Skip to content

Commit 46f3249

Browse files
author
JDWarner
committed
DOC: Fix doctest strings, removing unused flag.
1 parent 5c803ba commit 46f3249

File tree

2 files changed

+13
-12
lines changed

2 files changed

+13
-12
lines changed

nipype/interfaces/ants/registration.py

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -320,8 +320,8 @@ class RegistrationInputSpec(ANTSCommandInputSpec):
320320
low=0.0, high=1.0, value=1.0, argstr='%s', usedefault=True, desc="The Upper quantile to clip image ranges")
321321
winsorize_lower_quantile = traits.Range(
322322
low=0.0, high=1.0, value=0.0, argstr='%s', usedefault=True, desc="The Lower quantile to clip image ranges")
323-
# collapse_linear_transforms_to_fixed_image_header = traits.Bool(
324-
# argstr='%s', default=False, usedefault=True, desc='')
323+
# collapse_linear_transforms_to_fixed_image_header = traits.Bool(
324+
# argstr='%s', default=False, usedefault=True, desc='')
325325

326326

327327
class RegistrationOutputSpec(TraitedSpec):
@@ -376,21 +376,20 @@ class Registration(ANTSCommand):
376376
377377
>>> reg1 = copy.deepcopy(reg)
378378
>>> reg1.inputs.winsorize_lower_quantile = 0.025
379-
>>> reg1.inputs.collapse_linear_transforms_to_fixed_image_header = False
380379
>>> reg1.cmdline
381-
'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
380+
'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 1.0 ] --write-composite-transform 1'
382381
>>> reg1.run() #doctest: +SKIP
383382
384383
>>> reg2 = copy.deepcopy(reg)
385384
>>> reg2.inputs.winsorize_upper_quantile = 0.975
386385
>>> reg2.cmdline
387-
'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
386+
'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 0.975 ] --write-composite-transform 1'
388387
389388
>>> reg3 = copy.deepcopy(reg)
390389
>>> reg3.inputs.winsorize_lower_quantile = 0.025
391390
>>> reg3.inputs.winsorize_upper_quantile = 0.975
392391
>>> reg3.cmdline
393-
'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
392+
'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric Mattes[ fixed1.nii, moving1.nii, 1, 32 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.025, 0.975 ] --write-composite-transform 1'
394393
395394
>>> # Test collapse transforms flag
396395
>>> reg4 = copy.deepcopy(reg)
@@ -408,7 +407,7 @@ class Registration(ANTSCommand):
408407
>>> reg5.inputs.sampling_strategy = ['Random', None] # use default strategy in second stage
409408
>>> reg5.inputs.sampling_percentage = [0.05, [0.05, 0.10]]
410409
>>> reg5.cmdline
411-
'antsRegistration --collapse-linear-transforms-to-fixed-image-header 0 --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
410+
'antsRegistration --collapse-output-transforms 0 --dimensionality 3 --initial-moving-transform [ trans.mat, 1 ] --interpolation Linear --output [ output_, output_warped_image.nii.gz ] --transform Affine[ 2.0 ] --metric CC[ fixed1.nii, moving1.nii, 1, 4, Random, 0.05 ] --convergence [ 1500x200, 1e-08, 20 ] --smoothing-sigmas 1.0x0.0vox --shrink-factors 2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --transform SyN[ 0.25, 3.0, 0.0 ] --metric CC[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.05 ] --metric Mattes[ fixed1.nii, moving1.nii, 0.5, 32, None, 0.1 ] --convergence [ 100x50x30, 1e-09, 20 ] --smoothing-sigmas 2.0x1.0x0.0vox --shrink-factors 3x2x1 --use-estimate-learning-rate-once 1 --use-histogram-matching 1 --winsorize-image-intensities [ 0.0, 1.0 ] --write-composite-transform 1'
412411
"""
413412
DEF_SAMPLING_STRATEGY = 'None'
414413
"""The default sampling strategy argument."""
@@ -579,9 +578,11 @@ def _formatWinsorizeImageIntensities(self):
579578

580579
def _formatCollapseLinearTransformsToFixedImageHeader(self):
581580
if self.inputs.collapse_linear_transforms_to_fixed_image_header:
582-
return '--collapse-linear-transforms-to-fixed-image-header 1'
581+
# return '--collapse-linear-transforms-to-fixed-image-header 1'
582+
return ''
583583
else:
584-
return '--collapse-linear-transforms-to-fixed-image-header 0'
584+
# return '--collapse-linear-transforms-to-fixed-image-header 0'
585+
return ''
585586

586587
def _format_arg(self, opt, spec, val):
587588
if opt == 'fixed_image_mask':

nipype/interfaces/ants/tests/test_auto_Registration.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@
55
def test_Registration_inputs():
66
input_map = dict(args=dict(argstr='%s',
77
),
8-
# collapse_linear_transforms_to_fixed_image_header=dict(argstr='%s',
9-
# usedefault=True,
10-
# ),
8+
collapse_linear_transforms_to_fixed_image_header=dict(argstr='%s',
9+
usedefault=True,
10+
),
1111
collapse_output_transforms=dict(argstr='--collapse-output-transforms %d',
1212
usedefault=True,
1313
),

0 commit comments

Comments
 (0)