You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
desc='Data type of the output images. 0 = same, 2 = uint8, 512 = uint16, 16 = single (32 bit)'
614
+
615
+
)
616
+
617
+
intlim=traits.Int(
618
+
field='intlim',
619
+
default_value=100,
620
+
usedefault=True,
621
+
)
622
+
623
+
filename_prefix=traits.Str(
624
+
field='prefix',
625
+
default_value='sanlm_',
626
+
usedefault=True,
627
+
desc='Filename prefix. Specify the string to be prepended to the filenames of the filtered image file(s). Default prefix is "samlm_".',
628
+
)
629
+
630
+
filename_suffix=traits.Str(
631
+
field='suffix',
632
+
default_value='',
633
+
usedefault=True,
634
+
desc='Filename suffix. Specify the string to be appended to the filenames of the filtered image file(s). Default suffix is "".'
635
+
)
636
+
637
+
addnoise=traits.Float(default_value=0.5,
638
+
usedefault=True,
639
+
field='addnoise',
640
+
desc='Strength of additional noise in noise-free regions. Add minimal amount of noise in regions without any noise to avoid image segmentation problems. This parameter defines the strength of additional noise as percentage of the average signal intensity.')
641
+
642
+
rician=traits.Enum(
643
+
0,
644
+
1,
645
+
field='rician',
646
+
usedefault=True,
647
+
desc='''Rician noise
648
+
MRIs can have Gaussian or Rician distributed noise with uniform or nonuniform variance across the image. If SNR is high enough
649
+
(>3) noise can be well approximated by Gaussian noise in the foreground. However, for SENSE reconstruction or DTI data a Rician
650
+
distribution is expected. Please note that the Rician noise estimation is sensitive for large signals in the neighbourhood and can lead to
651
+
artefacts, e.g. cortex can be affected by very high values in the scalp or in blood vessels.''')
652
+
653
+
replaceNANandINF=traits.Enum(
654
+
1,
655
+
0,
656
+
field='replaceNANandINF',
657
+
usedefault=True,
658
+
desc='Replace NAN by 0, -INF by the minimum and INF by the maximum of the image.'
659
+
)
660
+
661
+
NCstr=traits.Enum(
662
+
'-Inf',
663
+
2,
664
+
4,
665
+
field='nlmfilter.optimized.NCstr',
666
+
usedefault=True,
667
+
desc='''Strength of Noise Corrections
668
+
Strength of the (sub-resolution) spatial adaptive non local means (SANLM) noise correction. Please note that the filter strength is
669
+
automatically estimated. Change this parameter only for specific conditions. The "light" option applies half of the filter strength of the
670
+
adaptive "medium" cases, whereas the "strong" option uses the full filter strength, force sub-resolution filtering and applies an
671
+
additional iteration. Sub-resolution filtering is only used in case of high image resolution below 0.8 mm or in case of the "strong"
672
+
option. light = 2, medium = -Inf, strong = 4'''
673
+
)
674
+
675
+
676
+
classCAT12SANLMDenoisingOutputSpec(TraitedSpec):
677
+
678
+
out_file=File(desc='out file')
679
+
680
+
681
+
classCAT12SANLMDenoising(SPMCommand):
682
+
"""
683
+
Spatially adaptive non-local means (SANLM) denoising filter
684
+
685
+
This function applies an spatial adaptive (sub-resolution) non-local means denoising filter
686
+
to the data. This filter will remove noise while preserving edges. The filter strength is
687
+
automatically estimated based on the standard deviation of the noise.
688
+
689
+
This filter is internally used in the segmentation procedure anyway. Thus, it is not
690
+
necessary (and not recommended) to apply the filter before segmentation.
0 commit comments