Skip to content

Commit 0d56d0b

Browse files
committed
added documentation for fix
1 parent c024235 commit 0d56d0b

File tree

1 file changed

+36
-0
lines changed

1 file changed

+36
-0
lines changed

nipype/interfaces/fsl/fix.py

Lines changed: 36 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,42 @@
88
>>> filepath = os.path.dirname( os.path.realpath( __file__ ) )
99
>>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data'))
1010
>>> os.chdir(datadir)
11+
12+
Example Usage:
13+
14+
def flatten(l):
15+
# turn 2D list into 1D
16+
l = sum(l, [])
17+
return(l)
18+
19+
# extract features
20+
extract_features = pe.MapNode(interface=fix.FeatureExtractor(), name='extract_features', iterfield=['mel_ica'])
21+
preproc.connect(feat, 'feat_dir', extract_features, 'mel_ica')
22+
23+
# the next two nodes are simply for assembling a training set for the classifier. This looks for handlabeled noise txt files in all the specified feat_dirs
24+
training_input = pe.JoinNode(interface=util.IdentityInterface(fields=['mel_ica']), joinfield=['mel_ica'], joinsource='datasource', name='training_input')
25+
preproc.connect(extract_features, 'mel_ica', training_input, 'mel_ica')
26+
27+
create_training_set = pe.Node(interface=fix.TrainingSetCreator(), name='trainingset_creator')
28+
preproc.connect(training_input, ('mel_ica', flatten), create_training_set, 'mel_icas_in')
29+
30+
# now train the classifier
31+
train_node = pe.Node(interface=fix.Training(trained_wts_filestem='core_shell_py'), name='train_node')
32+
preproc.connect(create_training_set, 'mel_icas_out', train_node, 'mel_icas')
33+
34+
# ask classifier to label ICA components as noise or signal
35+
classify_node = pe.MapNode(interface=fix.Classifier(thresh=5), name='classify', iterfield=['mel_ica'])
36+
preproc.connect(train_node, 'trained_wts_file', classify_node, 'trained_wts_file')
37+
preproc.connect(feat, 'feat_dir', classify_node, 'mel_ica')
38+
39+
# remove noise
40+
cleaner_node = pe.MapNode(interface=fix.Cleaner(cleanup_motion=True,), name='cleaner', iterfield=['artifacts_list_file'])
41+
preproc.connect(classify_node, 'artifacts_list_file', cleaner_node, 'artifacts_list_file')
42+
43+
# extract mean func
44+
meanfunc = pe.MapNode(interface=fsl.ImageMaths(op_string = '-Tmean', suffix='_mean'), name='meanfunc', iterfield = ['in_file'])
45+
preproc.connect(cleaner_node, 'cleaned_functional_file', meanfunc, 'in_file')
46+
1147
"""
1248

1349
from nipype.interfaces.base import (

0 commit comments

Comments
 (0)