity measures (Correlation, Coherency, Granger 'causality' ).
386
-
387
321
\item Event-related analysis (including OLS finitie impulse response).
388
-
389
322
\end {itemize }
390
-
391
- \end {description }
392
- \begin {figure }
393
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/nitime_analysis.pdf}}
394
- \end {figure }
395
- \begin {figure }
396
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/nitime_network.pdf}}
397
- \end {figure }
398
-
323
+ % \includegraphics[width=\columnwidth]{nitime_analysis.pdf}
324
+ \includegraphics [width=0.9\columnwidth ]{nitime_network.pdf}
399
325
400
326
% ___________________________________________________________________________
401
327
402
- \subsection* {PyMVPA%
403
- \phantomsection %
404
- \addcontentsline {toc}{subsection}{PyMVPA}%
405
- \label {pymvpa }%
406
- }
407
-
408
- \url {http://www.pymvpa.org}
409
- \begin {figure }
410
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/pymvpa_logo.pdf}}
411
- \end {figure }
328
+ \ndproject {PyMVPA}{http://www.pymvpa.org}{pymvpa_logo.pdf}
412
329
413
330
PyMVPA eases statistical learning analyses (or otherwise called
414
331
Multivariate pattern analysis, MVPA) of large datasets, with an accent
415
332
on neuroimaging.
416
-
417
- Features:
418
- %
419
- \begin {quote }
420
- %
421
- \begin {itemize }
422
-
333
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
423
334
\item Easy I/O to Neuroimaging data (via NiBabel)
424
-
425
335
\item Variety of machine learning methods (e.g. SVM, SMLR, kNN)
426
-
427
336
\item Uniform interfaces to other toolkits (e.g. MDP, Shogun, Scikit-learn)
428
-
429
337
\item Flexible Searchlight-ing
430
-
431
338
\item Uber-Fast GNB Searchlight-ing
432
-
433
339
\item Hyperalignment (Haxby et al 2011, Neuron)
434
-
435
340
\end {itemize }
341
+ \includegraphics [width=\columnwidth ]{pymvpa_shot.pdf}
436
342
437
- \end {quote }
438
- \begin {figure }
439
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/pymvpa_shot.pdf}}
440
- \end {figure }
441
-
343
+ Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V.
344
+ \& Pollmann, S. (2009).
345
+ PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7, 37-53.\\
346
+ Haxby, J. V. , Guntupalli, J. S. , Connolly, A. C. , Halchenko,
347
+ Y. O. , Conroy, B. R., Gobbini, M. I. , Hanke, M. and Ramadge,
348
+ P. J. (2011). A Common, High-Dimensional Model of the Representational
349
+ Space in Human Ventral Temporal Cortex. Neuron, 72, 404–416.
442
350
443
351
% ___________________________________________________________________________
444
352
445
- \subsection* {BrainVISA%
446
- \phantomsection %
447
- \addcontentsline {toc}{subsection}{BrainVISA}%
448
- \label {brainvisa }%
449
- }
450
-
451
- \url {http://brainvisa.info}
452
-
453
- \noindent {\hfill\includegraphics {../pics/brainvisa_logo.png}}
353
+ \ndproject {BrainVISA}{http://brainvisa.info}{brainvisa_logo.png}
454
354
455
355
BrainVISA is an open-source, modular and customizable software platform built
456
356
to host heterogeneous tools dedicated to neuroimaging research. It aims at
457
357
helping researchers in developing new neuroimaging tools, sharing data and
458
358
distributing their software.
459
-
460
- Features:
461
- %
462
- \begin {itemize }
463
-
359
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
464
360
\item Written in pure Python
465
-
466
361
\item Databasing capabilities
467
-
468
362
\item Massive computation facilities using Soma-workflow
469
-
470
363
\item Open environment, with many toolboxes
471
-
472
364
\item Specialized toolboxes for T1 MRI processing, sulci ang gyri morphometry,
473
365
diffusion imaging and fibers tracking, surfacic and structural analysis,
474
- 3D histology...
475
-
366
+ 3D histology\ldots
476
367
\item Links with other software like SPM, FSL, FreeSurfer, or CIVET
477
-
478
368
\end {itemize }
479
-
369
+ \includegraphics [width=0.9 \columnwidth ]{../pics/brainvisa_screenshot.png}
480
370
D. Geffroy, D. Rivière, I. Denghien, N. Souedet, S. Laguitton, and
481
371
Y. Cointepas. BrainVISA: a complete software platform for neuroimaging.
482
372
In Python in Neuroscience workshop, Paris, Aug. 2011.
483
- \begin {figure }
484
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/brainvisa_screenshot.png}}
485
- \end {figure }
486
-
487
373
488
374
% ___________________________________________________________________________
489
375
490
- \subsection* {AIMS%
491
- \phantomsection %
492
- \addcontentsline {toc}{subsection}{AIMS}%
493
- \label {aims }%
494
- }
495
-
496
- \url {http://brainvisa.info}
376
+ \ndproject {AIMS}{http://brainvisa.info}{blank.png}
497
377
498
378
AIMS is the image processing library provided within the BrainVISA environment.
499
379
It is independent from BrainVISA, and the basis for the Anatomist viewer.
500
-
501
- Features:
502
- %
503
- \begin {itemize }
504
-
380
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
505
381
\item C++ and Python APIs, including integration with Numpy arrays
506
-
507
382
\item Open and plugin-based IO system supporting various volume formats (NIFTI-1,
508
383
Analyze, DICOM, MINC, ECAT, and several others including all standard 2D
509
- image formats), several mesh and texture formats (GIFTI, PLY, CIVET,
510
- BrainVisa Mesh and Tri, export as VRML-1, POV, ...), graphs...
511
-
384
+ image formats), several mesh and texture formats (GIFTI, PLY,
385
+ % CIVET, BrainVisa Mesh and Tri, export as VRML-1, POV,
386
+ \ldots ), graphs.
512
387
\item Many neuromiaging data manipulation tools and image processing algorithms
513
-
514
388
\end {itemize }
515
389
516
-
517
390
% ___________________________________________________________________________
518
391
519
- \subsection* {Soma-Workflow%
520
- \phantomsection %
521
- \addcontentsline {toc}{subsection}{Soma-Workflow}%
522
- \label {soma-workflow }%
523
- }
524
-
525
- \url {http://brainvisa.info/soma-workflow}
526
- \begin {figure }
527
- \noindent\makebox [\textwidth ][c]{\includegraphics {../pics/soma-workflow.png}}
528
- \end {figure }
392
+ \ndproject {Soma-Workflow}{http://brainvisa.info/soma-workflow}{soma-workflow.png}
529
393
530
394
Soma-workflow is a unified and simple interface to parallel computing resource.
531
395
It is an open source Python application which aims at making easier the use of
532
396
parallel resources by non expert users and external software.
533
-
534
- Features:
535
- %
536
- \begin {itemize }
537
-
397
+ \begin {itemize }[nolistsep,topsep=0em,leftmargin=1pc]
538
398
\item Python library, and GUI
539
-
540
399
\item Interfaces with many cluster management tools (Grid Engine, LSF, PBS,
541
- Condor, ...) via DRMAA, or via the python API.
542
-
400
+ Condor, \ldots ) via DRMAA, or via the python API.
543
401
\item Local multicore implementation
544
-
545
402
\item Handles files transfers
546
-
547
403
\item Handles client disconnection while jobs are running on a remote resource
548
-
549
404
\end {itemize }
550
405
551
406
S. Laguitton, D. Rivière, T. Vincent, C. Fischer, D. Geffroy, N. Souedet,
@@ -556,23 +411,19 @@ \subsection*{Soma-Workflow%
556
411
557
412
% ___________________________________________________________________________
558
413
559
- \section* {Visualization%
560
- \phantomsection %
561
- \addcontentsline {toc}{section}{Visualization}%
562
- \label {visualization }%
563
- }
564
-
414
+ \ndsection {Visualization}
565
415
566
416
% ___________________________________________________________________________
567
417
568
- \subsection* {PySurfer%
569
- \phantomsection %
570
- \addcontentsline {toc}{subsection}{PySurfer}%
571
- \label {pysurfer }%
572
- }
573
-
574
- \url {http://pysurfer.github.com}
418
+ \ndproject {PySurfer}{http://pysurfer.github.com}{pysurfer_logo.png}
575
419
420
+ PySurfer is a module for visualization and interaction with cortical
421
+ surface representations of neuroimaging data from Freesurfer. It
422
+ extends Mayavi’s powerful visualization engine with a high-level
423
+ interface for working with MRI and MEG data. PySurfer offers both a
424
+ command-line interface designed to broadly replicate Freesurfer’s
425
+ Tksurfer program as well as a Python library for writing scripts to
426
+ efficiently explore complex datasets.
576
427
577
428
% ___________________________________________________________________________
578
429
0 commit comments