Skip to content

Commit 038bd06

Browse files
committed
More fixed links.
1 parent b07d252 commit 038bd06

File tree

5 files changed

+8
-8
lines changed

5 files changed

+8
-8
lines changed

examples/dmri_group_connectivity_camino.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
99
This script, dmri_group_connectivity_camino.py, runs group-based connectivity analysis using
1010
the dmri.camino.connectivity_mapping Nipype workflow. Further detail on the processing can be
11-
found in :ref:`dmri_connectivity. This tutorial can be run using:
11+
found in :doc:`dmri_connectivity`. This tutorial can be run using:
1212
1313
python dmri_group_connectivity_camino.py
1414
@@ -109,7 +109,7 @@
109109
110110
* nipype/workflows/dmri/mrtrix/group_connectivity.py
111111
* nipype/workflows/dmri/camino/connectivity_mapping.py
112-
* :ref:`dmri_connectivity`
112+
* :doc:`dmri_connectivity`
113113
114114
The purpose of the second-level workflow is simple: It is used to merge each
115115
subject's CFF file into one, so that there is a single file containing all of the

examples/dmri_group_connectivity_mrtrix.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
99
This script, dmri_group_connectivity_mrtrix.py, runs group-based connectivity analysis using
1010
the dmri.mrtrix.connectivity_mapping Nipype workflow. Further detail on the processing can be
11-
found in :ref:`dmri_connectivity_advanced. This tutorial can be run using:
11+
found in :doc:`dmri_connectivity_advanced`. This tutorial can be run using:
1212
1313
python dmri_group_connectivity_mrtrix.py
1414
@@ -107,7 +107,7 @@
107107
108108
* nipype/workflows/dmri/mrtrix/group_connectivity.py
109109
* nipype/workflows/dmri/mrtrix/connectivity_mapping.py
110-
* :ref:`dmri_connectivity_advanced`
110+
* :doc:`dmri_connectivity_advanced`
111111
112112
We set values for absolute threshold used on the fractional anisotropy map. This is done
113113
in order to identify single-fiber voxels. In brains with more damage, however, it may be necessary

nipype/algorithms/rapidart.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -565,8 +565,8 @@ class StimulusCorrelation(BaseInterface):
565565
566566
Currently this class supports an SPM generated design matrix and requires
567567
intensity parameters. This implies that one must run
568-
:ref:`nipype.algorithms.rapidart.ArtifactDetect`
569-
and :ref:`nipype.interfaces.spm.model.Level1Design` prior to running this or
568+
:ref:`ArtifactDetect <nipype.algorithms.rapidart.ArtifactDetect>`
569+
and :ref:`Level1Design <nipype.interfaces.spm.model.Level1Design>` prior to running this or
570570
provide an SPM.mat file and intensity parameters through some other means.
571571
572572
Examples

nipype/workflows/dmri/camino/diffusion.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88

99
def create_camino_dti_pipeline(name="dtiproc"):
1010
"""Creates a pipeline that does the same diffusion processing as in the
11-
:ref:`dmri_camino_dti` example script. Given a diffusion-weighted image,
11+
:doc:`../../users/examples/dmri_camino_dti` example script. Given a diffusion-weighted image,
1212
b-values, and b-vectors, the workflow will return the tractography
1313
computed from diffusion tensors and from PICo probabilistic tractography.
1414

nipype/workflows/dmri/mrtrix/diffusion.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55

66
def create_mrtrix_dti_pipeline(name="dtiproc", tractography_type = 'probabilistic'):
77
"""Creates a pipeline that does the same diffusion processing as in the
8-
:ref:`dmri_mrtrix_dti` example script. Given a diffusion-weighted image,
8+
:doc:`../../users/examples/dmri_mrtrix_dti` example script. Given a diffusion-weighted image,
99
b-values, and b-vectors, the workflow will return the tractography
1010
computed from spherical deconvolution and probabilistic streamline tractography
1111

0 commit comments

Comments
 (0)