@@ -282,6 +282,15 @@ class RegistrationInputSpec(ANTSCommandInputSpec):
282
282
'combines all adjacent linear transforms and composes all '
283
283
'adjacent displacement field transforms before writing the '
284
284
'results to disk.' ))
285
+ initialize_transforms_per_stage = traits .Bool (
286
+ argstr = '--initialize-transforms-per-stage %d' , default = False ,
287
+ usedefault = True , # This should be true for explicit completeness
288
+ desc = ('Initialize linear transforms from the previous stage. By enabling this option, '
289
+ 'the current linear stage transform is directly intialized from the previous '
290
+ 'stages linear transform; this allows multiple linear stages to be run where '
291
+ 'each stage directly updates the estimated linear transform from the previous '
292
+ 'stage. (e.g. Translation -> Rigid -> Affine). '
293
+ ))
285
294
286
295
transforms = traits .List (traits .Enum ('Rigid' , 'Affine' , 'CompositeAffine' ,
287
296
'Similarity' , 'Translation' , 'BSpline' ,
@@ -364,6 +373,7 @@ class Registration(ANTSCommand):
364
373
>>> reg.inputs.dimension = 3
365
374
>>> reg.inputs.write_composite_transform = True
366
375
>>> reg.inputs.collapse_output_transforms = False
376
+ >>> reg.inputs.initialize_transforms_per_stage = False
367
377
>>> reg.inputs.metric = ['Mattes']*2
368
378
>>> reg.inputs.metric_weight = [1]*2 # Default (value ignored currently by ANTs)
369
379
>>> reg.inputs.radius_or_number_of_bins = [32]*2
@@ -381,35 +391,36 @@ class Registration(ANTSCommand):
381
391
>>> reg1 = copy.deepcopy(reg)
382
392
>>> reg1.inputs.winsorize_lower_quantile = 0.025
383
393
>>> reg1.cmdline
384
- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
394
+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
385
395
>>> reg1.run() #doctest: +SKIP
386
396
387
397
>>> reg2 = copy.deepcopy(reg)
388
398
>>> reg2.inputs.winsorize_upper_quantile = 0.975
389
399
>>> reg2.cmdline
390
- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
400
+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
391
401
392
402
>>> reg3 = copy.deepcopy(reg)
393
403
>>> reg3.inputs.winsorize_lower_quantile = 0.025
394
404
>>> reg3.inputs.winsorize_upper_quantile = 0.975
395
405
>>> reg3.cmdline
396
- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
406
+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
397
407
398
408
>>> # Test collapse transforms flag
399
409
>>> reg4 = copy.deepcopy(reg)
400
410
>>> reg.inputs.save_state = 'trans.mat'
401
411
>>> reg.inputs.restore_state = 'trans.mat'
412
+ >>> reg4.inputs.initialize_transforms_per_stage = True
402
413
>>> reg4.inputs.collapse_output_transforms = True
403
414
>>> outputs = reg4._list_outputs()
404
415
>>> print outputs #doctest: +ELLIPSIS
405
- {'reverse_invert_flags': [], 'inverse_composite_transform': ['.../nipype/testing/data/output_InverseComposite.h5'], 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'composite_transform': ['.../nipype/testing/data/output_Composite.h5'], 'forward_transforms': []}
416
+ {'reverse_invert_flags': [], 'inverse_composite_transform': ['.../nipype/testing/data/output_InverseComposite.h5'], 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'save_state': <undefined>, ' composite_transform': ['.../nipype/testing/data/output_Composite.h5'], 'forward_transforms': []}
406
417
407
418
>>> # Test collapse transforms flag
408
419
>>> reg4b = copy.deepcopy(reg4)
409
420
>>> reg4b.inputs.write_composite_transform = False
410
421
>>> outputs = reg4b._list_outputs()
411
422
>>> print outputs #doctest: +ELLIPSIS
412
- {'reverse_invert_flags': [True, False], 'inverse_composite_transform': <undefined>, 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [False, False], 'reverse_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1InverseWarp.nii.gz'], 'composite_transform': <undefined>, 'forward_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1Warp.nii.gz']}
423
+ {'reverse_invert_flags': [True, False], 'inverse_composite_transform': <undefined>, 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [False, False], 'reverse_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1InverseWarp.nii.gz'], 'save_state': <undefined>, ' composite_transform': <undefined>, 'forward_transforms': ['.../nipype/testing/data/output_0GenericAffine.mat', '.../nipype/testing/data/output_1Warp.nii.gz']}
413
424
>>> reg4b.aggregate_outputs() #doctest: +SKIP
414
425
415
426
>>> # Test multiple metrics per stage
@@ -420,7 +431,7 @@ class Registration(ANTSCommand):
420
431
>>> reg5.inputs.sampling_strategy = ['Random', None] # use default strategy in second stage
421
432
>>> reg5.inputs.sampling_percentage = [0.05, [0.05, 0.10]]
422
433
>>> reg5.cmdline
423
- 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
434
+ 'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --initialize-transforms-per-stage 0 -- interpolation Linear --output [ output_, output_warped_image.nii.gz ] --restore-state trans.mat --save-state trans.mat --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
424
435
"""
425
436
DEF_SAMPLING_STRATEGY = 'None'
426
437
"""The default sampling strategy argument."""
0 commit comments