@@ -189,8 +189,8 @@ def _list_outputs(self):
189
189
self .inputs .output_transform_prefix + 'Warp.nii.gz' )
190
190
outputs ['inverse_warp_transform' ] = os .path .abspath (
191
191
self .inputs .output_transform_prefix + 'InverseWarp.nii.gz' )
192
- #outputs['metaheader'] = os.path.abspath(self.inputs.output_transform_prefix + 'velocity.mhd')
193
- #outputs['metaheader_raw'] = os.path.abspath(self.inputs.output_transform_prefix + 'velocity.raw')
192
+ # outputs['metaheader'] = os.path.abspath(self.inputs.output_transform_prefix + 'velocity.mhd')
193
+ # outputs['metaheader_raw'] = os.path.abspath(self.inputs.output_transform_prefix + 'velocity.raw')
194
194
return outputs
195
195
196
196
@@ -351,10 +351,8 @@ class RegistrationOutputSpec(TraitedSpec):
351
351
), desc = 'List of flags corresponding to the forward transforms' )
352
352
reverse_invert_flags = traits .List (traits .Bool (
353
353
), desc = 'List of flags corresponding to the reverse transforms' )
354
- composite_transform = traits .List (
355
- File (exists = True ), desc = 'Composite transform file' )
356
- inverse_composite_transform = traits .List (
357
- File (exists = True ), desc = 'Inverse composite transform file' )
354
+ composite_transform = File (exists = True , desc = 'Composite transform file' )
355
+ inverse_composite_transform = File (exists = True , desc = 'Inverse composite transform file' )
358
356
warped_image = File (desc = "Outputs warped image" )
359
357
inverse_warped_image = File (desc = "Outputs the inverse of the warped image" )
360
358
save_state = File (desc = "The saved registration state to be restored" )
@@ -428,7 +426,7 @@ class Registration(ANTSCommand):
428
426
>>> reg4.inputs.collapse_output_transforms = True
429
427
>>> outputs = reg4._list_outputs()
430
428
>>> print outputs #doctest: +ELLIPSIS
431
- {'reverse_invert_flags': [], 'inverse_composite_transform': [ '.../nipype/testing/data/output_InverseComposite.h5'] , 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'save_state': <undefined>, 'composite_transform': [ '.../nipype/testing/data/output_Composite.h5'] , 'forward_transforms': []}
429
+ {'reverse_invert_flags': [], 'inverse_composite_transform': '.../nipype/testing/data/output_InverseComposite.h5', 'warped_image': '.../nipype/testing/data/output_warped_image.nii.gz', 'inverse_warped_image': <undefined>, 'forward_invert_flags': [], 'reverse_transforms': [], 'save_state': <undefined>, 'composite_transform': '.../nipype/testing/data/output_Composite.h5', 'forward_transforms': []}
432
430
433
431
>>> # Test collapse transforms flag
434
432
>>> reg4b = copy.deepcopy(reg4)
@@ -500,7 +498,7 @@ def _formatMetric(self, index):
500
498
items = stage_inputs .items ()
501
499
indexes = range (0 , len (name_input ))
502
500
# dict-comprehension only works with python 2.7 and up
503
- #specs = [{k: v[i] for k, v in items} for i in indexes]
501
+ # specs = [{k: v[i] for k, v in items} for i in indexes]
504
502
specs = [dict ([(k , v [i ]) for k , v in items ]) for i in indexes ]
505
503
else :
506
504
specs = [stage_inputs ]
@@ -550,17 +548,17 @@ def _formatRegistration(self):
550
548
retval .append ('--metric %s' % metric )
551
549
retval .append ('--convergence %s' % self ._formatConvergence (ii ))
552
550
if isdefined (self .inputs .sigma_units ):
553
- retval .append ('--smoothing-sigmas %s%s' %
551
+ retval .append ('--smoothing-sigmas %s%s' %
554
552
(self ._antsJoinList (self .inputs .smoothing_sigmas [
555
553
ii ]),
556
554
self .inputs .sigma_units [ii ]))
557
555
else :
558
- retval .append ('--smoothing-sigmas %s' %
556
+ retval .append ('--smoothing-sigmas %s' %
559
557
self ._antsJoinList (self .inputs .smoothing_sigmas [ii ]))
560
- retval .append ('--shrink-factors %s' %
558
+ retval .append ('--shrink-factors %s' %
561
559
self ._antsJoinList (self .inputs .shrink_factors [ii ]))
562
560
if isdefined (self .inputs .use_estimate_learning_rate_once ):
563
- retval .append ('--use-estimate-learning-rate-once %d' %
561
+ retval .append ('--use-estimate-learning-rate-once %d' %
564
562
self .inputs .use_estimate_learning_rate_once [ii ])
565
563
if isdefined (self .inputs .use_histogram_matching ):
566
564
# use_histogram_matching is either a common flag for all transforms
@@ -663,7 +661,7 @@ def _format_arg(self, opt, spec, val):
663
661
return self ._formatWinsorizeImageIntensities ()
664
662
return '' # Must return something for argstr!
665
663
# This feature was removed from recent versions of antsRegistration due to corrupt outputs.
666
- #elif opt == 'collapse_linear_transforms_to_fixed_image_header':
664
+ # elif opt == 'collapse_linear_transforms_to_fixed_image_header':
667
665
# return self._formatCollapseLinearTransformsToFixedImageHeader()
668
666
return super (Registration , self )._format_arg (opt , spec , val )
669
667
@@ -702,12 +700,11 @@ def _list_outputs(self):
702
700
703
701
if self .inputs .write_composite_transform :
704
702
fileName = self .inputs .output_transform_prefix + 'Composite.h5'
705
- outputs ['composite_transform' ] = [ os .path .abspath (fileName )]
703
+ outputs ['composite_transform' ] = os .path .abspath (fileName )
706
704
fileName = self .inputs .output_transform_prefix + \
707
705
'InverseComposite.h5'
708
- outputs ['inverse_composite_transform' ] = [
709
- os .path .abspath (fileName )]
710
- else : # If composite transforms are written, then individuals are not written (as of 2014-10-26
706
+ outputs ['inverse_composite_transform' ] = os .path .abspath (fileName )
707
+ else : # If composite transforms are written, then individuals are not written (as of 2014-10-26
711
708
if not self .inputs .collapse_output_transforms :
712
709
transformCount = 0
713
710
if isdefined (self .inputs .initial_moving_transform ):
0 commit comments