|
8 | 8 | >>> filepath = os.path.dirname( os.path.realpath( __file__ ) )
|
9 | 9 | >>> datadir = os.path.realpath(os.path.join(filepath, '../../testing/data'))
|
10 | 10 | >>> os.chdir(datadir)
|
| 11 | +
|
| 12 | +Example Usage: |
| 13 | +
|
| 14 | +def flatten(l): |
| 15 | + # turn 2D list into 1D |
| 16 | + l = sum(l, []) |
| 17 | + return(l) |
| 18 | +
|
| 19 | +# extract features |
| 20 | +extract_features = pe.MapNode(interface=fix.FeatureExtractor(), name='extract_features', iterfield=['mel_ica']) |
| 21 | +preproc.connect(feat, 'feat_dir', extract_features, 'mel_ica') |
| 22 | +
|
| 23 | +# the next two nodes are simply for assembling a training set for the classifier. This looks for handlabeled noise txt files in all the specified feat_dirs |
| 24 | +training_input = pe.JoinNode(interface=util.IdentityInterface(fields=['mel_ica']), joinfield=['mel_ica'], joinsource='datasource', name='training_input') |
| 25 | +preproc.connect(extract_features, 'mel_ica', training_input, 'mel_ica') |
| 26 | +
|
| 27 | +create_training_set = pe.Node(interface=fix.TrainingSetCreator(), name='trainingset_creator') |
| 28 | +preproc.connect(training_input, ('mel_ica', flatten), create_training_set, 'mel_icas_in') |
| 29 | +
|
| 30 | +# now train the classifier |
| 31 | +train_node = pe.Node(interface=fix.Training(trained_wts_filestem='core_shell_py'), name='train_node') |
| 32 | +preproc.connect(create_training_set, 'mel_icas_out', train_node, 'mel_icas') |
| 33 | +
|
| 34 | +# ask classifier to label ICA components as noise or signal |
| 35 | +classify_node = pe.MapNode(interface=fix.Classifier(thresh=5), name='classify', iterfield=['mel_ica']) |
| 36 | +preproc.connect(train_node, 'trained_wts_file', classify_node, 'trained_wts_file') |
| 37 | +preproc.connect(feat, 'feat_dir', classify_node, 'mel_ica') |
| 38 | +
|
| 39 | +# remove noise |
| 40 | +cleaner_node = pe.MapNode(interface=fix.Cleaner(cleanup_motion=True,), name='cleaner', iterfield=['artifacts_list_file']) |
| 41 | +preproc.connect(classify_node, 'artifacts_list_file', cleaner_node, 'artifacts_list_file') |
| 42 | +
|
| 43 | +# extract mean func |
| 44 | +meanfunc = pe.MapNode(interface=fsl.ImageMaths(op_string = '-Tmean', suffix='_mean'), name='meanfunc', iterfield = ['in_file']) |
| 45 | +preproc.connect(cleaner_node, 'cleaned_functional_file', meanfunc, 'in_file') |
| 46 | +
|
11 | 47 | """
|
12 | 48 |
|
13 | 49 | from nipype.interfaces.base import (
|
|
0 commit comments