@@ -73,7 +73,7 @@ def _list_outputs(self):
73
73
return outputs
74
74
75
75
76
- class DWI2FODInputSpec (MRTrix3BaseInputSpec ):
76
+ class EstimateFODInputSpec (MRTrix3BaseInputSpec ):
77
77
algorithm = traits .Enum ('csd' ,'msmt_csd' , argstr = '%s' , position = - 8 ,
78
78
mandatory = True , desc = 'FOD algorithm' )
79
79
dwi_file = File (exists = True , argstr = '%s' , position = - 7 ,
@@ -88,150 +88,41 @@ class DWI2FODInputSpec(MRTrix3BaseInputSpec):
88
88
csf_odf = File ('csf.mif' , argstr = '%s' , position = - 1 , desc = 'output CSF ODF' )
89
89
mask_file = File (exists = True , argstr = '-mask %s' , desc = 'mask image' )
90
90
91
-
92
- class DWI2FODOutputSpec (TraitedSpec ):
93
- wm_odf = File (argstr = '%s' , desc = 'output WM ODF' )
94
- gm_odf = File (argstr = '%s' , desc = 'output GM ODF' )
95
- csf_odf = File (argstr = '%s' , desc = 'output CSF ODF' )
96
-
97
-
98
- class DWI2FOD (MRTrix3Base ):
99
-
100
- """
101
- Estimate fibre orientation distributions from diffusion data using spherical deconvolution
102
-
103
- Example
104
- -------
105
-
106
- >>> import nipype.interfaces.mrtrix3 as mrt
107
- >>> fod = mrt.DWI2FOD()
108
- >>> fod.inputs.algorithm = 'csd'
109
- >>> fod.inputs.dwi_file = 'dwi.mif'
110
- >>> fod.inputs.wm_txt = 'wm.txt'
111
- >>> fod.inputs.grad_fsl = ('bvecs', 'bvals')
112
- >>> fod.cmdline # doctest: +ELLIPSIS
113
- 'dwi2fod -fslgrad bvecs bvals csd dwi.mif wm.txt wm.mif'
114
- >>> fod.run() # doctest: +SKIP
115
- """
116
-
117
- _cmd = 'dwi2fod'
118
- input_spec = DWI2FODInputSpec
119
- output_spec = DWI2FODOutputSpec
120
-
121
- def _list_outputs (self ):
122
- outputs = self .output_spec ().get ()
123
- outputs ['wm_odf' ] = op .abspath (self .inputs .wm_odf )
124
- if self .inputs .gm_odf != Undefined :
125
- outputs ['gm_odf' ] = op .abspath (self .inputs .gm_odf )
126
- if self .inputs .csf_odf != Undefined :
127
- outputs ['csf_odf' ] = op .abspath (self .inputs .csf_odf )
128
- return outputs
129
-
130
-
131
- class EstimateFODInputSpec (MRTrix3BaseInputSpec ):
132
- in_file = File (exists = True , argstr = '%s' , mandatory = True , position = - 3 ,
133
- desc = 'input diffusion weighted images' )
134
- response = File (
135
- exists = True , argstr = '%s' , mandatory = True , position = - 2 ,
136
- desc = ('a text file containing the diffusion-weighted signal response '
137
- 'function coefficients for a single fibre population' ))
138
- out_file = File (
139
- 'fods.mif' , argstr = '%s' , mandatory = True , position = - 1 ,
140
- usedefault = True , desc = ('the output spherical harmonics coefficients'
141
- ' image' ))
142
-
143
91
# DW Shell selection options
144
92
shell = traits .List (traits .Float , sep = ',' , argstr = '-shell %s' ,
145
93
desc = 'specify one or more dw gradient shells' )
146
-
147
- # Spherical deconvolution options
148
94
max_sh = traits .Int (8 , argstr = '-lmax %d' ,
149
95
desc = 'maximum harmonic degree of response function' )
150
- in_mask = File (exists = True , argstr = '-mask %s' ,
151
- desc = 'provide initial mask image' )
152
96
in_dirs = File (
153
97
exists = True , argstr = '-directions %s' ,
154
98
desc = ('specify the directions over which to apply the non-negativity '
155
99
'constraint (by default, the built-in 300 direction set is '
156
100
'used). These should be supplied as a text file containing the '
157
101
'[ az el ] pairs for the directions.' ))
158
- sh_filter = File (
159
- exists = True , argstr = '-filter %s' ,
160
- desc = ('the linear frequency filtering parameters used for the initial '
161
- 'linear spherical deconvolution step (default = [ 1 1 1 0 0 ]). '
162
- 'These should be supplied as a text file containing the '
163
- 'filtering coefficients for each even harmonic order.' ))
164
-
165
- neg_lambda = traits .Float (
166
- 1.0 , argstr = '-neg_lambda %f' ,
167
- desc = ('the regularisation parameter lambda that controls the strength'
168
- ' of the non-negativity constraint' ))
169
- thres = traits .Float (
170
- 0.0 , argstr = '-threshold %f' ,
171
- desc = ('the threshold below which the amplitude of the FOD is assumed '
172
- 'to be zero, expressed as an absolute amplitude' ))
173
-
174
- n_iter = traits .Int (
175
- 50 , argstr = '-niter %d' , desc = ('the maximum number of iterations '
176
- 'to perform for each voxel' ))
177
102
178
103
179
104
class EstimateFODOutputSpec (TraitedSpec ):
180
- out_file = File (exists = True , desc = 'the output response file' )
105
+ wm_odf = File (argstr = '%s' , desc = 'output WM ODF' )
106
+ gm_odf = File (argstr = '%s' , desc = 'output GM ODF' )
107
+ csf_odf = File (argstr = '%s' , desc = 'output CSF ODF' )
181
108
182
109
183
110
class EstimateFOD (MRTrix3Base ):
184
111
185
112
"""
186
- Convert diffusion-weighted images to tensor images
187
- (previous MRTrix releases)
188
-
189
- Note that this program makes use of implied symmetries in the diffusion
190
- profile. First, the fact the signal attenuation profile is real implies
191
- that it has conjugate symmetry, i.e. Y(l,-m) = Y(l,m)* (where * denotes
192
- the complex conjugate). Second, the diffusion profile should be
193
- antipodally symmetric (i.e. S(x) = S(-x)), implying that all odd l
194
- components should be zero. Therefore, this program only computes the even
195
- elements.
196
-
197
- Note that the spherical harmonics equations used here differ slightly from
198
- those conventionally used, in that the (-1)^m factor has been omitted.
199
- This should be taken into account in all subsequent calculations.
200
- The spherical harmonic coefficients are stored as follows. First, since
201
- the signal attenuation profile is real, it has conjugate symmetry, i.e.
202
- Y(l,-m) = Y(l,m)* (where * denotes the complex conjugate). Second, the
203
- diffusion profile should be antipodally symmetric (i.e. S(x) = S(-x)),
204
- implying that all odd l components should be zero. Therefore, only the
205
- even elements are computed.
206
-
207
- Note that the spherical harmonics equations used here differ slightly from
208
- those conventionally used, in that the (-1)^m factor has been omitted.
209
- This should be taken into account in all subsequent calculations.
210
- Each volume in the output image corresponds to a different spherical
211
- harmonic component. Each volume will correspond to the following:
212
-
213
- volume 0: l = 0, m = 0
214
- volume 1: l = 2, m = -2 (imaginary part of m=2 SH)
215
- volume 2: l = 2, m = -1 (imaginary part of m=1 SH)
216
- volume 3: l = 2, m = 0
217
- volume 4: l = 2, m = 1 (real part of m=1 SH)
218
- volume 5: l = 2, m = 2 (real part of m=2 SH)
219
- etc...
220
-
221
-
113
+ Estimate fibre orientation distributions from diffusion data using spherical deconvolution
222
114
223
115
Example
224
116
-------
225
117
226
118
>>> import nipype.interfaces.mrtrix3 as mrt
227
119
>>> fod = mrt.EstimateFOD()
228
- >>> fod.inputs.in_file = 'dwi.mif '
229
- >>> fod.inputs.response = 'response.txt '
230
- >>> fod.inputs.in_mask = 'mask.nii.gz '
120
+ >>> fod.inputs.algorithm = 'csd '
121
+ >>> fod.inputs.dwi_file = 'dwi.mif '
122
+ >>> fod.inputs.wm_txt = 'wm.txt '
231
123
>>> fod.inputs.grad_fsl = ('bvecs', 'bvals')
232
124
>>> fod.cmdline # doctest: +ELLIPSIS
233
- 'dwi2fod -fslgrad bvecs bvals -mask mask.nii.gz dwi.mif response.txt\
234
- fods.mif'
125
+ 'dwi2fod -fslgrad bvecs bvals csd dwi.mif wm.txt wm.mif'
235
126
>>> fod.run() # doctest: +SKIP
236
127
"""
237
128
@@ -241,5 +132,12 @@ class EstimateFOD(MRTrix3Base):
241
132
242
133
def _list_outputs (self ):
243
134
outputs = self .output_spec ().get ()
244
- outputs ['out_file' ] = op .abspath (self .inputs .out_file )
135
+ outputs ['wm_odf' ] = op .abspath (self .inputs .wm_odf )
136
+ if self .inputs .gm_odf != Undefined :
137
+ outputs ['gm_odf' ] = op .abspath (self .inputs .gm_odf )
138
+ if self .inputs .csf_odf != Undefined :
139
+ outputs ['csf_odf' ] = op .abspath (self .inputs .csf_odf )
245
140
return outputs
141
+
142
+
143
+
0 commit comments