@@ -732,7 +732,9 @@ class SegmentInputSpec(SPMCommandInputSpec):
732
732
Modulated + Unmodulated Normalised: [True,True,False]""" )
733
733
wm_output_type = traits .List (traits .Bool (), minlen = 3 , maxlen = 3 ,
734
734
field = 'output.WM' ,
735
- desc = """Options to produce white matter images: c2*.img, wc2*.img and mwc2*.img.
735
+ desc = """
736
+ Options to produce white matter images: \
737
+ c2*.img, wc2*.img and mwc2*.img.
736
738
None: [False,False,False],
737
739
Native Space: [False,False,True],
738
740
Unmodulated Normalised: [False,True,False],
@@ -741,8 +743,10 @@ class SegmentInputSpec(SPMCommandInputSpec):
741
743
Native + Modulated Normalised: [True,False,True],
742
744
Native + Modulated + Unmodulated: [True,True,True],
743
745
Modulated + Unmodulated Normalised: [True,True,False]""" )
744
- csf_output_type = traits .List (traits .Bool (), minlen = 3 , maxlen = 3 , field = 'output.CSF' ,
745
- desc = """Options to produce CSF images: c3*.img, wc3*.img and mwc3*.img.
746
+ csf_output_type = traits .List (traits .Bool (), minlen = 3 , maxlen = 3 ,
747
+ field = 'output.CSF' ,
748
+ desc = """
749
+ Options to produce CSF images: c3*.img, wc3*.img and mwc3*.img.
746
750
None: [False,False,False],
747
751
Native Space: [False,False,True],
748
752
Unmodulated Normalised: [False,True,False],
@@ -891,7 +895,8 @@ class NewSegmentInputSpec(SPMCommandInputSpec):
891
895
desc = """A tuple with the following fields:
892
896
- bias reguralisation (0-10)
893
897
- FWHM of Gaussian smoothness of bias
894
- - which maps to save (Corrected, Field) - a tuple of two boolean values""" ,
898
+ - which maps to save (Corrected, Field) - \
899
+ a tuple of two boolean values""" ,
895
900
field = 'channel' )
896
901
tissues = traits .List (
897
902
traits .Tuple (traits .Tuple (File (exists = True ), traits .Int ()),
@@ -900,8 +905,10 @@ class NewSegmentInputSpec(SPMCommandInputSpec):
900
905
desc = """A list of tuples (one per tissue) with the following fields:
901
906
- tissue probability map (4D), 1-based index to frame
902
907
- number of gaussians
903
- - which maps to save [Native, DARTEL] - a tuple of two boolean values
904
- - which maps to save [Unmodulated, Modulated] - a tuple of two boolean values""" ,
908
+ - which maps to save [Native, DARTEL] - \
909
+ a tuple of two boolean values
910
+ - which maps to save [Unmodulated, Modulated] - \
911
+ a tuple of two boolean values""" ,
905
912
field = 'tissue' )
906
913
affine_regularization = traits .Enum ('mni' , 'eastern' , 'subj' , 'none' ,
907
914
field = 'warp.affreg' ,
@@ -1174,7 +1181,8 @@ class DARTELInputSpec(SPMCommandInputSpec):
1174
1181
optimization_parameters = traits .Tuple (traits .Float , traits .Range (1 , 8 ),
1175
1182
traits .Range (1 , 8 ),
1176
1183
field = 'warp.settings.optim' ,
1177
- desc = """Optimization settings a tuple
1184
+ desc = """
1185
+ Optimization settings a tuple
1178
1186
- LM regularization
1179
1187
- cycles of multigrid solver
1180
1188
- relaxation iterations
@@ -1679,12 +1687,15 @@ def _list_outputs(self):
1679
1687
# normalized space
1680
1688
if getattr (self .inputs , '%s_normalized' % tis ):
1681
1689
outputs ['normalized_class_images' ][i ].append (
1682
- os .path .join (pth , "w%sp%d%s.nii" % (dartel_px , i + 1 , base )))
1690
+ os .path .join (pth ,
1691
+ "w%sp%d%s.nii" % (dartel_px ,
1692
+ i + 1 , base )))
1683
1693
1684
1694
if getattr (self .inputs , '%s_modulated_normalized' % tis ) == 1 :
1685
1695
outputs ['modulated_class_images' ][i ].append (os .path .join (
1686
1696
pth , "mw%sp%d%s.nii" % (dartel_px , i + 1 , base )))
1687
- elif getattr (self .inputs , '%s_modulated_normalized' % tis ) == 2 :
1697
+ elif getattr (self .inputs ,
1698
+ '%s_modulated_normalized' % tis ) == 2 :
1688
1699
outputs ['normalized_class_images' ][i ].append (os .path .join (
1689
1700
pth , "m0w%sp%d%s.nii" % (dartel_px , i + 1 , base )))
1690
1701
0 commit comments