|
1 |
| -# -*- coding: utf-8 -*- |
2 |
| -"""ANTS Apply Transforms interface |
3 |
| -""" |
4 |
| - |
| 1 | +"""ANTs' utilities.""" |
5 | 2 | import os
|
| 3 | +from ...utils.imagemanip import copy_header as _copy_header |
| 4 | +from ..base import traits, isdefined, TraitedSpec, File, Str, InputMultiPath |
| 5 | +from .base import ANTSCommandInputSpec, ANTSCommand |
| 6 | + |
| 7 | + |
| 8 | +class _ImageMathInputSpec(ANTSCommandInputSpec): |
| 9 | + dimension = traits.Int(3, usedefault=True, position=1, argstr='%d', |
| 10 | + desc='dimension of output image') |
| 11 | + output_image = File(position=2, argstr='%s', name_source=['op1'], |
| 12 | + name_template='%s_maths', desc='output image file', |
| 13 | + keep_extension=True) |
| 14 | + operation = traits.Enum( |
| 15 | + 'm', 'vm', '+', 'v+', '-', 'v-', '/', '^', 'max', 'exp', 'addtozero', |
| 16 | + 'overadd', 'abs', 'total', 'mean', 'vtotal', 'Decision', 'Neg', |
| 17 | + 'Project', 'G', 'MD', 'ME', 'MO', 'MC', 'GD', 'GE', 'GO', 'GC', |
| 18 | + mandatory=True, position=3, argstr='%s', |
| 19 | + desc='mathematical operations') |
| 20 | + op1 = File(exists=True, mandatory=True, position=-2, argstr='%s', |
| 21 | + desc='first operator') |
| 22 | + op2 = traits.Either(File(exists=True), Str, position=-1, |
| 23 | + argstr='%s', desc='second operator') |
| 24 | + copy_header = traits.Bool( |
| 25 | + True, usedefault=True, |
| 26 | + desc='copy headers of the original image into the output (corrected) file') |
| 27 | + |
| 28 | + |
| 29 | +class _ImageMathOuputSpec(TraitedSpec): |
| 30 | + output_image = File(exists=True, desc='output image file') |
| 31 | + |
| 32 | + |
| 33 | +class ImageMath(ANTSCommand): |
| 34 | + """ |
| 35 | + Operations over images. |
| 36 | +
|
| 37 | + Example |
| 38 | + ------- |
| 39 | + >>> ImageMath( |
| 40 | + ... op1='structural.nii', |
| 41 | + ... operation='+', |
| 42 | + ... op2='2').cmdline |
| 43 | + 'ImageMath 3 structural_maths.nii + structural.nii 2' |
| 44 | +
|
| 45 | + >>> ImageMath( |
| 46 | + ... op1='structural.nii', |
| 47 | + ... operation='Project', |
| 48 | + ... op2='1 2').cmdline |
| 49 | + 'ImageMath 3 structural_maths.nii Project structural.nii 1 2' |
| 50 | +
|
| 51 | + >>> ImageMath( |
| 52 | + ... op1='structural.nii', |
| 53 | + ... operation='G', |
| 54 | + ... op2='4').cmdline |
| 55 | + 'ImageMath 3 structural_maths.nii G structural.nii 4' |
| 56 | +
|
| 57 | + """ |
| 58 | + |
| 59 | + _cmd = 'ImageMath' |
| 60 | + input_spec = _ImageMathInputSpec |
| 61 | + output_spec = _ImageMathOuputSpec |
| 62 | + |
| 63 | + def _list_outputs(self): |
| 64 | + outputs = super(ImageMath, self)._list_outputs() |
| 65 | + if self.inputs.copy_header: # Fix headers |
| 66 | + _copy_header(self.inputs.op1, outputs['output_image'], |
| 67 | + keep_dtype=True) |
| 68 | + return outputs |
| 69 | + |
| 70 | + |
| 71 | +class _ResampleImageBySpacingInputSpec(ANTSCommandInputSpec): |
| 72 | + dimension = traits.Int(3, usedefault=True, position=1, argstr='%d', |
| 73 | + desc='dimension of output image') |
| 74 | + input_image = File(exists=True, mandatory=True, position=2, argstr='%s', |
| 75 | + desc='input image file') |
| 76 | + output_image = File(position=3, argstr='%s', name_source=['input_image'], |
| 77 | + name_template='%s_resampled', desc='output image file', |
| 78 | + keep_extension=True) |
| 79 | + out_spacing = traits.Either( |
| 80 | + traits.List(traits.Float, minlen=2, maxlen=3), |
| 81 | + traits.Tuple(traits.Float, traits.Float, traits.Float), |
| 82 | + traits.Tuple(traits.Float, traits.Float), |
| 83 | + position=4, argstr='%s', mandatory=True, desc='output spacing' |
| 84 | + ) |
| 85 | + apply_smoothing = traits.Bool(False, argstr='%d', position=5, |
| 86 | + desc='smooth before resampling') |
| 87 | + addvox = traits.Int(argstr='%d', position=6, requires=['apply_smoothing'], |
| 88 | + desc='addvox pads each dimension by addvox') |
| 89 | + nn_interp = traits.Bool(argstr='%d', desc='nn interpolation', |
| 90 | + position=-1, requires=['addvox']) |
| 91 | + |
| 92 | + |
| 93 | +class _ResampleImageBySpacingOutputSpec(TraitedSpec): |
| 94 | + output_image = File(exists=True, desc='resampled file') |
| 95 | + |
| 96 | + |
| 97 | +class ResampleImageBySpacing(ANTSCommand): |
| 98 | + """ |
| 99 | + Resample an image with a given spacing. |
| 100 | +
|
| 101 | + Examples |
| 102 | + -------- |
| 103 | + >>> res = ResampleImageBySpacing(dimension=3) |
| 104 | + >>> res.inputs.input_image = 'structural.nii' |
| 105 | + >>> res.inputs.output_image = 'output.nii.gz' |
| 106 | + >>> res.inputs.out_spacing = (4, 4, 4) |
| 107 | + >>> res.cmdline #doctest: +ELLIPSIS |
| 108 | + 'ResampleImageBySpacing 3 structural.nii output.nii.gz 4 4 4' |
| 109 | +
|
| 110 | + >>> res = ResampleImageBySpacing(dimension=3) |
| 111 | + >>> res.inputs.input_image = 'structural.nii' |
| 112 | + >>> res.inputs.output_image = 'output.nii.gz' |
| 113 | + >>> res.inputs.out_spacing = (4, 4, 4) |
| 114 | + >>> res.inputs.apply_smoothing = True |
| 115 | + >>> res.cmdline #doctest: +ELLIPSIS |
| 116 | + 'ResampleImageBySpacing 3 structural.nii output.nii.gz 4 4 4 1' |
| 117 | +
|
| 118 | + >>> res = ResampleImageBySpacing(dimension=3) |
| 119 | + >>> res.inputs.input_image = 'structural.nii' |
| 120 | + >>> res.inputs.output_image = 'output.nii.gz' |
| 121 | + >>> res.inputs.out_spacing = (0.4, 0.4, 0.4) |
| 122 | + >>> res.inputs.apply_smoothing = True |
| 123 | + >>> res.inputs.addvox = 2 |
| 124 | + >>> res.inputs.nn_interp = False |
| 125 | + >>> res.cmdline #doctest: +ELLIPSIS |
| 126 | + 'ResampleImageBySpacing 3 structural.nii output.nii.gz 0.4 0.4 0.4 1 2 0' |
| 127 | +
|
| 128 | + """ |
| 129 | + |
| 130 | + _cmd = 'ResampleImageBySpacing' |
| 131 | + input_spec = _ResampleImageBySpacingInputSpec |
| 132 | + output_spec = _ResampleImageBySpacingOutputSpec |
| 133 | + |
| 134 | + def _format_arg(self, name, trait_spec, value): |
| 135 | + if name == 'out_spacing': |
| 136 | + if len(value) != self.inputs.dimension: |
| 137 | + raise ValueError('out_spacing dimensions should match dimension') |
| 138 | + |
| 139 | + value = ' '.join(['%g' % d for d in value]) |
| 140 | + |
| 141 | + return super(ResampleImageBySpacing, self)._format_arg( |
| 142 | + name, trait_spec, value) |
| 143 | + |
| 144 | + |
| 145 | +class _ThresholdImageInputSpec(ANTSCommandInputSpec): |
| 146 | + dimension = traits.Int(3, usedefault=True, position=1, argstr='%d', |
| 147 | + desc='dimension of output image') |
| 148 | + input_image = File(exists=True, mandatory=True, position=2, argstr='%s', |
| 149 | + desc='input image file') |
| 150 | + output_image = File(position=3, argstr='%s', name_source=['input_image'], |
| 151 | + name_template='%s_resampled', desc='output image file', |
| 152 | + keep_extension=True) |
6 | 153 |
|
7 |
| -from ..base import TraitedSpec, File, traits, InputMultiPath |
8 |
| -from .base import ANTSCommand, ANTSCommandInputSpec |
| 154 | + mode = traits.Enum('Otsu', 'Kmeans', argstr='%s', position=4, |
| 155 | + requires=['num_thresholds'], xor=['th_low', 'th_high'], |
| 156 | + desc='whether to run Otsu / Kmeans thresholding') |
| 157 | + num_thresholds = traits.Int(position=5, argstr='%d', |
| 158 | + desc='number of thresholds') |
| 159 | + input_mask = File(exists=True, requires=['num_thresholds'], argstr='%s', |
| 160 | + desc='input mask for Otsu, Kmeans') |
| 161 | + |
| 162 | + th_low = traits.Float(position=4, argstr='%f', xor=['mode'], |
| 163 | + desc='lower threshold') |
| 164 | + th_high = traits.Float(position=5, argstr='%f', xor=['mode'], |
| 165 | + desc='upper threshold') |
| 166 | + inside_value = traits.Float(1, position=6, argstr='%f', requires=['th_low'], |
| 167 | + desc='inside value') |
| 168 | + outside_value = traits.Float(0, position=7, argstr='%f', requires=['th_low'], |
| 169 | + desc='outside value') |
| 170 | + copy_header = traits.Bool( |
| 171 | + True, mandatory=True, usedefault=True, |
| 172 | + desc='copy headers of the original image into the output (corrected) file') |
| 173 | + |
| 174 | + |
| 175 | +class _ThresholdImageOutputSpec(TraitedSpec): |
| 176 | + output_image = File(exists=True, desc='resampled file') |
| 177 | + |
| 178 | + |
| 179 | +class ThresholdImage(ANTSCommand): |
| 180 | + """ |
| 181 | + Apply thresholds on images. |
| 182 | +
|
| 183 | + Examples |
| 184 | + -------- |
| 185 | + >>> thres = ThresholdImage(dimension=3) |
| 186 | + >>> thres.inputs.input_image = 'structural.nii' |
| 187 | + >>> thres.inputs.output_image = 'output.nii.gz' |
| 188 | + >>> thres.inputs.th_low = 0.5 |
| 189 | + >>> thres.inputs.th_high = 1.0 |
| 190 | + >>> thres.inputs.inside_value = 1.0 |
| 191 | + >>> thres.inputs.outside_value = 0.0 |
| 192 | + >>> thres.cmdline #doctest: +ELLIPSIS |
| 193 | + 'ThresholdImage 3 structural.nii output.nii.gz 0.500000 1.000000 1.000000 0.000000' |
| 194 | +
|
| 195 | + >>> thres = ThresholdImage(dimension=3) |
| 196 | + >>> thres.inputs.input_image = 'structural.nii' |
| 197 | + >>> thres.inputs.output_image = 'output.nii.gz' |
| 198 | + >>> thres.inputs.mode = 'Kmeans' |
| 199 | + >>> thres.inputs.num_thresholds = 4 |
| 200 | + >>> thres.cmdline #doctest: +ELLIPSIS |
| 201 | + 'ThresholdImage 3 structural.nii output.nii.gz Kmeans 4' |
| 202 | +
|
| 203 | + """ |
| 204 | + |
| 205 | + _cmd = 'ThresholdImage' |
| 206 | + input_spec = _ThresholdImageInputSpec |
| 207 | + output_spec = _ThresholdImageOutputSpec |
| 208 | + |
| 209 | + def _list_outputs(self): |
| 210 | + outputs = super(ThresholdImage, self)._list_outputs() |
| 211 | + if self.inputs.copy_header: # Fix headers |
| 212 | + _copy_header(self.inputs.input_image, outputs['output_image'], |
| 213 | + keep_dtype=True) |
| 214 | + return outputs |
| 215 | + |
| 216 | + |
| 217 | +class _AIInputSpec(ANTSCommandInputSpec): |
| 218 | + dimension = traits.Enum(3, 2, usedefault=True, argstr='-d %d', |
| 219 | + desc='dimension of output image') |
| 220 | + verbose = traits.Bool(False, usedefault=True, argstr='-v %d', |
| 221 | + desc='enable verbosity') |
| 222 | + |
| 223 | + fixed_image = File( |
| 224 | + exists=True, mandatory=True, |
| 225 | + desc='Image to which the moving_image should be transformed') |
| 226 | + moving_image = File( |
| 227 | + exists=True, mandatory=True, |
| 228 | + desc='Image that will be transformed to fixed_image') |
| 229 | + |
| 230 | + fixed_image_mask = File( |
| 231 | + exists=True, argstr='-x %s', desc='fixed mage mask') |
| 232 | + moving_image_mask = File( |
| 233 | + exists=True, requires=['fixed_image_mask'], |
| 234 | + desc='moving mage mask') |
| 235 | + |
| 236 | + metric_trait = ( |
| 237 | + traits.Enum("Mattes", "GC", "MI"), |
| 238 | + traits.Int(32), |
| 239 | + traits.Enum('Regular', 'Random', 'None'), |
| 240 | + traits.Range(value=0.2, low=0.0, high=1.0) |
| 241 | + ) |
| 242 | + metric = traits.Tuple(*metric_trait, argstr='-m %s', mandatory=True, |
| 243 | + desc='the metric(s) to use.') |
| 244 | + |
| 245 | + transform = traits.Tuple( |
| 246 | + traits.Enum('Affine', 'Rigid', 'Similarity'), |
| 247 | + traits.Range(value=0.1, low=0.0, exclude_low=True), |
| 248 | + argstr='-t %s[%g]', usedefault=True, |
| 249 | + desc='Several transform options are available') |
| 250 | + |
| 251 | + principal_axes = traits.Bool(False, usedefault=True, argstr='-p %d', xor=['blobs'], |
| 252 | + desc='align using principal axes') |
| 253 | + search_factor = traits.Tuple( |
| 254 | + traits.Float(20), traits.Range(value=0.12, low=0.0, high=1.0), |
| 255 | + usedefault=True, argstr='-s [%g,%g]', desc='search factor') |
| 256 | + |
| 257 | + search_grid = traits.Either( |
| 258 | + traits.Tuple(traits.Float, traits.Tuple(traits.Float, traits.Float, traits.Float)), |
| 259 | + traits.Tuple(traits.Float, traits.Tuple(traits.Float, traits.Float)), |
| 260 | + argstr='-g %s', desc='Translation search grid in mm') |
| 261 | + |
| 262 | + convergence = traits.Tuple( |
| 263 | + traits.Range(low=1, high=10000, value=10), |
| 264 | + traits.Float(1e-6), |
| 265 | + traits.Range(low=1, high=100, value=10), |
| 266 | + usedefault=True, argstr='-c [%d,%g,%d]', desc='convergence') |
| 267 | + |
| 268 | + output_transform = File( |
| 269 | + 'initialization.mat', usedefault=True, argstr='-o %s', |
| 270 | + desc='output file name') |
| 271 | + |
| 272 | + |
| 273 | +class _AIOuputSpec(TraitedSpec): |
| 274 | + output_transform = File(exists=True, desc='output file name') |
| 275 | + |
| 276 | + |
| 277 | +class AI(ANTSCommand): |
| 278 | + """ |
| 279 | + Calculate the optimal linear transform parameters for aligning two images. |
| 280 | +
|
| 281 | + Examples |
| 282 | + -------- |
| 283 | + >>> AI( |
| 284 | + ... fixed_image='structural.nii', |
| 285 | + ... moving_image='epi.nii', |
| 286 | + ... metric=('Mattes', 32, 'Regular', 1), |
| 287 | + ... ).cmdline |
| 288 | + 'antsAI -c [10,1e-06,10] -d 3 -m Mattes[structural.nii,epi.nii,32,Regular,1] |
| 289 | + -o initialization.mat -p 0 -s [20,0.12] -t Affine[0.1] -v 0' |
| 290 | +
|
| 291 | + >>> AI( |
| 292 | + ... fixed_image='structural.nii', |
| 293 | + ... moving_image='epi.nii', |
| 294 | + ... metric=('Mattes', 32, 'Regular', 1), |
| 295 | + ... search_grid=(12, (1, 1, 1)), |
| 296 | + ... ).cmdline |
| 297 | + 'antsAI -c [10,1e-06,10] -d 3 -m Mattes[structural.nii,epi.nii,32,Regular,1] |
| 298 | + -o initialization.mat -p 0 -s [20,0.12] -g [12.0,1x1x1] -t Affine[0.1] -v 0' |
| 299 | +
|
| 300 | + """ |
| 301 | + |
| 302 | + _cmd = 'antsAI' |
| 303 | + input_spec = _AIInputSpec |
| 304 | + output_spec = _AIOuputSpec |
| 305 | + |
| 306 | + def _run_interface(self, runtime, correct_return_codes=(0, )): |
| 307 | + runtime = super(AI, self)._run_interface( |
| 308 | + runtime, correct_return_codes) |
| 309 | + |
| 310 | + setattr(self, '_output', { |
| 311 | + 'output_transform': os.path.join( |
| 312 | + runtime.cwd, |
| 313 | + os.path.basename(self.inputs.output_transform)) |
| 314 | + }) |
| 315 | + return runtime |
| 316 | + |
| 317 | + def _format_arg(self, opt, spec, val): |
| 318 | + if opt == 'metric': |
| 319 | + val = '%s[{fixed_image},{moving_image},%d,%s,%g]' % val |
| 320 | + val = val.format( |
| 321 | + fixed_image=self.inputs.fixed_image, |
| 322 | + moving_image=self.inputs.moving_image) |
| 323 | + return spec.argstr % val |
| 324 | + |
| 325 | + if opt == 'search_grid': |
| 326 | + val1 = 'x'.join(['%g' % v for v in val[1]]) |
| 327 | + fmtval = '[%s]' % ','.join([str(val[0]), val1]) |
| 328 | + return spec.argstr % fmtval |
| 329 | + |
| 330 | + if opt == 'fixed_image_mask': |
| 331 | + if isdefined(self.inputs.moving_image_mask): |
| 332 | + return spec.argstr % ('[%s,%s]' % ( |
| 333 | + val, self.inputs.moving_image_mask)) |
| 334 | + |
| 335 | + return super(AI, self)._format_arg(opt, spec, val) |
| 336 | + |
| 337 | + def _list_outputs(self): |
| 338 | + return getattr(self, '_output') |
9 | 339 |
|
10 | 340 |
|
11 | 341 | class AverageAffineTransformInputSpec(ANTSCommandInputSpec):
|
@@ -42,6 +372,7 @@ class AverageAffineTransform(ANTSCommand):
|
42 | 372 | >>> avg.inputs.output_affine_transform = 'MYtemplatewarp.mat'
|
43 | 373 | >>> avg.cmdline
|
44 | 374 | 'AverageAffineTransform 3 MYtemplatewarp.mat trans.mat func_to_struct.mat'
|
| 375 | +
|
45 | 376 | """
|
46 | 377 |
|
47 | 378 | _cmd = "AverageAffineTransform"
|
@@ -343,7 +674,8 @@ class ComposeMultiTransform(ANTSCommand):
|
343 | 674 | >>> compose_transform.inputs.dimension = 3
|
344 | 675 | >>> compose_transform.inputs.transforms = ['struct_to_template.mat', 'func_to_struct.mat']
|
345 | 676 | >>> compose_transform.cmdline
|
346 |
| - 'ComposeMultiTransform 3 struct_to_template_composed.mat struct_to_template.mat func_to_struct.mat' |
| 677 | + 'ComposeMultiTransform 3 struct_to_template_composed.mat |
| 678 | + struct_to_template.mat func_to_struct.mat' |
347 | 679 |
|
348 | 680 | """
|
349 | 681 |
|
|
0 commit comments