@@ -323,11 +323,6 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
323
323
np .percentile (func , 25 , axis = 3 )) / 1.349
324
324
func_sd [mask <= 0 ] = 0
325
325
326
- # ar1_img = np.zeros_like(func_sd)
327
- # ar1_img[idx] = diff_SDhat
328
- nb .Nifti1Image (func_sd , nb .load (in_mask ).get_affine ()).to_filename ('func_sd.nii.gz' )
329
-
330
-
331
326
if remove_zerovariance :
332
327
# Remove zero-variance voxels across time axis
333
328
mask = zero_variance (func , mask )
@@ -342,8 +337,8 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
342
337
ar1 = np .apply_along_axis (AR_est_YW , 1 , mfunc , 1 )[:, 0 ]
343
338
344
339
# Compute (predicted) standard deviation of temporal difference time series
345
- diff_SDhat = np .squeeze (np .sqrt (((1 - ar1 ) * 2 ).tolist ())) * func_sd [mask > 0 ].reshape (- 1 )
346
- diff_sd_mean = diff_SDhat .mean ()
340
+ diff_sdhat = np .squeeze (np .sqrt (((1 - ar1 ) * 2 ).tolist ())) * func_sd [mask > 0 ].reshape (- 1 )
341
+ diff_sd_mean = diff_sdhat .mean ()
347
342
348
343
# Compute temporal difference time series
349
344
func_diff = np .diff (mfunc , axis = 1 )
@@ -355,7 +350,7 @@ def compute_dvars(in_file, in_mask, remove_zerovariance=False):
355
350
dvars_stdz = dvars_nstd / diff_sd_mean
356
351
357
352
# voxelwise standardization
358
- diff_vx_stdz = func_diff / np .array ([diff_SDhat ] * func_diff .shape [- 1 ]).T
353
+ diff_vx_stdz = func_diff / np .array ([diff_sdhat ] * func_diff .shape [- 1 ]).T
359
354
dvars_vx_stdz = diff_vx_stdz .std (axis = 0 , ddof = 1 )
360
355
361
356
return (dvars_stdz , dvars_nstd , dvars_vx_stdz )
0 commit comments