|
| 1 | +def test_filmgls(): |
| 2 | + input_map = dict(args = dict(argstr='%s',), |
| 3 | + autocorr_estimate_only = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='-ac',), |
| 4 | + autocorr_noestimate = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='-noest',), |
| 5 | + brightness_threshold = dict(argstr='-epith %d',), |
| 6 | + design_file = dict(argstr='%s',), |
| 7 | + environ = dict(usedefault=True,), |
| 8 | + fit_armodel = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='-ar',), |
| 9 | + full_data = dict(argstr='-v',), |
| 10 | + ignore_exception = dict(usedefault=True,), |
| 11 | + in_file = dict(mandatory=True,argstr='%s',), |
| 12 | + mask_size = dict(argstr='-ms %d',), |
| 13 | + multitaper_product = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='-mt %d',), |
| 14 | + output_pwdata = dict(argstr='-output_pwdata',), |
| 15 | + output_type = dict(), |
| 16 | + results_dir = dict(usedefault=True,argstr='-rn %s',), |
| 17 | + smooth_autocorr = dict(argstr='-sa',), |
| 18 | + threshold = dict(argstr='%f',), |
| 19 | + tukey_window = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='-tukey %d',), |
| 20 | + use_pava = dict(argstr='-pava',), |
| 21 | + ) |
| 22 | + input_map2 = dict(args = dict(argstr='%s',), |
| 23 | + autocorr_estimate_only = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='--ac',), |
| 24 | + autocorr_noestimate = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='--noest',), |
| 25 | + brightness_threshold = dict(argstr='--epith=%d',), |
| 26 | + design_file = dict(argstr='--pd=%s',), |
| 27 | + environ = dict(usedefault=True,), |
| 28 | + fit_armodel = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='--ar',), |
| 29 | + full_data = dict(argstr='-v',), |
| 30 | + ignore_exception = dict(usedefault=True,), |
| 31 | + in_file = dict(mandatory=True,argstr='--in=%s',), |
| 32 | + mask_size = dict(argstr='--ms=%d',), |
| 33 | + multitaper_product = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='--mt=%d',), |
| 34 | + output_pwdata = dict(argstr='--outputPWdata',), |
| 35 | + output_type = dict(), |
| 36 | + results_dir = dict(argstr='--rn=%s',usedefault=True,), |
| 37 | + smooth_autocorr = dict(argstr='--sa',), |
| 38 | + terminal_output = dict(mandatory=True,), |
| 39 | + threshold = dict(usedefault=True,argstr='--thr=%f',), |
| 40 | + tukey_window = dict(xor=['autocorr_estimate_only', 'fit_armodel', 'tukey_window', 'multitaper_product', 'use_pava', 'autocorr_noestimate'],argstr='--tukey=%d',), |
| 41 | + use_pava = dict(argstr='--pava',), |
| 42 | + ) |
| 43 | + instance = fsl.FILMGLS() |
| 44 | + if isinstance(instance.inputs, fsl.FILMGLSInputSpec): |
| 45 | + for key, metadata in input_map.items(): |
| 46 | + for metakey, value in metadata.items(): |
| 47 | + yield assert_equal, getattr(instance.inputs.traits()[key], metakey), value |
| 48 | + else: |
| 49 | + for key, metadata in input_map2.items(): |
| 50 | + for metakey, value in metadata.items(): |
| 51 | + yield assert_equal, getattr(instance.inputs.traits()[key], metakey), value |
0 commit comments