@@ -63,7 +63,23 @@ class ComputeDVARS(BaseInterface):
63
63
year = {2013}
64
64
}""" ),
65
65
'tags' : ['method' ]
66
-
66
+ }, {
67
+ 'entry' : BibTex ("""\
68
+ @article{power_spurious_2012,
69
+ title = {Spurious but systematic correlations in functional connectivity {MRI} networks \
70
+ arise from subject motion},
71
+ volume = {59},
72
+ doi = {10.1016/j.neuroimage.2011.10.018},
73
+ number = {3},
74
+ urldate = {2016-08-16},
75
+ journal = {NeuroImage},
76
+ author = {Power, Jonathan D. and Barnes, Kelly A. and Snyder, Abraham Z. and Schlaggar, \
77
+ Bradley L. and Petersen, Steven E.},
78
+ year = {2012},
79
+ pages = {2142--2154},
80
+ }
81
+ """ ),
82
+ 'tags' : ['method' ]
67
83
}]
68
84
69
85
def __init__ (self , ** inputs ):
@@ -133,6 +149,10 @@ def compute_dvars(in_file, in_mask):
133
149
derivative of timecourses, VARS referring to RMS variance over voxels)`
134
150
[Nichols2013]_ are computed.
135
151
152
+ .. [Nichols2013] Nichols T, `Notes on creating a standardized version of
153
+ DVARS <http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-\
154
+ research/nichols/scripts/fsl/standardizeddvars.pdf>`_, 2013.
155
+
136
156
.. note:: Implementation details
137
157
138
158
Uses the implementation of the `Yule-Walker equations
0 commit comments